© ISO/IEC 2012 – All rights reserved

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11
MPEG/N13089
Shanghai, China, October 2012

	Title
	Study of ISO/IEC CD 23008-1 MPEG Media Transport

	Status
	Study of CD

	Source
	MPEG-H Systems

	Editors
	Kyungmo Park, Youngkwon Lim (Samsung Electronics Co., Ltd), Shuichi Aoki (NHK), Gerard Fernando (ZTE), Jin Young Lee (ETRI)

COMMITTEE DRAFT

 SET DDOrganization "© ISO/IEC 2012 – All rights reserved" © ISO/IEC 2012 – All rights reserved

 SET LibEnteteISO "ISO/IEC CD 23008-1" ISO/IEC CD 23008-1

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 1: MPEG media transport (MMT)" Part 1: MPEG media transport (MMT)

 SET DDTITLE3 "Information technology — High efficiency coding and media delivery in heterogeneous environments" Information technology — High efficiency coding and media delivery in heterogeneous environments

 SET DDTITLE2 "Élément introductif — Élément central — Partie 1: Titre de la partie" Élément introductif — Élément central — Partie 1: Titre de la partie

 SET DDTITLE1 "Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 1: MPEG media transport (MMT)" Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 1: MPEG media transport (MMT)

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2012-07-20" 2012-07-20

 SET DDDocStage "(30) Committee" (30) Committee

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR "2009" 2009

 SET DDAmno "2" 2

 SET DDDocSubType ""

 SET DDDocType "International Standard" International Standard

 SET DDpubYear "2012" 2012

 SET DDWorkDocNo ""

 SET DDRefNoPart "ISO/IEC 23008" ISO/IEC 23008

 SET DDRefGen "ISO/IEC 23008‑1" ISO/IEC 23008‑1

 SET DDRefNum "ISO/IEC CD 23008-1" ISO/IEC CD 23008-1

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "見出し 2" 見出し 2

 SET libH1NAME "見出し 1" 見出し 1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "30" 30

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4C:\Users\ogura\Desktop\CD23008-1.doc

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" ISO/IEC JTC 1/SC 29 N13089 REF DDWorkDocNo * CHARFORMAT * MERGEFORMAT
Date: 2012-07-20
ISO/IEC CD 23008-1
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: REF DDSecr * CHARFORMAT * MERGEFORMAT
Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 1: MPEG media transport (MMT)
Élément introductif — Élément central — Partie 1: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

ISO copyright office

Case postale 56 (CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
viForeword

Introduction
vii
1
Scope
1
2
Normative references
1
3
Terms, definitions, symbols and abbreviated terms
2
3.1
Terms and definitions
2
3.2
Symbols and abbreviated terms
6
3.3
Conventions
7
4
Overview
7
5
MMT Content Model
8
5.1
Introduction
8
5.2
Logical structure of MMT Content
8
5.3
Instantiation of MMT Package with ISO/IEC14496-12
10
5.4
MMT Composition Information
16
5.5
MMT Asset Delivery Characteristics
35
6
Packetization of MMT Package
38
6.1
Introduction
38
6.2
MMT Payload
39
6.3
MMT Protocol
41
6.4
Delivery Timing Model for MMT Protocol
44
6.5
Application Layer Forward Error Correction (AL-FEC)
45
7
MMT Cross Layer Interface (CLI)
56
7.1
Introduction
56
7.2
Cross Layer Information
56
8
MMT Signaling
58
8.1
Introduction
58
8.2
MMT Signaling Message
59
8.3
Message for Consumption
60
8.4
Messages for Delivery
76
9
Hypothetical Receiver Buffer Model
89
9.1
Introduction
89
9.2
FEC Decoding Buffer
90
9.3
De-jitter Buffer
90
9.4
MMT Packet De-encapsulation Buffer
91
9.5
Usage of Hypothetical Receiver Buffer Model
91
9.6
Estimation of end-to-end delay and buffer requirement
91
9.7
HRBM signaling
92
Annex A (informative) Example of MMT Composition Information
93
A.1
Introduction
93
A.2
Example 1: Area change
93
A.3
Example 2: View change
96
A.4
Example 3: Multi-screen Presentation – MMT Asset Sharing
98
A.5
Example 4: Multi-screen Presentation – Dynamic MMT Asset Sharing
99
A.6
Example 5: Multi-screen Presentation – Complementary MMT Asset
100
A.7
Example 6: MMT Asset Receiving in Multi-screen Presentation
101
A.8
Example 7: Multiple Source Support
102
A.9
Example 8: Multiple Composition Support
103
A.10
Example 9: Hierarchical MMT-CI
104
Annex B (informative) The QoS management Model for MMT
107
B.1
Usage of ARQ
107
B.2
Usage of ADC, CLI and QoS indicator
107
Annex C (informative) Examples of Hybrid delivery in MMT
109
C.1
Introduction
109
C.2
Classification of hybrid delivery
109
C.3
Technical elements for hybrid delivery
110
C.4
Detailed implementation
110
Annex D (informative) Usage of MMT AL-FEC
112
D.1
Usage of two stage FEC coding structure
112
D.2
FEC Decoding Method For ibg_mode2
113
Bibliography
118

Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 23008‑1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 23008 consists of the following parts, under the general title Information technology — High efficiency coding and media delivery in heterogeneous environments:

· Part 1: MPEG media transport (MMT)

· Part 2: High efficiency video coding (HEVC)
· Part 3: 3D Audio
Introduction

This part of ISO/IEC 23008 specifies technologies for the delivery of coded media data for multimedia service over heterogeneous packet based delivery network including IP network. In this specification, coded media data includes both timed audiovisual media data requiring synchronized decoding and presentation of specific unit of data in a designated time, and non-timed data that could be decoded and presented in an arbitrary time based on the context of service or interaction by the user.

It is designed under the assumption that the coded media data will be delivered through a packet based delivery network using Internet Protocols such as RTP, TCP, and UDP. Several characteristics of such delivery environments have been also considered. The end-to-end delay of delivery of each packet from the sending entity to the receiving entity is not always constant and the underlying network provides means to distinguish signaling messages from the media data.
For efficient and effective delivery of coded media data over heterogeneous packet based delivery network including IP network, this specification provides following elements:
· the logical model to construct a content composed of components from various sources, for example for mash-up applications.
· the structure of data conveying information about the coded media data for the delivery layer processing such as packetization and adaptation.
· the packetization method and the structure of packet to deliver media content over TCP or UDP including hybrid delivery agnostic to specific type of media or coding method.

· the format of signaling messages to manage presentation and delivery of media content.

· the format of information to be exchanged across the layers to facilitate cross layer communication.

Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 1: MPEG media transport (MMT)
1 Scope
This part of ISO/IEC 23008 specifies MPEG Media Transport (MMT) which addresses delivery of data for multimedia service over heterogeneous IP network.
The scope of the MMT includes providing logical model of media content comprised of various coded media data to convey information required for intelligent adaptive delivery through heterogeneous packet based delivery network including IP networks, the application layer protocol for the delivery of the package over UDP and the media and codec agnostic payload format to be used with such application layer protocol and RTP, and the format of signaling messages to exchange information about adaptation of the delivery and consumption of the package.
2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 14496-12, Information technology – Coding of audio-visual objects – Part 12: ISO base media file format (technically identical to ISO/IEC 15444-12)
IETF RFC 1738, Uniform Resource Locators (URL), December 1994.
IETF RFC 2141, URN Syntax, May 1997.

IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications, July 2003.
IETF RFC 2327, SDP: Session Description Protocol, April 1998.
IETF RFC 5905, NTPv4: Network Time Protocol Version 4, June 2010.
IETF RFC 3406, Uniform Resource Names (URN) Namespace Definition Mechanisms, October 2002.
IETF RFC 3261, SIP: Session Initiation Procotol, June 2002.
IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005.

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005.

W3C HTML HyperText Markup Language (HTML) Version 4.1, W3C Recommendation 24, Dec 1999.
W3C HTML5 HyperText Markup Language (HTML) Version 5, W3C Working Draft, 25 October 2012.
W3C Media Queries, W3C Recommendation 19 June 2012.
W3C XLINK XML Linking Language (XLink) Version 1.1, W3C Recommendation 06, May 2010.
W3C XML Extensible Markup Language (XML) Version 1.0, W3C Recommendation 26, Nov 2008.
3 Terms, definitions, symbols and abbreviated terms
For the purposes of this document, the following terms and definitions apply.
3.1 Terms and definitions
access unit
smallest data entity to which timing information can be attributed, access unit (AU) is not defined for coded media data with any designated timing information for decoding and presentation
ARQ feedback message

a message is sent by the receiving entity when it detects packet loss
ARQ packet section
original MMT packets that are retransmitted by the sending entity in response to an ARQ feedback message from the receiving entity
ARQ signalling message
a message is sent at the beginning of a session, and from this the receiving entity is able to determine the profile for the transmission mechanism, profile for the feedback mechanism and the timeout window
FEC block
structured collection of data consists of FEC information block or FEC information sub-block and its associated parity block
FEC information block
set of pre-determined number of FEC information payloads which has the equal size and is generated from FEC source block
FEC information payload

set of FEC symbols with the same index of FEC information symbol parts of the associated FEC information block or FEC information sub-block

FEC information sub-block

set of pre-determined number of information payloads which has the equal size and is generated from FEC sub-block

FEC information sub-payload

subset of FEC information payload

FEC information symbol part

set of FEC symbols which are considered together for FEC encoding
FEC packet
a packet that contains an FEC source packet or an FEC parity packet
FEC packet block
structured collection of data that consists of an FEC source packet block and its associated FEC parity packet block

FEC packet sub-block
structured collection of data that consists of an FEC source packet sub-block and its associated FEC parity packet block
FEC parity block
set of FEC parity symbol parts
FEC parity flow

sequence of FEC parity payloads, which are generated by FEC encoding to protect an FEC source flow, identified by the same FEC parity flow identifier

FEC parity packet
packet to deliver one or more FEC parity payloads of FEC parity block
FEC parity packet block

set of FEC packets to deliver parity block
FEC parity payload

set of FEC symbols with the same index of FEC parity symbol parts of FEC parity block

FEC parity symbol part

parity FEC symbols which are generated from an FEC information symbol part by FEC encoding
FEC protected flow
a flow that consists of an FEC source flow and its associated one or more FEC parity flows
FEC source block

segmented set of a FEC source flow and consists of pre-determined number of FEC source payloads
FEC source flow

sequence of FEC source payloads identified by the same FEC protected flow identifier to deliver one or more MMT Assets from a sending entity to one or more receiving entities
FEC source packet
packet to deliver a FEC source payload of FEC source block
FEC source packet block
set of FEC packets to deliver FEC source block
FEC source packet sub-block
set of FEC packets to deliver FEC sub-block
FEC source payload
unit of data which is protected by Forward Error Correction (FEC) mechanism

FEC sub-block
subset of FEC source block and consists of pre-determined number of FEC source payloads
FEC symbol

unit of data processed by the FEC code
media fragment unit

generic container, independent of any specific media codec. It contains coded media data that is independently consumable by a media decoder. It is composed of a complete or partial access unit (AU) and information that can be utilized by delivery layers

media processing unit
generic container for timed or non-timed data, independent of any specific media codec. It contains one or more AUs for timed data or portion of data without AU boundaries for non-timed data and additional delivery and consumption related information. MPU is coded media data unit that can be completely and independently processed. In this context processing means encapsulation into MMT Package or packetization for delivery
MMT asset

logical data entity that is composed of one or more MPUs with same MMT Asset ID. It is the largest data unit for which same composition information and transport characteristics are applied

MMT asset delivery characteristics
description about required Quality of Service (QoS) for delivery of MMT Assets. MMT-ADC is represented by the parameters agnostic to specific delivery environment.

MMT composition information
description of spatial and temporal relationship among MMT Assets

MMT FEC payload ID
an information required to associate FEC packets with an FEC block and for the FEC processing
MMT package
logically structured collection of data, which is composed of one or more MMT Assets, MMT Composition Information, MMT Asset Delivery Characteristics and descriptive information

MMT packet
formatted unit of the data generated or consumed by MMT Protocol
MMT payload
formatted unit of data to carry the MMT Package or MMT signaling message either using MMT Protocol or Internet application layer protocols (e.g. RTP)
MMT protocol
an application layer protocol for delivering MMT payload over IP network

non-timed data
any data element that is consumed at non-specified time. It may have timing range when the data is available to be executed or launched
timed data
data element that is associated with specific time for decoding and presentation
3.2 Symbols and abbreviated terms
For the purpose of this document, the symbols and abbreviated terms given in the following apply:
AU

access unit
ADC

asset delivery characteristics
ARQ

automatic repeat request

AVC

advanced video coding

CAT

conditional access table
CI

composition information

CRI

clock relation information

DCI

device capability information

DSCP

differentiated services code point
ECM

entitlement control message
HEVC

high efficiency video coding
HRBM

hypothetical receiver buffer model
HTTP

hypertext transfer protocol

IDR

instantaneous decoding refresh
IBG

information block generation
LA-FEC

layer aware forward error correction

MCI

mmt composition information
MFU

media fragment unit

MMT

MPEG media transport
MPT

mmt package table
MPU

media processing unit
MVC

multi-view video coding
NTP

network time protocol
PA

package access
PCR

program clock reference

PES

packetized elementary stream

PID

packet identifier

PMT

program map table

PSI

program specific information

PTS

presentation time stamp

RAP

random access point
RTP

real-time protocol
RTCP

real-time control protocol
SIP

session initiation protocol

SDP

session description protocol
SVC

scalable video coding

TCP

transmission control protocol

TS

transport stream

UDP

user datagram protocol

URI

uniform resource identifier

URL

uniform resource locator

URN

uniform resource name

UUID

universally unique identifier

UTC

coordinated universal time

XML

extensible mark-up language
3.3 Conventions

The following naming conventions apply in this document:

4 Overview
To achieve efficient and effective delivery of coded media data including both timed data and non-timed data over heterogeneous IP networks, MMT defines formats and protocols categorized into three functional areas as illustrated in Figure 1.

The encapsulation functional area defines logical structure of media content, MMT Package, and the format of data units to be processed by the MMT compliant entity. MMT Package specifies the components comprising media content and the relationship among them to provide necessary information for adaptive delivery. Format of the data units in this specification is defined to encapsulate the coded media either to be stored or to be carried as a payload of a delivery protocol, and to be easily converted between them.

