[go: up one dir, main page]

タグ

数学に関するl_seikaのブックマーク (3)

  • じわじわ売れてる謎の本「円周率1000000桁表」の著者に直撃(前編) 何のために作ったんですか? - 日経トレンディネット

    高橋晋平氏(以下、高橋):どういうきっかけでこのを出したんですか? 牧野貴樹氏(以下、牧野):最初はなんとなく面白いかなと思って(笑)。自宅のプリンターで30部刷って売ったら、すぐに全部売れまして。次に印刷屋さんに頼んでみようということになって、300冊くらい作って書店さんにも少し流し始めたんです。それで3年とかくらいかけて300冊が売れて、それで僕としては「面白いことしたな」と満足して終わりにしていたんです。だけど、ずっと注文が来るんですよ。 一応ISBN(書店流通に必要な図書コード)を取っているからカタログにものっているし、Amazonにも一応掲載されているので注文が来るんですよ。「もう在庫がありません」と断っていたんだけど、あまりにずっと来続けるから、「また出そうか」ということになって出したら今度は思ったより大きく売れて……という感じですね。 高橋:巻末の印刷回数を見ると、この1刷

    じわじわ売れてる謎の本「円周率1000000桁表」の著者に直撃(前編) 何のために作ったんですか? - 日経トレンディネット
  • 双子素数 - Wikipedia

    双子素数(ふたごそすう、英: twin prime)とは、差が 2 である二つの素数の組を構成する各素数のことである。双子素数の組は、(2, 3) を除いた、最も近い素数の組である。双子素数を小さい順に並べた列は、次の通りである。 (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), … 各組の2素数の平均値(中間の偶数)は、次の通りである。3連続した数 (a, a+1, a+2) は2と3双方の倍数を含むことから、3の倍数で唯一素数である 3 を含む (3, 5) の組である 4 以外は全て 6 (=2x3) の倍数となる。 4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, … 素数が無数に存在することは古代ギリシアで既に知られており、ユークリッドの『原論』に証明がある。これに対し、双子素数が無数に存在するかと

  • 142857 - Wikipedia

    142857(十四万二千八百五十七、じゅうよんまんにせんはっぴゃくごじゅうなな)は自然数、また整数において、142856の次で142858の前の数である。 142857は合成数であり、約数は 1, 3, 9, 11, 13, 27, 33, 37, 39, 99, 111, 117, 143, 297, 333, 351, 407, 429, 481, 999, 1221, 1287, 1443, 3663, 3861, 4329, 5291, 10989, 12987, 15873, 47619, 142857 である。 約数の和は255360。 1/7 = 0.142857… の循環節からできる巡回数である。 巡回数であるため、乗じたときに各桁の数が次のように循環する。142857は代表的な巡回数である。 142857 × 1 = 142857 142857 × 2 = 285714

  • 1