The delivery functional area defines application layer protocol and format of payload. The application layer protocol defined in this specification provides enhanced features for delivery of MMT Package compared to conventional application layer protocols for the delivery of multimedia, including multiplexing. The payload format is defined to enable the carriage of coded media data agnostic to the specific media type or encoding method.

The signaling functional area defines the format of messages to manage delivery and consumption of MMT Package. Messages for consumption management are used to signal the structure of MMT Package and messages for delivery management are used to signal the structure of payload format and configuration of protocol.
[image: image1.jpg]Coded Media Layer

Encapsulation Function

Signaling
Function

Delivery Function

Transport Protocol (TCP, UDP)

Internet Protocol (IP)

Figure 1 — Functional areas of MMT
5 MMT Content Model

5.1 Introduction

This clause defines the logical structure of MMT Package, collection of coded media data and associated information, to be processed by the MMT compliant entity. The logical structure of MMT Package is instantiated by using the ISO/IEC 14496-12 ISO base media file format by defining ‘mpkg’ brand. Several optional boxes are introduced in this specification to address the concept and logical structure of MMT Package while maintaining backward compatability with the ISO/IEC 14496-12 ISO base media file format.
5.2 Logical structure of MMT Content
5.2.1 MMT Package
As shown in Figure 2, MMT Package is a logical entity consisting of one MMT Composition Information (MMT-CI), one or more MMT Assets and associated MMT Asset Delivery Characteristics (MMT-ADC). In other words, as processing of MMT Package is applied per MPU basis and MMT Asset is a collection of one or more MPUs whose MMT Asset ID is the same, it can be also considered that one MMT Package is composed of one MMT Composition Information, one or more MPUs and associated MMT Asset Delivery Characteristics per each MMT Assets.
[image: image2.jpg])

e W

ADC

ADC

ADC
MMT Asset

MMT Package

Figure 2 — Overview of MMT Package
MMT Asset is a component of MMT Package containing coded media data. It is a logical structure that collectively references group of MPUs with the same MMT Asset ID, or references data with various media format defined by other standards. The format of MMT Asset is not defined in this specification.
MMT Composition Information (MMT-CI) specifies the spatial and temporal relationship among the MMT Assets for consumption and presentation. It could be also used to determine delivery order of MMT Assets. MMT-CI is delivered either as one or more messages defined in this specification or a complete document by some means that are not defined in this specification. Service providers may decide to carousel MMT-CI and determine the frequency at which carouseling is to be performed.
MMT Asset Delivery Characteristics (MMT-ADC) provide required QoS information for transmission of MMT Assets. This information can be used by the entity packetizing MMT Package to configure parameters of MMT payload and MMT Protocol for efficient delivery of the MMT Assets.
5.2.2 MMT Asset
MMT Asset is the logical data entity containing coded media data. MMT Asset is composed of MMT Asset structure as defined in 5.3.2 and the coded media data. Such coded media data can collectively reference group of MPUs with the same MMT Asset ID. Structural syntax of MMT Asset is not defined in this specification. Any type of data which can be individually consumed by the entity directly connected to the MMT receiving entity is considered as separate MMT Asset. Examples of data types which can be considered as an individual MMT Asset are MPEG-2 TS, PES, MP4 file, MPEG-U Widget Package, JPEG file, etc.

Coded media of MMT Asset can be either timed data or non-timed data. Timed data is audiovisual media data requiring synchronized decoding and presentation of specific unit of data at a designated time. Non-timed data is other types of data that can be decoded and presented at an arbitrary time based on the context of service or interaction by the user.
5.2.3 Media Processing Unit (MPU)
Media Processing Unit (MPU) is data which shall be independently and completely processed by an MMT compliant entity, where processing includes encapsulation and packetization. MPU is either composed of one or more MFUs, or it may have a portion of data with the format defined by other standards.

A single MPU shall contain either one or more integral number of AUs, or non-timed data. For timed data, AU can be carried by one or more MFUs, however a single AU shall not be fragmented into multiple MPUs. For non-timed data, a single MPU contains a portion of non-timed data, which can be independently and completely processed by an MMT compliant entity.
An MPU is uniquely identified within MMT Package with a sequence number and an associated MMT Asset ID to distinguish itself from other MPUs.
An MPU has at least one Random Access Point. The first byte of MPU payload always starts with Random Access Point. For timed media, it means decoding order of the first MFU in MPU payload is always 0. For timed data, Presentation duration and decoding order of each AU is signaled to indicate presentation time. MPU does not have its initial presentation time. Presentation time of the first AU in one MPU is described in Composition Information. The MMT-CI specifies the initial presentation time of MPU.

5.2.4 Media Fragment Unit (MFU)
Media Fragment Unit (MFU) defines the format to encapsulate fragment of AU for the delivery layers to perform adaptive delivery at the boundary of MFUs. MFU can be used to carry some type of coded media for which such fragments can be independently decoded or discarded, i.e., NAL Unit of HEVC or AVC video data.
MFU has an identifier to distinguish one MFU from another, and generalized relationship information among MFUs within a single AU. Dependency relationship among MFUs in a single AU is described, and the relative priorities of MFUs are described as a part of such information. The information can be used by underlying delivery layers to manipulate delivery. For example, the delivery layer can skip delivery of discardable MFUs to support QoS delivery such as where there is insufficient bandwidth in the network.

5.3 Instantiation of MMT Package with ISO/IEC14496-12
5.3.1 Definition of MMT Package brand

The type ‘mpkg’ (MMT Package) defined in this specification identifies files that conform to the MMT Package (see sub-clause 5.2.1). The ‘mpkg’ brand requires support of the ‘isom’ brand. In addition, support of the following boxes as shown in Table 1 is required.
Table 1 — Box type, structure for MMT Package
	mast
	
	
	
	
	
	MMT Asset

	mmpu
	
	
	
	
	
	MMT Processing Unit

	mmfu
	
	
	
	
	
	Media Fragment Unit

The above three boxes shall occur at the file level andthe following rules including orders of boxes shall be applied:

1) The ‘mast’ box shall be placed right after ‘ftyp’ box to support fast recognition of MMT Asset Identifier.

2) The ‘mmpu’ box shall be placed right before one or more movie fragments containing coded media data of the MPU defined by it. The ’mmpu’ box shall not be placed between a pair of ‘moof’ box and ‘mdat’ box from a single movie fragment.

3) The ‘mmfu’ box shall be placed right after ‘mmpu’ box, if any.

In addition to the box orders, following restrictions shall be applied to the ‘mkpg’ brand:

1) The maximum number of track in this file shall be one.

2) The file shall have at least one moive fragment.

3) Each movie fragment shall be composed of a pair of ‘moof’ and ‘mdat’.
The overall structure of instantiated MMT Package with ISO base media is shown in Figure 3:
[image: image3.jpg]ISO based media file

mdat

moof’

mmfu

mmfu

mmpu

mdat

moof’

mmfu

mmfu

mmpu

moov

mast

ftyp

Figure 3 — Overview of instantiated MMT Package
5.3.2 MMT Asset Box

5.3.2.1 Definition

Box Type:
‘mast’
Container:
File
Mandatory:
Yes
Quantity:
One or more
MMT Asset Box provides an identifier of an MMT Asset and information of MPUs within it. The MMT Asset identifier provides globally unique identification. The MPU information includes number of MPUs in the corresponding MMT Asset and the location of each MPU. To support incremental building of MMT Asset, MPU information is optional and only present when MMT Asset is definitive.
5.3.2.2 Syntax

aligned(8) class MMTAssetBox

extends FullBox(‘mast’, version, 0){

unsigned int(1) is_definitive;

unsigned int(1) asset_type;

unsigned int(6) reserved;

AssetIdentifierBox();

if(version == 1){

if(is_definitive == 1){

unsigned int(64) number_of_mpu;

unsigned int(64) mpu_offset[number_of_mpu];

unsigned int(64) asset_length;

}

} else{

if(is_definitive == 1){

unsigned int(32) number_of_mpu;

unsigned int(32) mpu_offset[number_of_mpu];

unsigned int(32) asset_length;

}

}
}
aligned(8) class AssetIdentifierBox extends Box(‘asid’){

unsigned int(32) asset_ID_scheme;

unsigned int(32) asset_ID_length;

unsigned int(8) asset_ID_value[asset_ID_length];
}

5.3.2.3
Semantics

is_definitive − indicates whether the number of MPU of this MMT Asset is fixed.
asset_type − indicates the type of data in this MMT Asset. asset_type as listed in Table 2.
Table 2 — value of asset_type
	Value
	Description

	0
	Type of data in this MMT Asset is timed media.

	1
	Type of data in this MMT Asset is non-timed media.

asset_length − specifies the length of the current MMT Asset in bytes starting from the first byte after this field. ’0’ means indefinite length.
number_of_mpu − is the number of MPUs contained in the current MMT Asset.

mpu_offset − identifies the offset location of each MPU in byte from the start byte point of the first MPU.
asset_ID_scheme − identifies the scheme of MMT Asset ID used in asset_id_value as listed in Table 3. There are many schemes to express identification of content. It is recommended to use scheme-length-value, not to define a new identification scheme in this specification.
Table 3 — value of asset_ID_scheme
	Value
	Description

	0
	UUID

	1
	URI

	2~0xFFFFFFFF
	Reserved

asset_ID_length − is length of asset_id_value.
asset_ID_value − is identifier of MMT Asset. The format of value is specific to the asset_id_scheme.
5.3.3 Media Processing Unit Box

5.3.3.1 Definition

Box Type:
‘mmpu’
Container:
File
Mandatory:
Yes
Quantity:
One or more

Media Processing Unit Box (‘mmpu’) is placed in front of one or more movie fragments to indicate the boundary of an MPU and to provide additional information on the movie fragments. The integer number of consective movie fragments following an ’mmpu’ box before the next ‘mmpu’ box belong to the preceeding ’mmpu’ box. The ‘mmpu’ box provides information about the media data in the movie fragments for packetization to adopt the constraints of the underlying delivery layer’s packet size. It also defines an additional structure of media data that is robust to adaptive elimination of certain MFU depending on network condition so that the MPU after elimination can be correctly processed at the MMT receiving entity.
The ‘mmpu’ box provides the mapping information of MFUs into AU in case the media data is logically encapsulated with MFU. An AU is a sample in movie fragment, if the MMT Package is instantiated with ISO/IEC 14496-12. The au_sequence_number in MFU structure of ’mmpu’ box starts with 0 for each MPU and refers to a sample in the order of the sequence number as described in all movie fragments of a corresponding MPU. Besides the mapping of AU and MFU, all AU information such as duration of AU is provided by Track Run Box in movie fragment.

5.3.3.2 Syntax

aligned(8) class MediaTypeInformationBox extends Box(‘mtib’){

unsigned int(32) number_of_media_type;

{

MediaTypeEntry(format);

}[number_of_media_type]
}
aligned(8) abstract class MediaTypeEntry(unsigned int(32) format)

extends Box(format){

unsigned int(32) mime_type;

unsigned int(32) length;
}

class InitializationInformationMediaTypeEntry() extends
MediaTypeEntry(‘parm’){

bit(8*length) initialization_data;
}
class FileMediaTypeEntry() extends MediaTypeEntry(‘file’){

string file_name;

unsigned int(32) file_size;

unsigned int(32) CRC;
}

aligned(8) class multiLayerInfo extends Box(‘muli’){

bit(1) reserved1;

bit(3) dependency_id;

bit(1) reserved2;

bit(3) temporal_id;

bit(4) quality_id;

bit(2) reserved3;

bit(6) priority_id;

bit(2) reserved4;

bit(10) view_id;
}
aligned(8) class MediaFragmentUnitStructureBox extends Box(‘mfus’){

unsigned int(1) has_media_type_id;

unsigned int(7) reserved;

unsigned int(32) default_media_type_id;

unsigned int(32) number_of_mfu;

{

if(has_timed_media){

unsigned int(32) au_sequence_number;

}

unsigned int(32) media_type_id; //optional

unsigned int(8) dependency_counter;

unsigned int(8) priority;

multiLayerInfo();

}[number_of_mfu]
}
aligned(8) class MMTProcessingUnitBox

extends FullBox(‘mmpu‘, version, 0){

unsigned int(1) has_mfu;

unsigned int(1) is_complete;

unsigned int(1) has_timed_media;

unsigned int(5) reserved;

AssetIdentifierBox();

unsigned int(32) mpu_sequence_number;
 unsigned int(32) size_of_mpu;

MediaTypeInformationBox();

if (has_mfu){

MediaFragmentUnitStructureBox;

}
}
5.3.3.3 Semantics

number_of_media_type − specifies the number of media type in a MPU.
mime_type − is MIME type of media that MediaTypeEntry describes.
initialization_data − is data to be used to initialize media decoder to consume this MPU. All required information to correctly handle AUs in MPU shall be carried in initialization_data. For example, in case the AU is video, all required decoder configuration information to correctly decode AUs in MPU is carried in InitializationInfo.

priority_id – is priority ID of this MFU. The usage of priority_id is defined by the application.

dependency_id – is dependency ID of this MFU. If it is non-zero value then it enhances the video by one or more scalability levels in at least one direction (temporal, quality or spatial resolution).
quality_id – is quality ID of this MFU. If it is non-zero value then it enhances the video by one or more scalability levels in at least one direction (temporal, quality or spatial resolution).
temporal_id – is temporal ID of this MFU. If it is non-zero value then it enhances the video by one or more scalability levels in at least one direction (temporal, quality or spatial resolution).
view_id – is view ID of this MFU. If it is non-zero value then it enhances the video by one or more scalability levels in at least one direction (temporal, quality or spatial resolution).
default_media_type_id − specifies ID of MediaTypeEntry that all MFUs in MPU refer.
media_type_id − specifies ID of MediaTypeEntry of each AU.
dependency_counter − indicates that the MFU is required to decode but may be discarded. The value of this field is equal to the number of subsequent MFUs in the order of mfu_sequence_number which may not be correctly decoded. For example, if the value of this field is equal to 3, then 3 subsequent MFUs may not be correctly decoded.

priority − is priority of MFU among MFUs in an MPU.

has_mfu − indicates whether this MPU has MFU and its structure or not.

is_complete − indicates whether this MPU has all MFUs described by MFU structure or not.

has_timed_media − indicates whether this MPU has timed media and its structure or not.
au_sequence_number − specifies the sequencial number of an AU to which the MFU containing this field belongs within the MPU.
mpu_sequence_number − specifies the sequence number of MPU in a single MMT Asset. It is incremented by 1 and will be unique within in an MMT Asset.
size_of_mpu − specifies the size of MPU that this ‘mmpu’ describes.
5.3.4 Media Fragment Unit Box

5.3.4.1 Definition

Box Type:
‘mmfu’
Container:
File
Mandatory:
No
Quantity:
Zero or more

Media Fragment Unit Box (‘mmfu’) is placed immediately after ‘mmpu’ box in the order of mfu_sequence_number to identify the boundary of each MFU. It provides offset and size of media data for each MFU in ‘mdat’ box to ensure reconstruction of ‘mdat’ box in a way of preserving relationship of sample description in ‘moof’ box and corresponding media data in ‘mdat’ box when MFUs are eliminated during the delivery.
5.3.4.2 Syntax

aligned(8) class MediaFragmentUnitBox

extends FullBox(‘mmfu‘, version, 0){

if(version == 1){

unsigned int(32) mfu_sequence_number;

}

else{

unsigned int(16) mfu_sequence_number;

}

unsigned int(32) offset;

unsigned int(32) size;
}
5.3.4.3 Semantics

mfu_sequence_number – is a sequence number starts from 0 and must increase by 1 for each MFU in the MPU.
offset – indicates offset of media data from the first byte immediately after the last byte of ‘mmpu’ box.
size – specifies size of media data of this MFU in ‘mdat’.
5.4 MMT Composition Information
5.4.1 Introduction
Composition Information in MMT provides information on both spatial and temporal relationships among MMT Assets in an MMT Package. In addition, MMT-CI provides information for delivery optimization and presentation of an MMT Package in the multi-screen environment. MMT-CI is a descriptive language extending the HTML5. Since the HTML5 is designed to describe page-based presentation of text oriented contents, it mainly represents spatial relationship among the resources. To support descriptive representation of temporal relationship among MMT Assets and mapping of MMT Assets to particular screens for the multiple screen environment, several extensions are defined as follows:
· Association of MMT Assets in an MMT Package as a resource.
· Temporal information to decide delivery and consumption orders of MMT Assets.
· Mapping of the MMT Asset to the particular screen for the multi-screen environment.
· Additional attributes of Media elements in HTML5 to associate various type of resources.
5.4.2 Structure
MMT-CI defines the scene to be displayed and consumed in an MMT Package as a “View” shown in Figure 4. The “View” consists of several Areas, and each Area has one or more MMT Assets. Definitions of “View” and “Area” are defined as follows:
· View: represents a whole display region, which is composed of Areas.
· Area: represents a part of View, which is composed of MMT Assets.
Figure 4 shows a relationship example of the MMT Assets, the Area, and the View in an MMT Package, where a “View” can be considered as a page of HTML5 and an Area as a region obtained by the div element of HTML5.

[image: image4.emf]Area 1

View

Area 3

Area 2

Asset

(Video)

Asset

(Audio)

Text

Caption

Image

Figure 4 — Hierarchical structure of MMT Asset/Area/View
MMT-CI has the basic structure shown in Figure 5 with the extended and added elements to HTML5.
The basic structure of MMT-CI is derived from the structure of the HTML5 document, and thus, the root element of MMT-CI is the html element, which contains two elements such as head and body elements. Some elements in the head and body elements are extended or added in order to meet the requirements of MMT-CI.

The head element should contain title, LoA and view elements. The roles of these elements are as follows:
· title: provides information about a MMT Package.
· LoA: provides a list of MMT Assets in a MMT Package.
· AI: provides information about a MMT Asset.
· view: provides spatial and temporal information about a View.
· divLocation: provides temporally changed special information about an Area.
The body element should include div elements. The div element contains MMT Asset elements such as package, video, audio, img, text, track, widget, mpeg2ts, and mp4. The roles of these elements are as follows:
· div: provides spatial information about an Area.
· video, audio ... (MMT Asset): provides spatial and temporal information of a MMT Asset.
The initial Areas in a View are generated by the div element, and the temporal change of the initial Areas in the View can be obtained by divLocation element. These two elements make the spatial location of Areas to be dynamically changed and updated without reloading a View page.

[image: image5.emf]html

head

body

title

LoA

AI

view

div

divLocation

div

div

AI

img

audio

divLocation

divLocation

view

view

AI

video

Figure 5 — Basic Structure of MMT-CI
MMT-CI can be partitioned into multiple subsets and each subset of MMT-CI can be delivered separately by using xlink mechanism. (see sub-cluse 5.4.4.15 and 5.4.4.16)
5.4.3 The extended elements for MMT-CI
5.4.3.1 The title element
5.4.3.1.1 Semantics
The title element is defined in sub-clause 4.2.2 of [W3C HTML5], which is used as a name of the MMT Package that includes the MMT-CI.

5.4.3.2 The div element
5.4.3.2.1 Semantics
The div element is described in sub-clause 4.5.13 of [W3C HTML5], and provides spatial and temporal relationships both of individual MMT Assets and among MMT Assets in the Area.
5.4.3.2.2 Attributes
In addition, the div element includes following attributes:
· width: is defined in sub-clause 5.4.4.2 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.

· xlink:href: is defined in sub-clause 5.4.4.15 of this specification
· xlink:actuate: is defined in sub-clause 5.4.4.16 of this specification
5.4.3.3 The video element
5.4.3.3.1 Semantics
The video element is defined in sub-clause 4.8.6 of [W3C HTML5].
5.4.3.3.2 Attributes
In addition, the video element includes following attributes:
· width: is defined in sub-clause 5.4.4.2 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· clipBegin: is defined in sub-clause 5.4.4.10 of this specification.
· clipEnd: is defined in sub-clause 5.4.4.11 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.3.4 The audio element
5.4.3.4.1 Semantics
The audio element is defined in sub-clause 4.8.7 of [W3C HTML5].
5.4.3.4.2 Attributes
In addition, the audio element includes following attributes:
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· clipBegin: is defined in sub-clause 5.4.4.10 of this specification.
· clipEnd: is defined in sub-clause 5.4.4.11 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.3.5 The img element
5.4.3.5.1 Semantics
The img element is defined in sub-clause 4.8.1 of [W3C HTML5].
5.4.3.5.2 Attributes
In addition, the img element includes following attributes:
· width: is defined in sub-clause 5.4.4.2 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.3.6 The track element
5.4.3.6.1 Semantics
The track element is defined in sub-clause 4.8.9 of [W3C HTML5].
5.4.3.6.2 Attributes
In addition, the track element includes following attributes:
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.3.7 The source element
5.4.3.7.1 Semantics
The source element is defined in sub-clause 4.8.8 of [W3C HTML5], which is used as child element of the AI element in order to support multiple alternative addresses for a MMT Asset.
5.4.3.7.2 Attributes
In addition, the source element includes following attributes:
(src: is defined in sub-clause 5.4.4.1 of this specification.
5.4.4 The added attributes for MMT-CI
5.4.4.1 The src attribute
The src attribute represents address of an MMT Asset and describes as URI.

5.4.4.2 The width attribute
The width attribute represents the width of a View or an Area or an MMT Asset and consists on either 2 values, expressed in pixels, or in percent.
5.4.4.3 The height attribute
The height attribute represents the height of a View or an Area or an MMT Asset and consists on either 2 values, expressed in pixels, or in percent.
5.4.4.4 The left attribute
The left attribute represents the left margin edge for a region of an Area or an MMT Asset and consists in either 2 values, expressed in pixels, or in percent. The default value is “0px”
5.4.4.5 The top attribute
The top attribute represents the top margin edge for a region of an Area or an MMT Asset and consists in either 2 values, expressed in pixels, or in percent. The default value is “0px”
5.4.4.6 The z-index attribute
The z-index attribute represents the stack order for an Area or an MMT Asset and describes as integer. The Area or MMT Asset having the higher value is displayed in front.
5.4.4.7 The begin attribute
The begin attribute represents when an MMT Asset or an Area or a View becomes active. It can have the offset-value or synchronization-value, event-value, wall clock-value which are described as follows. The default value is “0s”. In order to describe a number of beginning time, a white space separated list of begin values.
· Offset-value: describes the beginning time as an offset from an implicit syncbase. The definition of the implicit syncbase of Area and MMT Asset depends upon the parent, View depends on the MMT service and previous View.
· Synchronization-value: describe the beginning time relative to the begin, active, and end of another MMT Asset or Area or View. The specific synchronization-value can be expressed by two identifiers which are relevant, such as "View1.Video1.begin", "Area2.Video3.end".
· Event-value: describes an event that determines beginning time. The Event-value is defined in HTML5. The specific event value can be expressed by two identifiers which are relevant, such as "View1.Video1.click", "Area2.Video3.click". Additionally, MMT-CI defines the events in Table 4 for multi-screen presentation.
Table 4 — The events for multi-screen presentation

	Event name
	Description

	AreaIn(n)
	This event occurs in the screen receiving one or more Areas when user request to receive one or more Areas from other screen. “AreaIn(1)” occurs when an Area is received. In this state, “AreaIn(2)” occurs if another Area is received.

NOTE: the value of "n" is the number of the received Areas.

	id.AreaOut
	This event occurs in the screen sending an Area when user request to send an Area to another screen, and occurs in screen receiving one or more Areas when user request to return a sent Area, or a sent Area ends the play.

NOTE: "id" is identification of the divLocation element that has plungeOut attribute.

	AreasOut
	This event occurs in the screem receiving one or more Areas when user request to return all sent Areas at the same time, or disconnect all screens sending Areas.

	AreaBack
	This event occurs in the screen sending an Area when user request to return the Area, or disconnect the screen receiving the Area, or a sent Area ends the presentation.

· Wallclock-value: describes the beginning time as a real-world clock time.

5.4.4.8 The end attribute
The end attribute represents when an MMT Asset or an Area or a View becomes inactive. It can have the offset-value or synchronization-value, event-value, wall clock-value which are described as following. The default value is “indefinite”. In order to describe a number of ending time, a white space separated list of end values.
· Offset-value: describes the ending time as an offset from an implicit syncbase. The definition of the implicit syncbase of Area and MMT Asset depends upon the parent, View depends on the MMT service and previous View.
· Synchronization-value: describe the ending time relative to the begin or active end of another MMT Asset or Area or View. The specific synchronization-value can be expressed by two identifiers which are relevant, such as "View1.Video1.begin", "Area2.Video3.end".
· Event-value: describes an event that determines ending time. The Event-value is defined in HTML5. The specific event value can be expressed by two identifiers which are relevant, such as "View1.Video1.click", "Area2.Video3.click". Additionally, MMT-CI defines the events in Table 4 for multi-screen presentation.
· Wallclock-value: describes the ending time as a real-world clock time.
5.4.4.9 The dur attribute
The dur attribute represents the length of the simple duration, measured in active time of a MMT Asset, or an Area, or a View. It is described by offset.
5.4.4.10 The clipBegin attribute
The clipBegin attribute represents the beginning of a time interval of a continuous MMT Asset by offset from the start of the media. In addition, it is able to describe identifier of MPU in order to play from certain MPU in a MMT Asset.
5.4.4.11 The clipEnd attribute
The clipEnd attribute represents the end of a time interval of a continuous MMT Asset by offset from the stat of the media. In addition, it is able to describe identifier of MPU in order to play to certain MPU in a MMT Asset.
5.4.4.12 The refDiv attribute
The refDiv attribute describes an ID of div element, which is used for linking its divLocation element.
5.4.4.13 The refAsset attribute
The refAsset attribute describes an ID of AI element, which is used for linking its MMT Asset element.
5.4.4.14 The media attribute
The media attribute represents what device the MMT Asset or the Area or the View is optimized for. It is described by a string which matches the media_query_list production of the Media Queries specification. [W3C Media Queries]
5.4.4.15 The xlink:href attributes
The xlink:href attribute supplies the data that allows XLink application to find a subset of MMT-CI. The value of the href attribute must be a URI reference as defined in IETF RFC 2396 and must be provided.
5.4.4.16 The xlink:actuate attributes
The xlink:actuate attribute defines the desired timing of traversal linked resources. If a value is supplied for an actuate attribute, it must be one of following values.

· onLoad: liking a subset of MMT-CI immediately on loading of the current MMT-CI.

· onRequest: linking a subset of MMT-CI when available or when a user request.
	<!-- MMT-CI:width Type -->

<xsd:simpleType name="MMT-CI:widthType">

<xsd:union memberTypes="MMT-CI:pixelType MMT-CI:percentType"/>
</xsd:simpleType>
<!-- MMT-CI:height Type -->

<xsd:simpleType name="MMT-CI:heightType">

<xsd:union memberTypes="MMT-CI:pixelType MMT-CI:percentType"/>
</xsd:simpleType>
<!--MMT-CI:pixel Type -->

<xsd:simpleType name="MMT-CI:pixelType">

<xsd:restriction base="xsd:token">

<xsd:pattern value="\d{1,}px"/>

</xsd:restriction>
</xsd:simpleType>
<!--MMT-CI:percent Type -->

<xsd:simpleType name="MMT-CI:percentType">

<xsd:restriction base="xsd:token">

<xsd:pattern value="\d{1,}%"/>

</xsd:restriction>
</xsd:simpleType>

<!-- MMT-CI:left Type -->

<xsd:simpleType name="MMT-CI:leftType">

<xsd:union memberTypes="MMT-CI:pixelType MMT-CI:percentType"/>
</xsd:simpleType>

<!-- MMT-CI:top Type -->

<xsd:simpleType name="MMT-CI:topType">

<xsd:union memberTypes="MMT-CI:pixelType MMT-CI:percentType"/>
</xsd:simpleType>

<!-- MMT-CI:z-index Type -->

<xsd:simpleType name="MMT-CI:z-indexType">

<xsd:extension base="xsd:integer"/>

</xsd:simpleType>
<!-- MMT-CI:begin Type -->
<xsd:simpleType name="MMT-CI:beginType">

<xsd:list itemType="MMT-CI:beginValueType"/>
</xsd:simpleType>
<!-- MMT-CI:beginValue Type -->
<xsd:simpleType name="MMT-CI:beginValueType">

<xsd:union memberTypes="MMT-CI:offsetType MMT-CI:syncType MMT-CI:eventType MMT-CI:wallclockType"/>
</xsd:simpleType>
<!-- MMT-CI:end Type -->
<xsd:simpleType name="MMT-CI:endType">

<xsd:list itemType="MMT-CI:endValueType"/>
</xsd:simpleType>
<!-- MMT-CI:endValue Type -->
<xsd:simpleType name="MMT-CI:endValueType">

<xsd:union memberTypes="MMT-CI:offsetType MMT-CI:syncType MMT-CI:eventType MMT-CI:wallclockType MMT-CI:indefiniteType"/>
</xsd:simpleType>

<!-- MMT-CI:dur Type -->

<xsd:simpleType name="MMT-CI:durType">

<xsd:restriction base="MMT-CI:offsetType"/>
</xsd:simpleType>
<!-- MMT-CI:offset Type -->

<xsd:simpleType name="MMT-CI:offsetType">

<xsd:restriction base="xsd:token">

<xsd:pattern value="[0-9]+?(\.[0-9]+)?(h|min|s|ms)"/>

</xsd:restriction>
</xsd:simpleType>
<!-- MMT-CI:sync Type -->
<xsd:simpleType name="MMT-CI:syncType">

<xsd:restriction base="xsd:token">

<xsd:pattern value="([\i-[:]][\c-[:]]*\.)?[\i-[:]][\c-[:]]*\.(begin|end)"/>

</xsd:restriction>
</xsd:simpleType>
<!-- MMT-CI:event Type -->
<xsd:simpleType name="MMT-CI:eventType">

<xsd:restriction base="xsd:token">

<xsd:pattern value="([\i-[:]][\c-[:]]*\.)?[\i-[:]][\c-[:]]*\.\c+"/>

</xsd:restriction>
</xsd:simpleType>

<!-- MMT-CI:wallclock Type -->

<xsd:simpleType name="MMT-CI:wallclockType">

<xsd:restriction base="xsd:token">

<xsd:pattern value="[0-2][0-9]:[0-5][0-9](:[0-5][0-9](\.[0-9]+)?)?"/>

</xsd:restriction>
</xsd:simpleType>

<!-- MMT-CI:indefinite Type -->

<xsd:simpleType name="MMT-CI:indefiniteType">

<xsd:restriction base="xsd:token">

<xsd:enumeration value="indefinite"/>

</xsd:restriction>
</xsd:simpleType>

<!-- MMT-CI:clipBegin Type -->

<xsd:simpleType name="MMT-CI:clipBeginType">

<xsd:union memberTypes="MMT-CI:offsetType MMT-CI:wallclockType MMT-CI:MPUidType"/>
</xsd:simpleType>

<!-- MMT-CI:clipEnd Type -->

<xsd:simpleType name="MMT-CI:clipEndType">

<xsd:union memberTypes="MMT-CI:offsetType MMT-CI:wallclockType MMT-CI:MPUidType"/>
</xsd:simpleType>
<!-- MMT-CI:MPUid Type -->

<xsd:simpleType name="MMT-CI:MPUidType">

<xsd:restriction base="xsd:token">

<xsd:length value="256"/>

</xsd:restriction>
</xsd:simpleType>
<!-- MMT-CI:refDiv Type -->

<xsd:simpleType name="MMT-CI:refDivType">

<xsd:extension base="xsd:ID"/>

</xsd:simpleType>

<!-- MMT-CI:refAsset Type -->

<xsd:simpleType name="MMT-CI:refAssetType">

<xsd:extension base="xsd:ID"/>

</xsd:simpleType>
<!-- xlink:href Type -->
<xsd:simpleType name="xlink:hrefType">

<xsd:restriction base="xsd:anyURI"/>
</xsd:simpleType>
<!-- xlink:actuate Type -->
<xsd:simpleType name="xlink:acturateType">

<xsd:restriction base="xsd:token">

<xsd:enumeration value="onLoad"/>

<xsd:enumeration value="OnRequest"/>

</xsd:restriction>
</xsd:simpleType>

5.4.5 The added element for MMT-CI
5.4.5.1 The LoA element
5.4.5.1.1 Semantics
The LoA element is a child element of the head element, and is to provide a list of MMT Assets in a MMT Package.
5.4.5.1.2 Syntax

	<!-- MMT-CI:LoA Type -->
<xsd:complexType name="MMT-CI:LoAType">

<xsd:compexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The LoA element inherits HTMLElement interface which is specified in 3.3.2 of [W3C HTML5]-->

<xsd:sequence>

<xsd:element name="AI" type="MMT-CI:AIType" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

<xsd:compleContent>
</xsd:complexType>

5.4.5.1.3 Attributes
The LoA element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
5.4.5.2 The AI element
5.4.5.2.1 Semantics
The AI element is a child element of the LoA element, and is to provide information of a MMT Asset. The AI element includes address and type of a MMT Asset. In case of a video or audio MMT Asset, profile and level attributes can be included. If the source elements are added as child elements of the AI element, the source element supports multiple alternative addresses for a MMT Asset.
5.4.5.2.2 Syntax
	<!-- MMT-CI:AI Type -->
<xsd:complexType name="MMT-CI:AIType">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The AI element inherits HTMLElement interface which is specified in 3.3.2 of [W3C HTML5] -->

<xsd:sequence>

<xsd:element name="source" type="HTML5:sourceType" minOccurs="0" maxOccurs="unbounded"/>

<!-- The source element is defined in 4.8.8 of [W3C HTML5] -->

</xsd:sequence>

<xsd:attribute name="src" type="xsd:anyURI" use="optional"/>

<xsd:attribute name="mediatype" type="MMT-CI:mediatypeType" use="required"/>

<xsd:attribute name="profile" type="MMT-CI:profileType"/>

<xsd:attribute name="level" type="xsd:positiveInteger"/>

<xsd:attribute name="type" type="xsd:token" fixed="simple"/>

<xsd:attribute name="href" type="xlink:hrefType"/>

<xsd:attribute name="show" type="xsd:token" fixed="embed"/>

<xsd:attribute name="actuate" type="xlink:actuateType" default="onRequest"/>

</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<!-- MMT-CI:mediatype Type -->

<xsd:simpleType name="MMT-CI:mediatypeType">

<xsd:restriction base="xsd:token">

<xsd:enumeration value="package"/>

<xsd:enumeration value="video"/>

<xsd:enumeration value="audio"/>

<xsd:enumeration value="image"/>

<xsd:enumeration value="text"/>

<xsd:enumeration value="track"/>

<xsd:enumeration value="widget"/>

<xsd:enumeration value="mpeg2ts"/>

<xsd:enumeration value="mp4"/>

</xsd:restriction>
</xsd:simpleType>
<!-- MMT-CI:profile Type -->

<xsd:simpleType name="MMT-CI:profileType">

<xsd:union memberTypes="xsd:positiveInteger xsd:anyURI"/>
</xsd:simpleType>

5.4.5.2.3 Attributes
The AI element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface

In addition, the AI element includes following attributes:
· src: is defined in sub-clause 5.4.4.1 of this specification.
· mediatype: represents the data type of a MMT Asset: video, audio, image, text, track, widget, object, package, mpeg2ts, mp4.
· profile: represents the profile of video or audio in a MMT Asset and consists in either 2 values, expressed in a defined code number, or in an URN.
· level: represents the level of video or audio in a MMT Asset and describes as positive integer.
· xlink:href: is defined in sub-clause 5.4.4.15 of this specification.
· xlink:actuate: is defined in sub-clause 5.4.4.16 of this specification.
5.4.5.3 The view element
5.4.5.3.1 Semantics
The view element is a child element of the head element, and is to provide spatial and temporal information of a View. The child elements of the view element describe Areas that a View is composed of. This element can occur several times according to Views to be presented.
5.4.5.3.2 Syntax

	<!-- MMT-CI:view Type -->
<xsd:complexType name="MMT-CI:viewType">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The view element inherits HTMLElement interface which is specified in 3.3.2 of[W3C HTML5]-->

<xsd:attribute name="width" type="MMT-CI:widthType" use="required"/>

<xsd:attribute name="height" type="MMT-CI:heightType" use="required"/>

<xsd:attribute name="begin" type="MMT-CI:beginType" default="0s"/>

<xsd:attribute name="end" type="MMT-CI:endType" default="indefinite"/>

<xsd:attribute name="dur" type="MMT-CI:durType"/>

<xsd:attribute name="media" type="xsd:string"/>

<xsd:attribute name="type" type="xsd:token" fixed="simple"/>

<xsd:attribute name="href" type="xlink:hrefType"/>

<xsd:attribute name="show" type="xsd:token" fixed="embed"/>

<xsd:attribute name="actuate" type="xlink:actuateType" default="onRequest"/>

</xsd:extension>

</xsd:complexContent>
 </xsd:complexType>

5.4.5.3.3 Attributes
The view element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
In addition, the view element includes following attributes:
· width: is defined in sub-clause 5.4.4.1 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· media: is defined in sub-clause 5.4.4.14 of this specification.
· xlink:href: is defined in sub-clause 5.4.4.15 of this specification
· xlink:actuate: is defined in sub-clause 5.4.4.16 of this specification

5.4.5.4 The divLocation element
5.4.5.4.1 Semantics
The divLocation element is child element of the view element, and is to provide spatial and temporal information of an Area. This spatial information is mutable values that can be changed in accordance with a View such as position and size of the Area within the View. The other spatial information is inherent values that will not be changed regardless of a View such as width and height. It is described by the div element in sub-clause 5.4.3.2. The size of an Area can be increased or decreased from the inherent values to the mutable values in order to display the Area suitable for regions in a View.

5.4.5.4.2 Syntax
	<!-- MMT-CI:divLocation Type -->
<xsd:complexType name="MMT-CI:divLocationType">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The view element inherits HTMLElement interface which is specified in 3.3.2 of[W3C HTML5]-->

<xsd:attribute name="width" type="MMT-CI:widthType" use="required"/>

<xsd:attribute name="height" type="MMT-CI:heightType" use="required"/>

<xsd:attribute name="left" type="MMT-CI:leftType" default="0px"/>

<xsd:attribute name="top" type="MMT-CI:topType" default="0px"/>

<xsd:attribute name="z-index" type=" MMT-CI:z-indexType"/>

<xsd:attribute name="begin" type="MMT-CI:beginType" default="0s"/>

<xsd:attribute name="end" type="MMT-CI:endType" default="indefinite"/>

<xsd:attribute name="dur" type="MMT-CI:durType"/>

<xsd:attribute name="refDiv" type="MMT-CI:refDivType"/>

<xsd:attribute name="media" type="xsd:string"/>

<xsd:attribute name="plungeIn" type="xsd:positiveInteger"/>

<xsd:attribute name="plungeOut" type="MMT-CI: plungeOutType" default="disable"/>

</xsd:extension>

</xsd:complexContent>
 </xsd:complexType>

5.4.5.4.3 Attributes
The divLocation element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
In addition, the divLocation element includes following attributes:
· width: is defined in sub-clause 5.4.4.1 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· refDiv: is defined in sub-clause 5.4.4.12 of this specification.

· media: is defined in sub-clause 5.4.4.14 of this specification.
· plungeIn: makes its own Area a blank Area for the receiving Area in multi-screen presentation. The plungeIn attributes in a View should have different positive integer value and the received Areas are composed sequentially at blank Areas depending on the value of order.
· plungeOut: provides the property of its own Area in terms of multi-screen presentation. Table 5 shows the meaning of each value of the plungeOut attributes.
Table 5 — The value for plungeOut attribute
	Value
	Description

	disable
	The Area is not allowed to use for multi-screen presentation. It is default value.

	complementary
	The Area is allowed to use for multi-screen presentation, and shown at the secondary screen only. Before beginning of multi-screen presentation, the Area is invisible at the primary screen.

	sharable
	The Area is allowed to use for multi-screen presentation, and shown at both the primary and secondary screen.

	dynamic
	The Area is allowed to use for multi-screen presentation, and shown at the secondary screen only.

	userselect
	The Area is allowed to use for multi-screen presentation. User can select whether the Area is shared or moved.

5.4.5.5 The package element
5.4.5.5.1 Semantics
The package element is child element of the div element, and is to represent MMT Asset which contains another MMT Package.
5.4.5.5.2 Syntax
	<!-- MMT-CI:package Type -->

<xsd:complexType name="MMT-CI:packageType">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The view element inherits HTMLElement interface which is specified in 3.3.2 of[W3C HTML5]-->

<xsd:attribute name="width" type="MMT-CI:widthType" use="required"/>

<xsd:attribute name="height" type="MMT-CI:heightType" use="required"/>

<xsd:attribute name="left" type="MMT-CI:leftType" default="0px"/>

<xsd:attribute name="top" type="MMT-CI:topType" default="0px"/>

<xsd:attribute name="z-index" type=" MMT-CI:z-indexType "/>

<xsd:attribute name="begin" type="MMT-CI:beginType" default="0s"/>

<xsd:attribute name="end" type="MMT-CI:endType" default="indefinite"/>

<xsd:attribute name="dur" type="MMT-CI:durType"/>

<xsd:attribute name="refAsset" type="MMT-CI:refAssetType"/>

</xsd:extension>

</xsd:complexContent>
 </xsd:complexType>

5.4.5.5.3 Attributes
The package element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
In addition, the package element includes following attributes:
· width: is defined in sub-clause 5.4.4.1 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.5.6 The text element
5.4.5.6.1 Semantics
The text element is child element of the div element, and is to represent MMT Asset which contains text data.
5.4.5.6.2 Syntax
	<!-- MMT-CI:text Type -->

<xsd:complexType name="MMT-CI:textType">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The view element inherits HTMLElement interface which is specified in 3.3.2 of[W3C HTML5]-->

<xsd:attribute name="width" type="MMT-CI:widthType" use="required"/>

<xsd:attribute name="height" type="MMT-CI:heightType" use="required"/>

<xsd:attribute name="left" type="MMT-CI:leftType" default="0px"/>

<xsd:attribute name="top" type="MMT-CI:topType" default="0px"/>

<xsd:attribute name="z-index" type=" MMT-CI:z-indexType "/>

<xsd:attribute name="begin" type="MMT-CI:beginType" default="0s"/>

<xsd:attribute name="end" type="MMT-CI:endType" default="indefinite"/>

<xsd:attribute name="dur" type="MMT-CI:durType"/>

<xsd:attribute name="refAsset" type="MMT-CI:refAssetType"/>

</xsd:extension>

</xsd:complexContent>
 </xsd:complexType>

5.4.5.6.3 Attributes
The text element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
In addition, the text element includes following attributes:
· width: is defined in sub-clause 5.4.4.1 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.5.7 The widget element
5.4.5.7.1 Semantics
The widget element is child element of the div element, and is to represent MMT Asset which contains widget data such as ISO/IEC 23007-1 MPEG-U widget.
5.4.5.7.2 Syntax
	<!-- MMT-CI:widget Type -->

<xsd:complexType name="MMT-CI:widgetType">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The view element inherits HTMLElement interface which is specified in 3.3.2 of[W3C HTML5]-->

<xsd:attribute name="width" type="MMT-CI:widthType" use="required"/>

<xsd:attribute name="height" type="MMT-CI:heightType" use="required"/>

<xsd:attribute name="left" type="MMT-CI:leftType" default="0px"/>

<xsd:attribute name="top" type="MMT-CI:topType" default="0px"/>

<xsd:attribute name="z-index" type=" MMT-CI:z-indexType "/>

<xsd:attribute name="begin" type="MMT-CI:beginType" default="0s"/>

<xsd:attribute name="end" type="MMT-CI:endType" default="indefinite"/>

<xsd:attribute name="dur" type="MMT-CI:durType"/>

<xsd:attribute name="refAsset" type="MMT-CI:refAssetType"/>

</xsd:extension>

</xsd:complexContent>
 </xsd:complexType>

5.4.5.7.3 Attributes
The widget element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
In addition, the widget element includes following attributes:
· width: is defined in sub-clause 5.4.4.1 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.5.8 The mpeg2ts element
5.4.5.8.1 Semantics
The mpeg2ts element is child element of the div element, and is to represent MMT Asset which contains MPEG-2 Transport Stream.
5.4.5.8.2 Syntax
	<!-- MMT-CI:mpeg2ts Type -->

<xsd:complexType name="MMT-CI:mpeg2tsType">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The view element inherits HTMLElement interface which is specified in 3.3.2 of[W3C HTML5]-->

<xsd:attribute name="width" type="MMT-CI:widthType" use="required"/>

<xsd:attribute name="height" type="MMT-CI:heightType" use="required"/>

<xsd:attribute name="left" type="MMT-CI:leftType" default="0px"/>

<xsd:attribute name="top" type="MMT-CI:topType" default="0px"/>

<xsd:attribute name="z-index" type=" MMT-CI:z-indexType "/>

<xsd:attribute name="begin" type="MMT-CI:beginType" default="0s"/>

<xsd:attribute name="end" type="MMT-CI:endType" default="indefinite"/>

<xsd:attribute name="dur" type="MMT-CI:durType"/>

<xsd:attribute name="clipBegin" type="MMT-CI:clipBeginType"/>

<xsd:attribute name="clipEnd" type="MMT-CI:clipEndType"/>

<xsd:attribute name="refAsset" type="MMT-CI:refAssetType"/>

</xsd:extension>

</xsd:complexContent>
 </xsd:complexType>

5.4.5.8.3 Attributes
The mpeg2ts element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
In addition, the mpeg2ts element includes following attributes:
· width: is defined in sub-clause 5.4.4.1 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· clipBegin: is defined in sub-clause 5.4.4.10 of this specification.
· clipEnd: is defined in sub-clause 5.4.4.11 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.4.5.9 The mp4 element
5.4.5.9.1 Semantics
The mp4 element is child element of the div element, and is to represent MMT Asset which contains MPEG-4 file stream.
5.4.5.9.2 Syntax
	<!-- MMT-CI:mp4 Type -->

<xsd:complexType name="MMT-CI:mp4Type">

<xsd:complexContent>

<xsd:extension base="HTML5:HTMLElementType">

<!-- The view element inherits HTMLElement interface which is specified in 3.3.2 of[W3C HTML5]-->

<xsd:attribute name="width" type="MMT-CI:widthType" use="required"/>

<xsd:attribute name="height" type="MMT-CI:heightType" use="required"/>

<xsd:attribute name="left" type="MMT-CI:leftType" default="0px"/>

<xsd:attribute name="top" type="MMT-CI:topType" default="0px"/>

<xsd:attribute name="z-index" type=" MMT-CI:z-indexType "/>

<xsd:attribute name="begin" type="MMT-CI:beginType" default="0s"/>

<xsd:attribute name="end" type="MMT-CI:endType" default="indefinite"/>

<xsd:attribute name="dur" type="MMT-CI:durType"/>

<xsd:attribute name="clipBegin" type="MMT-CI:clipBeginType"/>

<xsd:attribute name="clipEnd" type="MMT-CI:clipEndType"/>

<xsd:attribute name="refAsset" type="MMT-CI:refAssetType"/>

</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

5.4.5.9.3 Attributes
The mp4 element inherits HTMLElement interface which is specified in sub-clause 3.3.2 of [W3C HTML5]. Thus, it also inherits all Global attributes of HTMLElement interface.
In addition, the mp4 element includes following attributes:
· width: is defined in sub-clause 5.4.4.1 of this specification.
· height: is defined in sub-clause 5.4.4.3 of this specification.
· left: is defined in sub-clause 5.4.4.4 of this specification.
· top: is defined in sub-clause 5.4.4.5 of this specification.
· z-index: is defined in sub-clause 5.4.4.6 of this specification.
· begin: is defined in sub-clause 5.4.4.7 of this specification.
· end: is defined in sub-clause 5.4.4.8 of this specification.
· dur: is defined in sub-clause 5.4.4.9 of this specification.
· clipBegin: is defined in sub-clause 5.4.4.10 of this specification.
· clipEnd: is defined in sub-clause 5.4.4.11 of this specification.
· refAsset: is defined in sub-clause 5.4.4.13 of this specification.
5.5 MMT Asset Delivery Characteristics
5.5.1 Introduction

The Asset Delivery Characteristics (ADC) describes the QoS requirements and statistics of MMT Assets for delivery. Each MMT Asset in an MMT Package shall be associated with one set of ADC. The ADC for each MMT Asset is used by an MMT compliant delivery entity to derive the appropriate QoS parameters and the transmission parameters to which a resource reservation and a delivery policy may apply. The ADC is represented in a protocol agnostic format to be generally used by QoS control service entity defined by other standard development organizations, such as IETF, 3GPP, IEEE, etc. It consists of a QoS_descriptor and a bitstream_descriptor.
5.5.2 ADC Descriptors

5.5.2.1 QoS descriptor

The QoS_descriptor defines required QoS levels on delay and loss for MMT Asset delivery. It consists of loss_priority, delay_priority, class_of_serivce, and hybrid_sync_indicator.

5.5.2.2 Bitstream descriptor
The bitstream_descriptor provides the statistics of MMT Asset. It provides the parameters to implement token bucket traffic shaping such as sustainable rate and buffer size. In addition, peak rate and maximum MFU size represent burst of MMT Asset as shown in Figure 6.

[image: image6.emf]B

i

t

r

a

t

e

[

K

b

p

s

]

Time [sec]

peak_rate[Kbps]

sustainable_rate[Kbps]

MFU_period [msec]

buffer_size [Kbits]

※

max_MFU_size [Kbits] = MFU_period

x

peak_rate

Figure 6 — The bitstream_descriptor depicted for a variable bit-rate of MMT Asset
5.5.3 Syntax
	<complexType name="AssetDeliveryCharacteristic">

<sequence>

<element name="QoS_descriptor" type="mmt:QoS_descriptorType" />

<element name="Bitstream_descriptor" type="mmt:Bitstream_descriptorType"/>

</sequence>

</complexType>

<complexType name="QoS_descriptorType">

<attribute name="loss_priority" type="integer"/>

<attribute name="delay_priority" type="integer"/>

<attribute name="class_of_service" type="string"/>

<attribute name="hybrid_sync_indicator" type="boolean"/>

</complexType>

<complexType name="Bitstream_descriptorType">

<choice>

<complexType name="Bitstream_descriptorVBRType">

<attribute name="sustainable_rate" type="float"/>

<attribute name="buffer_size" type="float"/>

<attribute name="peak_rate" type="float"/>

<attribute name="max_MFU_size" type="integer"/>

<attribute name="mfu_period" type="integer"/>

</complexType>

<complexType name="Bitstream_descriptorCBRUBRType">

<attribute name="peak_rate" type="float"/>

<attribute name="max_MFU_size" type="integer"/>

<attribute name="mfu_period" type="integer"/>

</complexType>

<complexType name="Bitstream_descriptorABRType">

<attribute name="mfu_period" type="integer"/>

</complexType>

</choice>

</complexType>

5.5.4 Semantics
loss_priority − the loss_prioirty indicates loss tolerance of the MMT Asset. The value of loss_priority is listed in Table 6.
Table 6 — value of loss_priority
	Value
	Description

	11
	loss priority 0 (Lossless)

	10
	loss priority 1 (Lossy, High priority)

	01
	loss priority 2 (Lossy, Medium priority)

	00
	loss priority 3 (Lossy, Low priority)

delay_priority − the delay_prioiry indicates delay sensitivity of the MMT Asset. The value of delay_priority is listed in Table 7 .

Table 7 — value of delay_priority
	Value
	Description

	11
	high sensitivity: end-to-end delay << 1sec (e.g., VoIP, video-conference)

	10
	medium sensitivity: end-to-end delay approx. 1 sec (e.g., live-streaming)

	01
	low sensitivity: end-to-end delay < 5~10 sec (e.g., VoD)

	00
	don’t care (e.g., FTP, file download)

class_of_service − the class_of_service classifies the services in different classes and manage each type of bitsteram with a particular way. This field indicates the type of bitstream as listed in Table 8.
Table 8 — value of class_of_service
	Value
	Description

	111
	The Constant Bit Rate (CBR) service class shall guarantee peak bitrate at any time to be dedicated for transmission of the MMT Asset. This class is appropriate for realtime services which require fixed bitrate such as VoIP without silence suppression.

	110
	The Real-Time Variable Bit Rate (rt-VBR) service class shall guarantee sustainable birate and allow peak bitrate for the MMT Asset with delay constraints over shared channel. This class is appropriate for most realtime services such as video telephony, videoconferencing, streaming service, etc.

	101
	The Non-Real-Time Variable Bit Rate (nrt-VBR) service class shall guarantee sustainable birate and allow peak bitrate for the MMT Asset without delay constraint over shared channel such as file downloading.

	100
	The Available Bit Rate (ABR) class shall not guarantee any bitrate, but may report available bitrate for feedback control. This class is appropriate for applications which can be adaptive to time-varying bitrate such as video streaming with RTCP feedback.

	011
	The Unspecified Bit Rate (UBR) class shall not guarantee any bitrate and shall not indicate congestion. This class is appropriate for interactive applications such as Web browsing. UBR service is equivalent to the common term “best effort service”.

Hybrid_sync_indicator − The hybrid_sync_indicator indicates dependency on other MMT Assets for synchronization purposes in hybrid delivery environment. If set to ‘1’, there are no dependency with other MMT Asset for synchronization. If set to ‘0’, It depends on other MMT Assets for synchronization in hybrid delivery.

Bitstream_descriptorVBRType − when class_of_service is “110” or “101”, “Bitstream_descriptorVBRType” shall be used for “Bitstream_descriptorType”.
Bitstream_descriptorCBRUBRType − when class_of_service is “111” or “011”, “Bitstream_descriptorCBRUBRType” shall be used for “Bitstream_descriptorType”.
Bitstream_descriptorABRType − when class_of_service is “100”, “Bitstream_descriptorABRType” shall be used for “Bitstream_descriptorType”
sustainable_rate − The sustainable_rate defines the minimum bitrate that shall be guaranteed for continuous delivery of the MMT Asset. The sustainable_rate corresponds to drain rate in token bucket model. The sustainable_rate is expressed in bytes per second.
buffer_size − The buffer_size defines the maximum buffer size for delivery of the MMT Asset. The buffer absorbs excess instantaneous bitrate higher than the sustainable_rate and the buffer_size shall be large enough to avoid overflow. The buffer_size corresponds to bucket depth in token bucket model. Buffer_size of a CBR (constant bit rate) MMT Asset shall be zero. The buffer_size is expressed in bytes

peak_rate − The peak_rate defines peak bitrate during continuous delivery of the MMT Asset. The peak_rate is the highest average bit rate during every MFU_period. The peak_rate is expressed in bytes per second.
MFU_period − The MFU_period defines minimum period of MFUs during continuous delivery of the MMT Asset. The MFU_period is expressed in millisecond.
max_MFU_size − The max_MFU_size is the maximum size of MFU, which is MFU_period*peak_rate. The max_MFU_size is expressed in byte.
6 Packetization of MMT Package
6.1 Introduction

This sub-clause defines the format of payload and application protocols for packetization of MMT Package.

MMT payload is defined as a generic payload for delivery of MMT Package. It is agnostic to specific media codecs used for coded media data, so that any type of media encapsulated as an MPU can be packetized into payloads for an application layer protocol supporting streaming delivery of media content. MMT payload can be used as a payload format for RTP or MMT Protocol. MMT payload can also be used to deliver MMT signaling messages.

MMT Protocol defines an application layer protocol supporting streaming delivery of media content through heterogeneous packet based delivery network including IP network environments. MMT Protocol provides essential features for delivery of MMT Package such as protocol level multiplexing that enables various MMT Assets to be delivered over a single MMT data flow, delivery timing model independent of presentation time to adapt to a wide range of network jitter, and information to support Quality of Service (QoS).

6.2 MMT Payload

6.2.1 Introduction
MMT payload is a generic payload to packetize and carry MMT Assets and other information for consumption using MMT Protocol or other existing application layer protocols. The MMT payload shall be used to packetize MPU and MMT signaling messages described in sub-clause 8.2.

MMT payload can carry one or more MPUs with the same Asset ID, MMT Signaling messages, FEC Parity, etc. MMT payload can aggregate multiple units of data with the same type into a single payload, and it can also fragment single unit of data into multiple payloads.

MMT payload provides the length information including both header and data of the payload. The size of MMT payload header is variable when aggregation is performed.
6.2.2 Syntax
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | length | type |f_i| flags |
 +-+
 | data Offset | frag_counter | num_DU| offset |
 +-+

 |offset |num_DU | offset | |
 +-+
 | payload_sequecen_number |

 +-+
 | extension_header (optional) |

 +-+

 | payload data

 +-+
Figure 7 — structure of payload header
6.2.3 Semantics
length (16bits) – This field indicates the length of the payload in bytes excluding the header. This doesn’t include padding data.
type (8bits) − This field indicates type of payload data. Payload type values are defined in Table 9. For the fragmentation and aggregation indication delivery unit of each type of payload data is defined as follows:
Table 9 — type of delivery unit
	Value
	Type
	Description of delivery unit

	00000000
	MPU
	One MPU

	00000001
	Signaling
	One Signaling message

	00000010
	FEC
	MMT FEC parity data

	00000100
	User defined data
	User defined data

	00001000
	reserved
	reserved

	00010000
	reserved
	reserved

	00100000
	reserved
	reserved

	01000000
	reserved
	reserved

	10000000
	reserved
	reserved

f_i (2bits) − This field indicates the fragmentation indicator contains information about fragmentation of delivery unit in the payload. The four values are listed in Table 10:
Table 10 — value of fragmentation indicator
	Value
	Description

	00
	Payload contains one or more complete delivery units.

	01
	Payload contains the first fragment of delivery unit

	10
	Payload contains a fragment of delivery unit that is neither the first nor the last part.

	11
	Payload contains the last fragment of delivery unit.

flags (6bits) − The following flags indicate the presence of these information carried in this MMT payload.
Table 11 — List of flags
	Value
	Type
	Description

	000001
	fragmentation_flag
	Set to 1 if fragment_counter is present.

	000010
	aggregation_flag
	Set to 1 if aggregation_info is present.

	000100
	RAP_flag
	Set to 1 if payload contains random access point (or part thereof) (RAP).

	001000
	payload_seqno_flag
	Set to 1, if payload_sequno is present.

	010000
	extension_flag
	Set to 1, if extension_header is present.

	100000
	reserved
	reserved

data_offset (8 bits) − This field indicates location of 1st byte of data unit.
fragment_counter (16 bits) − This field specifies the number of payload containing fragments of same delivery unit succeeding this MMT payload.

number_delivery_unit (num_DU: 4 bits) − This field specifies the number of delivery unit within this MMT payload
offset (16bits) − This field specifies data offset of each delivery unit excluding the first one from the byte refereced by data_offset.
payload_sequence_number (32 bits) − This field specifies the sequence number of payload associated with same packet_id, incremented by 1 for each payload.
extension_header − This field contains user-defined information.
6.3 MMT Protocol
6.3.1 Introduction

MMT Protocol is an application layer protocol designed to deliver MMT Package efficiently and reliably. MMT Protocol supports several features, such as multiplexing, network jitter calculation, and QoS indication, that are essential to deliver contents composed of various types of coded media data.

MMT Protocol supports multiplexing of different MMT Assets over a single packet flow of MMT Protocol. It delivers multiple types of data in the order of consumption at the receiving entity to help synchronization between different types of media data without introducing a large delay or buffer requirement. MMT Protocol also supports multiplexing of media data and signaling messages within a single packet flow of MMT Protocol. A single MMT payload is carried in one packet of MMT Protocol.

MMT Protocol provides the means to calculate and remove jitter introduced by underlying delivery network, resulting in a constant delay of data stream. By using delivery time field in the packet header, jitter can be precisely calculated without any additional signaling protocols.

MMT Protocol provides priority related information to enable underlying network layers or the intermediate network entity to map the media transport layer priority information to the network protocol according to predetermined priority mapping policy. When the MMT Protocol is transmitted this priority information will be used to evaluate the 6-bit DSCP field in IP header. Then the underlying network entity will process the media packet according to the mapping defined by the QoS fields.
Single MMT packet carries only one MMT payload.

6.3.2 Syntax
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | packet_id | packet_sequence_number |
 +-+
 | sequence_number | timestamp |
 +-+

 | timestamp | flags | ST | TB |T|
 +-+
 | D_S |R| L_P |r|flow_label |e| private_user_data |

 +-+
 | payload data

 +-+
Figure 8 — MMT Packet header
6.3.3 Semantics
packet_id (16bits) − This filed is the integer value assigned to each MMT Asset to distinguish packets of one MMT Asset from another. Separate value will be assigned to signaling messages and FEC parity flows.

packet_sequence_number (32bits)− This filed is Integer value starting from arbitrary value incremented by one for each MMT packet. It wraps around to 0 after its maximum value.
timestamp (32bits))− This filed specifies the time instance of MMT packet delivery. The NTP time is used in timestamp as specified as the “short-format” in clause 6 of IETF RFC5905, NTP version 4. This timestamp is measured at the first bit of MMT packet.
flags (8bits) − The following flags indicate the presence of these information carried in this MMT packet.
Table 12 — value of flags
	Value
	Description

	header_extension_flag (1-bit)
	Set to “1”, if header extension fields are present in MMT packet header.

	service_classifier_flag(1-bit)
	Set to “1”, if Service Classifier information is present. Service Classifier contains service_type field, type_of_bitrate filed, and throughput field.

It indicates service properties such as unicast, multicast, broadcast, unidirectional, bidirectional, interactive, conversational, etc

	QoS_classifier_flag (1-bit)
	Set to “1”, if QoS Classifier information is present. QoS Classifier contains delay_sensitivity field, reliability_flag field,and loss_priority field.
It indicates the QoS class property. The application can perform per-class QoS operations according to the particular value of one property. The class values are universal to all independent sessions.

	flow_identifier_flag (1-bit)
	Set to “1”, if Flow identifier information is present. Flow identifier contains flow_label field, and extension_flag field.

It indicates the flow identifier. The application can perform per-flow QoS operations in which network resources are temporarily reserved during the session. A flow is defined to be a bitsream or a group of bitstreams whose network resources are reserved according to transport characteristics or ADC in MMT Package.

	private_user_data_flag (1-bit)
	Set to “1”, if private user data information is present.

	reserved (3bits)
	reserved

service_type (ST: 4-bits) − This filed indicates the service type. Priority of the service type depends on the application as listed in Table 13.
Table 13 — value of service_type
	Value
	Type

	1111
	IPTV live

	1110
	IPTV on demand

	1101
	Broadcast

	1100
	Video surveillance

	1011
	Video communication

	1010
	VoIP

	1001
	reserved

	0000
	reserved

type_of_bitrate (TB: 3-bits) − This filed indicates the type of bitrate as listed in Table 14.

Table 14 — value of type_of_bitrate
	Value
	Type

	111
	Constant Bit Rate (CBR)

	110
	Real-Time Variable Bit Rate (rt-VBR)

	101
	Non-Real-Time Variable Bit Rate (nrt-VBR)

	100
	Available Bit Rate (ABR)

	011
	Unspecified Bit Rate (UBR)

	010
	Reserved

	001
	Reserved

	000
	Reserved

throughput (T:1-bit) − This filed indicates the type of throughput of data for the service as listed in Table 15.
Table 15 — value of throughput
	Value
	Type

	1
	Normal Throughput

	0
	High Throughput

delay_sensitivity (D_S: 3-bits) − This field indicates the delay sensitivity of the data for the given service as listed in Table 16.
Table 16 — value of delay_sensitivity
	Value
	Type

	111
	conversational service (~100ms), (e.g., Expedite Forwarding of DSCP)

	110
	live-streaming service (~1sec), (e.g., Assured Forwarding 1 of DSCP)

	101
	delay-sensitive interactive service (~2sec), (e.g., Assured Forwarding 2 of DSCP)

	100
	interactive service (~5sec), (e.g., Assured Forwarding 3 of DSCP)

	011
	streaming service (~10sec), (e.g., Assured Forwarding 4 of DSCP)

	010
	non-realtime, (e.g., Best Effort)

	001
	reserved

	000
	reserved

reliability_flag (R: 1bit)- When “reliability_flag” is set to 0 it shall indicate that the data is lossy (e.g. media data), and that the following 3-bits shall be used to indicate relative priority of loss. When “reliability_flag” is set to 1 the “loss_priority” field will be ignored, and shall indicate that the data is lossless (e.g., signaling data, service data, or program data)
loss_priority (L_P: 3bits) - This field provides the loss_priority for the media packet, and it may be mapped to the NRI of NAL, DSCP of IETF, or other loss priority field in another network protocol. This field shall take values from 7 (‘1112’) to 0 (‘0002‘), where 7 is the highest priority, and 0 is the lowest priority.
reserved (r: 1bits)- reserved.
flow_label (7bits)- This field indicates the flow identifier. The application can perform per-flow QoS operations in which network resources are temporarily reserved during the session. A flow is defined to be a bitsream or a group of bitstreams whose network resources are reserved according to transport characteristics or ADC in MMT Package. An implicit serial number from 0 to 127. An arbitrary number is assigned temporarily during a session and refers to every individual flow for whom a decoder (processor) is assigned and network resource could be reserved.
extension_flag (e: 1-bit)- If there are more than 127 individual flows, this bit is set to 1 and one more byte can be used.
private user data (16-bits)- This field is used for the private user data
6.4 Delivery Timing Model for MMT Protocol
6.4.1 Introduction
Delivery of time constrained coded media data, according to their temporal requirements, is an essential feature supported by MMT Protocol. Preservation of timing relationships among packets in a single MMT Protocol packet flow or between packets from different MMT Protocol packet flows is also an essential feature in MMT. MMT specifies the timing model to be used for delivery of MMT packets. The delivery timing model provides the functionality to calculate jitter and amount of delay introduced by underlying delivery network during the delivery of MMT Package.
6.4.2 Clock synchronization

NTP, as specified in RFC 5905, is used to synchronize clocks between sending and receiving entities.

6.4.3 Network jitter calculation
The following equation is used to calculate the difference in packet spacing, DMMT(i.j), for a pair of MMT packets i and j at the receiving entity:

[image: image7.wmf],,,,,,,,

(,)()()()()

MMTAjAiDjDiAjDjAiDi

DijTTTTTTTT

=---=---

,
where TD,i and TD,j denote the delivery time instantce of two MMT packets i and j, respectively carried in MMT packet header. The TA,i and TA,j are the time instances at which MMT packets i and j have arrived at the MMT receiver respectively.

The inter-arrival jitter, JMMT(i) which is defined to be the mean deviation of the difference in packet spacing is calculated continuously as each MMT packet i is received according to the following formula:

[image: image8.wmf]()(1)((1,)(1))/16

MMTMMTMMTMMT

JiJiDiiJi

=-+---

.
6.5 Application Layer Forward Error Correction (AL-FEC)
6.5.1 Introduction
MPEG Media Transport (MMT) provides forward error correction (FEC) mechanism for reliable delivery of MMT Content over IP network environments that are prone to packet losses.
The MMT FEC scheme defines FEC coding structure, FEC block format, FEC packet block format, FEC configuration information and FEC code. Overall architecture for an instance of the FEC scheme in MMT is shown in Figure 9.
The FEC configuration information, which shall be delivered as a signaling message for AL-FEC and included in FEC packet as FEC in-band signals, includes the policy to be adopted by sending entity. The sending entity generates a signaling message for AL-FEC from the configuration information. The receiving entity recovers lost packets by FEC decoding by using signaling message for AL-FEC and received FEC packet block.

The sending entity determines the MMT Assets to be protected by FEC encoding within an MMT Package and the number of FEC source flows. Each FEC source flow delivers one or more MMT Assets to be protected by FEC encoding and consists of FEC source payloads which are packetized from the one or more MMT Assets. FEC source payloads from single FEC source flow are inputed with FEC configuration information in this architecture and are protected by FEC encoding. In this context, FEC source payload means MMT packet before FEC encoding.

Using FEC source payloads and FEC configuration information, the FEC scheme generates FEC packet blocks and FEC in-band signals. It has four building blocks: FEC block constructor, FEC encoder, FEC packet builder, and signaling encoder.

[image: image9.emf]FEC block

constructor

FEC information (sub-) blocks

FEC Encoder

FEC packet

Builder

FEC source

payloads

FEC parity blocks

FEC packet

blocks

Signaling

Encoder

FEC

Configuration

Information

FEC Out-of-band

Signals

FEC In-band

Signals

AL-FEC

In MMT

FEC parity payloads

Source MMT FEC Payload ID

Parity MMT FEC Payload ID

Figure 9 — Architecture for AL-FEC in MMT
The operation of the FEC block constructor is related to the FEC coding structure and FEC block format. Based on the FEC coding structure, which is described in sub-clause 6.5.2, it generates an FEC information (sub-) block from an FEC source block which consists of pre-determined number of FEC source payloads. The detailed method of generating the FEC information (sub-) block from the FEC source block is described in sub-clause 6.5.3.2 and sub-clause 6.5.3.3. Then the FEC information (sub-) block is passed to the FEC encoder, and the FEC encoder generates an FEC parity block associated with the FEC information (sub-) block and to comply with the FEC parity block format. The detailed algorithm to calculate the value of parity symbols of the FEC parity block is described in FEC code specification. The FEC block constructor generates FEC parity payloads from the FEC parity block and generates MMT FEC payload IDs for FEC source packets and MMT FEC payload IDs for FEC parity packets based on the FEC block which consists of the FEC information (sub-) block and the FEC parity block. Then, the FEC packet builder generates FEC packet blocks according to FEC packet block format.

The signaling encoder determines FEC In-band signals which are included in FEC packet and signaling message for FEC using FEC configuration information. The detailed descriptions of FEC In-band signals which are included in FEC packet and signaling message for FEC are described in sub-clause 6.5.5 in this specification, respectively.

A sending entity may or may not apply FEC scheme(s) which is specified in this specification. If an MMT sending entity applies FEC scheme(s), it shall comply with this specification.
6.5.2 FEC Coding Structure
6.5.2.1 Introduction

This sub-clause specifies two kinds of FEC coding structure. One is the two stage FEC coding structure and the other is the Layer-Aware FEC (LA-FEC) coding structure. MMT FEC encoder/decoder may optionally support LA-FEC coding structure.
6.5.2.2 Two stage FEC Coding Structure

This sub-clause specifies the two stage FEC coding structure as an FEC coding structure for AL-FEC to protect a FEC source block which consists of a pre-determined number of FEC source payloads. The two stage FEC coding structure is depicted as shown in Figure 10.

[image: image10.emf]1st sub-block

FEC 1 Encoder

Mth

P1

FEC 2 Encoder

P2

FEC Source block

2nd sub-block Mth sub-block ...

1st sub-block 2nd sub-block Mth sub-block ...

2nd

P1

1st

P1

Figure 10 — Two Stage FEC Coding Structure
NOTE: In Figure 10, P1 means FEC parity block for FEC sub-block and P2 means FEC parity block for FEC source block.

An FEC source block shall be encoded in one of following FEC coding structures:

· Case 0: No FEC coding applied.
· Case 1: One stage FEC 1 coding structure with FEC 1 code only.
· Case 2: One stage FEC 2 coding structure with FEC 2 code only (one stage FEC coding structure).
· Case 3: Two stage FEC coding structure with both FEC 1 code and FEC 2 code.
For two stage FEC coding structure, one FEC source block is split into M (>1) number of FEC sub-blocks, and each FEC sub-block shall be encoded by FEC 1 code and the FEC source block shall be encoded by FEC 2 code. M number of FEC sub-blocks is converted to M FEC information sub-blocks with one of the IBG modes defined in sub-clause 6.5.3.2. Single IBG mode shall be applied to all FEC sub-blocks from single FEC source block. All FEC information sub-blocks generated from the single FEC source block are concatenated to form a single FEC information block according to sub-clause 6.5.3.2 in this specification. M number of P1 FEC parity blocks is generated from each M FEC information sub-blocks by FEC 1 code, respectively and one FEC parity block is generated from the FEC information block by FEC 2 code.
For Case 0, both FEC 1 and FEC 2 encoding shall be skipped, i.e. no parity data are generated.
For both Case 1 and Case 2, M shall be set to 1. It implies that one Source Block forms one Source Sub-Block. For Case 1, FEC 2 encoding shall be skipped. For Case 2, FEC 1 encoding shall be skipped.
NOTE:
Case 1 is designed for an FEC source block which consists of relatively small number of FEC source payloads and Case 2 is designed for an FEC source block which consists of relatively large number of FEC source payloads. The particular number of FEC source payload to determine whether we use Case 1 or Case 2 will be specified after the decision to select FEC code(s).

6.5.2.3 Layer-Aware FEC (LA-FEC) Coding Structure
Layer-Aware FEC (LA-FEC) is an FEC scheme specific for layered media data, which exploits the dependency across layers of the media for FEC construction. Figure 11 illustrates how LA-FEC is applied to layered coded media data, such as content encoded by Scalable Video Coding (SVC) or Multi-view Video Coding (MVC). In the example shown, there is a base representation (BR) (e.g. base resolution or left view) that is independently decodable and one additive enhancement representation (ER1) (e.g. enhancement resolution or right view) with dependency on the base representation. Note that the number of representations and the dependency structure depends on the media encoding and can differ from the given example.

[image: image11.emf]Base representation

(BR)

Enhancement

representation (ER

1)

Media dependency

Figure 11 — Example of the structure of layered coded media
For LA-FEC, an FEC information block of a certain representation consists of multiple FEC information sub-blocks, one for the representation itself and one for each Complimentary Representation of this representation. Each of these FEC information sub-blocks is generated only from data from one representation. An exemplary illustration of the LA-FEC generation for the layered coded media structure example in Figure 12. Since the Base Representation (BR) is independent from any other representations, its FEC information block only contains the FEC information sub-block of BR. Whereas the FEC information block of the Enhancement Representation (ER1) consists of the same FEC information sub-block of BR and the FEC information sub-block of ER1.

[image: image12.emf]FEC information

sub-block (BR)

FEC information

sub-block (ER1)

FEC Encoder (BR)

LA-FEC Encoder

(ER1)

FEC Information Block(ER1)

FEC parityblock

(ER1)

FEC parityblock

(BR)

Figure 12 — FEC data generation with LA-FEC.
With LA-FEC, an FEC parity block of Dependent Representations (in the example ER1) additionally protects all data of all its Complimentary Representations (in the example BR). Hence, a given representation can be recovered by using FEC packet block generated by its corresponding FEC information block, generated by the FEC information blocks from representations that depend on it, or by using all FEC parity blocks of Dependent Representations and all its Complimentary Representations in a joint decoding process. Note that the LA-FEC encoder process shall ensure that FEC packet blocks of different representations can be used in a joint decoding process. The detailed method depends on the applied FEC code.

For instance, if a receiving entity receives the BR only, it can decode and correct that representation by using FEC packet block (BR). If a receiving entity receives BR and ER1, it is able to decode and correct BR with FEC packet block (BR), FEC packet block (ER1), or both FEC packet block (BR) and FEC packet block (ER1) in a joint decoding process. Thereby, LA-FEC allows for enhancing the robustness of layered coded media. More concretely, in the situation that the BR cannot be corrected by FEC packet block (BR), the receiving entity with LA-FEC can try to correct BR by FEC packet block (ER1), or by joint decoding of both FEC packet block (BR) and FEC packet block (ER1).

6.5.3 FEC Block Format
6.5.3.1 Introduction

This sub-clause specifies the format of FEC Block which consists of an
FEC information block and an FEC parity block generated from the FEC information block or which consists of an FEC information sub-block and an FEC parity block generated from the FEC information sub-block by FEC encoding method. FEC information block and FEC information sub-block are generated from FEC source block and FEC sub-block according to a given IBG mode, respectively. An FEC parity block is generated from the associated FEC information block or FEC information sub-block by FEC encoding method. FEC block format is depicted as shown in Figure 13.

[image: image13.emf]FEC parity block

(P PPLs)

F

E

C

P

A

R

I

T

Y

P

L

#

0

F

E

C

P

A

R

I

T

Y

P

L

#

1

...

F

E

C

P

A

R

I

T

Y

P

L

#

P-1

F

E

C

I

N

F

O

P

L

#

0

F

E

C

I

N

F

O

P

L

#

1

...

S

B

y

t

e

s

F

E

C

I

N

F

O

P

L

#

K-1

FEC information (sub-)block

(K IPLs)

FEC Block (K+P PLs)

Figure 13 — FEC Block Format
6.5.3.2 FEC Source Block
This sub-clause specifies the data entity protected by FEC. An FEC source flow associated with a designated FEC protected flow identifier is protected. An FEC source block consists of a pre-determined number of FEC source payloads, which are MMT TPs, whose sizes may be fixed or variable, and is converted to an FEC information block for FEC encoding. For the Case 3 of sub-clause 6.5.2.1, each FEC sub-block is converted to an FEC information sub-block for FEC encoding.
6.5.3.3 FEC Information Block Format
This sub-clause specifies the format of FEC information block and FEC information sub-block, which consists of pre-determined number of FEC information payloads, which are generated from FEC source block for FEC encoding. This sub-clause specifies three kinds of FEC information block generation (IBG) modes, so called ibg_mode0, ibg_mode1 and ibg_mode2.In a mode with constant FEC source payloads size, ibg_mode0 is used and in a mode with variable FEC source payloads size, ibg_mode1 or ibg_mode2 is used. In a mode with variable FEC source payloads size, MMT FEC encoder/decoder shall support ibg_mode1 and may optionally support ibg_mode2.

In ibg_mode0, the FEC information block and the FEC information sub-block are the exactly same as the FEC source block and the FEC sub-block, respectively as all FEC source payloads have the same size. This means that the number of FEC source payloads in the FEC source block and the FEC sub-block shall be the same as the number of FEC information payloads in the FEC information block and the FEC information sub-block generated from the FEC source block and the FEC sub-block, respectively, and each FEC source payload #i is exactly the same as each FEC information payload #i (i=0, 1, …, K-1). In this mode, for one stage FEC coding structure (M=1) an FEC information block is generated from an FEC source block without padding bytes and for two stage and LA-FEC coding structure (M>1) ith FEC information sub-block is generated from ith FEC sub-block in an FEC source block (i=0,1,...,M-1) without padding bytes as shown in Figure 14.

[image: image14.emf]S

O

U

R

C

E

P

L

#

0

S

O

U

R

C

E

P

L

#

1

...

S

B

y

t

e

s

S

O

U

R

C

E

P

L

#

K

1

-1

1

st

Information Sub-Block

(K

1

IPLs)

Information Block (K IPLs)

S

O

U

R

C

E

P

L

#

K

1

S

O

U

R

C

E

P

L

#

K

1

+1

...

S

O

U

R

C

E

P

L

#

K

1

+

K

2

-1

2

nd

Information Sub-Block

(K

2

IPLs)

...

S

O

U

R

C

E

P

L

#

K-

K

M

S

O

U

R

C

E

P

L

#

K-

K

M

+

1

...

S

O

U

R

C

E

P

L

#

K-1

M

th

Information Sub-Block

(K

M

IPLs)

...

S

B

y

t

e

s

...

1

st

Sub-Block

(K

1

SPLs)

Source Block (K SPLs)

2

nd

Sub-Block

(K

2

SPLs)

M

th

Sub-Block

(K

M

SPLs)

I

N

F

O

R

P

L

#

K

1

-1

I

N

F

O

R

P

L

#

K

1

I

N

F

O

R

P

L

#

K

1

+1

I

N

F

O

R

P

L

#

K

1

+

K

2

-1

I

N

F

O

R

P

L

#

K-

K

M

I

N

F

O

R

P

L

#

K-

K

M

+

1

I

N

F

O

R

P

L

#

K-1

I

N

F

O

R

P

L

#

1

I

N

F

O

R

P

L

#

0

Figure 14 — FEC information (sub-)block Generation with no padding bytes (ibg_mode0)
In ibg_mode1, FEC information block and FEC information sub-block is generated from FEC source block and FEC sub-block, respectively in the same manner as ibg_mode0 except the value of each FEC source payload #i length, Si, is first added as two-byte value in network byte order (i.e. with high order byte first) followed by each FEC information payload #i and each FEC information payload #i has possibly padding bytes to make its size be the same as Smax, which is the maximum size of FEC source payloads in the FEC source block (i=0,1,…,K-1). This means that the number of FEC source payloads in the FEC source block and the FEC sub-block is the same as the number of FEC information payloads in the FEC information block and the FEC information sub-block generated from the FEC source block and the FEC sub-block, respectively and each FEC information payload #i is generated by adding possible padding bytes (all 00h) to the corresponding FEC source payload #i and that each FEC source payload #i length field of two-byte followed by each FEC information payload #i is added to identify the size (in bytes) of the associated FEC source payload #i (i=0,1,…,K-1). In this mode, for one stage FEC coding structure (M=1) an FEC information block is generated from an FEC source block with possibly padding bytes (all 00h) and for two stage and LA-FEC coding structure (M>1) ith FEC information sub-block is generated from ith FEC sub-block in an FEC source block (i=0,1,...,M-1) with possibly padding bytes (all 00h) as shown in Figure 15.

[image: image15.emf]S

O

U

R

C

E

P

L

#

0

S

O

U

R

C

E

P

L

#

1

...

S

m

a

x

B

y

t

e

s

S

O

U

R

C

E

P

L

#

K

1

-1

1

st

Information Sub-Block

(K

1

IPLs)

Padding Data

Information Block (K IPLs)

S

O

U

R

C

E

P

L

#

K

1

S

O

U

R

C

E

P

L

#

K

1

+1

...

S

O

U

R

C

E

P

L

#

K

1

+

K

2

-1

2

nd

Information Sub-Block

(K

2

IPLs)

...

S

O

U

R

C

E

P

L

#

K-

K

M

S

O

U

R

C

E

P

L

#

K-

K

M

+

1

...

S

O

U

R

C

E

P

L

#

K-1

M

th

Information Sub-Block

(K

M

IPLs)

...

S

m

a

x

B

y

t

e

s

...

Padding Data

S

0

S

1

S

K

1

-1

...

2 bytes

S

K

1

S

K

1

+1

... ...

S

K

1

+

K

2

-1

S

K-

K

M

S

K-

K

M

+1

... S

K-1

S

i

ith SPL Length Field, where i = 0,1,

…

,K-1

1

st

Sub-Block

(K

1

SPLs)

Source Block (K SPLs)

2

nd

Sub-Block

(K

2

SPLs)

M

th

Sub-Block

(K

M

SPLs)

I

N

F

O

R

P

L

#

K

1

-1

I

N

F

O

R

P

L

#

K

1

I

N

F

O

R

P

L

#

K

1

+1

I

N

F

O

R

P

L

#

K

1

+

K

2

-1

I

N

F

O

R

P

L

#

K-

K

M

I

N

F

O

R

P

L

#

K-

K

M

+

1

I

N

F

O

R

P

L

#

K-1

I

N

F

O

R

P

L

#

1

I

N

F

O

R

P

L

#

0

Figure 15 — FEC information (sub-)block Generation with padding bytes (ibg_mode1)
In ibg_mode2, for one stage FEC coding structure an FEC information block is generated from an FEC source block with possibly padding bytes (all 00h). A single FEC information block consists of KIP FEC information payloads generated from a single FEC source block with possibly padding bytes (all 00h) and each FEC information payload consists of the same N (>1) number of FEC information sub-payloads. This means that the single FEC information block consists of N*KIP FEC information sub-payloads. FEC source payload #0 of the single FEC source block is placed into the first s0 number of FEC information sub-payloads in the single FEC information block, the value of FEC source payload #0 length, S0, is first written as two-byte value in network byte order into the first two bytes of the first FEC information sub-payload in the first s0 number of FEC information sub-payloads in the single FEC information block, followed by the FEC source payload #0 with possibly padding bytes up to the boundary of the last FEC information sub-payload of the first s0 number of FEC information sub-payloads in the single FEC information block. Then, FEC source payload #1 of the single FEC source block is placed into the next s1 number of FEC information sub-payloads in the single FEC information block in the same manner as that of the FEC source payload #0. In this way, FEC source payload #KSP-1 of the single FEC source block is placed into the next sKsp-1 number of FEC information sub-payloads in the single FEC information block in the same manner as that of the FEC source payload #0. If KIPT– sum { siT’, i = 1, …, KSP} is not zero, then P number of padding bytes (all 00h) are placed into the last FEC information sub-payloads in the single FEC information block.

The detailed specification for this IBG mode is as follows:

Let
KSP
be the number of FEC source payloads in an FEC source block.

KIP
be the number FEC information payloads in an FEC information block.

Ri

denote the octets of the i-th FEC source payload to be add to the FEC information block.
Si

be the length of Ri in octets.

Li

denote two octets representing the value of Si in network byte order.
T

be the FEC information payload size in bytes.

N
be the number of FEC information sub-payloads composing an FEC information payload (N ≥ 2)

T’
be the FEC information sub-payload size in bytes. (T’ = T/N)

si
be the smallest integer such that siT/N = siT’ >= (Si+2).

Pi

denote siT’–(Si+2) zero octets. Note: Pi are padding octets to align the start of each FEC source payload with the start of an FEC information sub-payload.

P

denote KIPT– sum { siT’, i = 1, …, KSP} zero octets.
Then, the FEC information block is constructed by concatenating Li, Ri, Pi for i = 1, 2, …, KSP, and P and dividing them into FEC information payloads of size T sequentially.
An example of forming an FEC information block is depicted as shown in Figure 16. In this example, five FEC source payloads of lengths 34, 30, 56, 40 and 48 bytes have been placed into an FEC information block with 8 FEC information payloads of size T = 32 bytes and N = 2. Note that each FEC information payload in Figure 14 consists of 2 FEC information sub-payloads of size T/2 = 16 bytes.

[image: image16.emf]S

O

U

R

C

E

P

L

#

0

(34

Bytes)

FEC source block

(K

SP

SPLs)

FEC information block

(K

IP

IPLs)

S

O

U

R

C

E

P

L

#

1

(30

Bytes)

S

O

U

R

C

E

P

L

#

2

(56

Bytes)

S

O

U

R

C

E

P

L

#

3

(40

Bytes)

S

O

U

R

C

E

P

L

#

4

(48

Bytes)

34

T

(

=

3

2

)

B

y

t

e

s

30 56 40

48

T

/

2

(

=

1

6

)

B

y

t

e

s

T

/

2

(

=

1

6

)

B

y

t

e

s

IPL#0 IPL#1 IPL#2 IPL#3 IPL#4 IPL#5 IPL#6 IPL#7

Padding Data

Figure 16 — An example of FEC Information Block Generation with padding bytes (ibg_mode2)
 In ibg_mode2, for two stage and LA-FEC coding structures ith FEC information sub-block is generated from ith FEC source sub-block in an FEC source block with possibly padding bytes (all 00h) (i=0,1,...,M-1) in exactly the same manner as that of one stage FEC coding structure except that the terminology for FEC information block and FEC source block are replaced with FEC information sub-block and FEC sub-block, respectively. All FEC information sub-blocks generated from single FEC source block are concatenated to form a single FEC information block.

FEC information block or FEC information sub-block is represented as that which consists of a pre-determined number of FEC information symbol parts to generate the pre-determined number of FEC parity symbol parts by FEC encoding method, respectively. Each FEC information payload #i (i =0,1,…,K-1) consists of the same number 8*S/m or data Symbols which each Symbol size is m (in bits). The ith data Symbol of the jth FEC information symbol part shall be the jth data Symbol of FEC information payloads #i (i=0,1,…,K-1 and j=1,2,…,8*S/m). Where, m is defined by the FEC encoding method and 8*S is a multiple of m. Figure 17 shows the configuration of FEC information block and FEC information sub-block in terms of FEC information symbol parts.

[image: image17.emf]Information (Sub-)Block

(K IPLs)

I

N

F

O

P

L

#

0

I

N

F

O

P

L

#

1

...

I

N

F

O

P

L

#

K-1

1st Information Symbol Part

(= K Symbols)

S

B

y

t

e

s

(

=

8

*

S

r

o

w

s

)

2nd Information Symbol Part

(= K Symbols)

...

(8*S/m)th Information Symbol Part

(= K Symbols)

...

jth Information Symbol Part

(= K Symbols)

1

st

m rows

...

...

I

N

F

O

P

L

#

i

Information (Sub-)Block

(K IPLs)

2

nd

m rows

jth m rows

(8*S/m)th

m rows

...

Figure 17 — Configuration of FEC information (sub-)block
6.5.3.4 FEC Parity Block Format

This sub-clause specifies the format of FEC parity block which consists of pre-determinded number of FEC parity symbol parts. The jth FEC parity symbol part of single FEC parity block is generated from the jth FEC information symbol part of a single FEC information block by FEC encoding method, respectively (j=0,1,…,8*S/m), and every FEC parity symbol part has the same P number of parity Symbols, where P is defined by FEC encoding method. All FEC parity symbol parts generated from the single FEC information block are aggregated in sequencial order to form a single FEC parity block. An FEC parity block for FEC information sub-block is generated in the same manner as that of FEC information block. Figure 18 shows an FEC information block or FEC information sub-block and its FEC parity block generated from the FEC information block or FEC information sub-block by FEC encoding method, respectively.

[image: image18.emf]1

st

m rows

...

...

Information (Sub-)Block

(K IPLs)

2

nd

m rows

jth m rows

(8*S/m)th

m rows

1st Parity Symbol Part

(= P Symbols)

Parity Block (P PPLs)

...

...

2nd Parity Symbol Part

(= P Symbols)

jth Parity Symbol Part

(= P Symbols)

(8*S/m)th Parity Symbol Part

(= P Symbols)

1st Information Symbol Part

(= K Symbols)

2nd Information Symbol Part

(= K Symbols)

...

(8*S/m)th Information Symbol Part

(= K Symbols)

...

jth Information Symbol Part

(= K Symbols)

S

B

y

t

e

s

(

=

8

*

S

r

o

w

s

)

Figure 18 — FEC information (sub-)block and its associated FEC parity block
FEC parity block is represented as P number of FEC parity payloads being considered for delivery. Each FEC parity payload #i consists of 8*S/m parity Symbols. The jth parity Symbol of FEC parity payload #i shall be the ith parity Symbol of the jth FEC parity symbol part (i=0,1,…,P-1 and j=1,2,…,8*S/m). This means that all ith parity Symbols of 8*S/m FEC parity symbol parts from single FEC parity block forms single FEC parity payload #i (i=0,1,…,P-1 and j=1,2,…,8*S/m). Figure 19 shows the configuration of FEC parity block in terms of FEC parity payloads.

[image: image19.emf]Parity Block (P PPLs) Parity Block (P PPLs)

P

A

R

I

T

Y

P

L

#

0

P

A

R

I

T

Y

P

L

#

1

...

P

A

R

I

T

Y

P

L

#

P-1

1st Parity Symbol Part

(= P Symbols)

...

...

2nd Parity Symbol Part

(= P Symbols)

jth Parity Symbol Part

(= P Symbols)

(8*S/m)th Parity Symbol Part

(= P Symbols)

1

st

m rows

...

...

2

nd

m rows

jth m rows

(8*S/m)th

m rows

S

B

y

t

e

s

(

=

8

*

S

r

o

w

s

)

P

A

R

I

T

Y

P

L

#

i

...

Figure 19 — Configuration of FEC parity block
6.5.4 FEC Packet Format

6.5.4.1 Introduction

This sub-clause specifies the format of FEC packet, which includes MMT FEC Payload ID as FEC in-band signals, to deliver FEC source payload or FEC parity payloads. This sub-clause specifies two kinds of FEC packet formats. One is the format of FEC source packet and the other is the format of FEC parity packet.

For delivery of an FEC source block, an FEC source packet block is generated from the FEC source block and for delivery of an FEC parity block, which is generated to protect the FEC source block by FEC encoding, an FEC parity packet block is generated from the FEC parity block. MMT FEC payload ID is added to an FEC source payload to form an FEC source packet and MMT FEC payload ID is added to one or more FEC parity payloads of FEC parity block to form an FEC parity packet.

FEC source packet is MMT packet with AL-FEC protection and FEC parity packet is MMT packet for FEC parity.MMT FEC Payload ID for an FEC source packet identifies the FEC information payload carried by the FEC source packet or the FEC information sub-payload carried by the FEC source packet.

MMT FEC Payload ID for an FEC parity packet identifies the FEC parity payload carried by the FEC parity packet and its associated FEC source block.

6.5.4.2 FEC Source Packet Format

An FEC source packet is a packet to deliver an FEC source payload which is a data payload protected by FEC and is composed of an FEC source payload followed by an MMT FEC payload ID.
FEC source packet format is depicted in Figure 20. The shaded area represents data protected by FEC (FEC source payload). To maintain consistency with the packet format and to avoid putting the FEC source payload into separate parts of the packet, FEC in-band signals are placed at the end of the FEC source packet.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | MMT Packet header |
 +-+
 | MMT payload header |
 +-+
| payload data | FEC in-band signals |
 +-+

Figure 20 — FEC source packet format
6.5.4.3 FEC Parity Packet Format

An FEC parity packet is a packet to deliver one or more FEC parity payloads to recover its associated FEC information block and it is composed of one or more FEC parity payloads, MMT TP header and an MMT FEC payload ID.
FEC parity packet format is depicted in Figure 21. The shaded area represents parity data for recovering its associated FEC information (sub-)block. For fast and easy acquisition of FEC in-band signals, FEC in-band signals are placed in front of FEC parity payload(s). Since the role of the FEC parity packet ends when its associated FEC information (sub-)block is recovered, it has no MMT payload header as shown in Figure 21.

An FEC parity packet shall carry one FEC parity payload for ibg_mode0 and ibg_mode1. In ibg_mode2, an FEC parity packet can carry one or more FEC parity payloads. Furthermore, all FEC parity packet in an FEC pacetk block shall carry the same number of consecutive FEC parity payloads in the corresponding FEC parity block except the last FEC parity packet.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | MMT Packet header |
 +-+
 | FEC in-band signals ... |
 +-+
| payload data |...
 +-+
Figure 21 — FEC Parity Packet Format
6.5.5 FEC Signaling

6.5.5.1 Introduction

This sub-clause specifies two kinds of FEC signaling method. One is FEC in-band signaling and the other is FEC out-of-band signaling.

FEC in-band signaling means that FEC related information such as signaling message for FEC and MMT FEC payload ID is communicated between sending entity and receiving entity by using MMT Protocol.

FEC out-of-band signaling means that FEC related information such as signaling message for FEC and MMT FEC payload ID is communicated between sending entity and receiving entity by not using MMT Protocol, e.g., RTP. In this specification, FEC out-of-band signaling is not defined.
6.5.5.2 FEC In-Band Signaling
This sub-clause specifies in-band signaling mechanism for AL-FEC including MMT FEC payload ID and signaling message for FEC.

FEC in-band signal includes MMT FEC payload ID which is indicated inside of FEC packet block and signaling message for FEC.
An MMT FEC payload ID can be varied by every FEC packet, and it shall be delivered inside of FEC packet block. The signaling message for FEC is delivered in the same manner with signaling message.
A type field in MMT payload shall indicate whether the FEC packet is FEC source packet or FEC parity packet. In case of the Case 3 - two stage coding structure - is applied, this field shall indicate whether the associated FEC packet is FEC source packet, FEC parity 1 packet or FEC parity 2 packet.
MMT FEC payload ID shall include information required to identify boundaries of different FEC blocks from an FEC protected flow and the ordered sequence of FEC source payloads and FEC parity payloads within an FEC block, to indicate FEC source block length, to indicate FEC parity block length.

FEC source block length field shall identify the number of FEC information payloads in the associated FEC information block or FEC information sub-block for ibg_mode0 and ibg_mode1 and shall identify the number of FEC information sub-payloads in the associated FEC information block or FEC information sub-block for ibg_mode2.

FEC parity block length field shall identify the number of FEC parity payloads in the associated FEC parity block.

Signaling message for FEC is specified in sub-clause 8.4.3.
7 MMT Cross Layer Interface (CLI)
7.1 Introduction
MMT Cross Layer Interface provides the means in single entity to support QoS by exchanging QoS-related information between application layer and underlying layers including MAC/PHY layer. Application layer provides information about media characteristics as top-down QoS information while underlying layers provides bottom-up QoS information such as network channel condition.
CLI provides the unified interface between application layer and various network layers including IEE802.11 WiFi, IEEE 802.16 WiMAX, 3G, 4G LTE, etc. Common network parameters of popular network standards are abstracted as the NAM parameters for static and dynamic QoS control of real-time media application through any network.
7.2 Cross Layer Information

7.2.1 Top-down QoS information
Application layer provides top-down QoS information about media characteristics to underlying layers. There are two kinds of top-down information such as MMT Asset level information and packet level information. MMT Asset information is used for capability exchange and/or (re)allocation of resources in underlying layers. Packet level top-down information is written in appropriate field of every packet for underlying layers to indentify QoS level to support.
7.2.2 Bottom-up QoS information
The underlying layers provide bottom-up QoS information to the application layer. The underlying layers provides information about time-varying network condition which enables faster and more accurate QoS control in the application layer. Bottom-up information is represented as an abstracted fashion to support heterogeneous network environments. These parameters are measured in the underlying layers and read by the application layer, periodically or on request of the MMT application.
7.2.3 Syntax
The syntax of absolute parameters for NAM is shown in Table 17.
Table 17 — Absolute NAM structure
	Syntax
	size (bits)
	Type

	Network Abstraction for Media information {
	
	

	CLI_id
	8
	unsigned integer

	available_bitrate
	32
	float

	buffer_fullness
	32
	float

	peak_bitrate
	32
	float

	current_delay
	32
	float

	SDU_size
	32
	unsigned integer

	SDU _loss_ratio
	8
	unsigned integer

	generation_time
	32
	float

	BER
	32
	float

	}
	
	

The syntax of relative parameters for NAM is shown in Table 18.
Table 18 — Relative NAM structure
	Syntax
	size (bits)
	Type

	relative_difference Network Abstraction for Media information () {
	
	

	CLI_id
	8
	unsigned integer

	relative_bitrate
	8
	float

	relative_buffer_fullness
	8
	float

	relative_peak_bitrate
	8
	float

	current_delay
	32
	float

	generation_time
	32
	float

	BER
	32
	float

	}
	
	

7.2.4 Semantics
CLI_id - The CLI_id is an arbitrary integer number to identify this NAM among the underlying network.
available_bitrate - the available_bitrate is bitrate that the scheduler of the underlying network can guarantee to the MMT stream. The available_bitrate is expressed in kilobits per second. Overhead for the protocols of the underlying network is not included.

buffer_fullness - the buffer is used to absorb excess bitrate higher than the available_bitrate. The buffer_fullness is expressed in bytes.
peak_bitrate - the peak_bitrate is maximum allowable bitrate that the underlying network can assign to the MMT stream. The peak_bitrate is expressed in kilobits per second. Overhead for the protocols of the underlying network is not included.
current_delay - the current_delay parameter indicates the last hop transport delay. The current_delay expressed in milliseconds.
SDU_size - SDU (Service Data Unit) is data unit in which the underlying network delivers the MMT data. The SDU_size specifies the length of the SDU and is expressed in bits. Overhead for the protocols of the underlying network is not included.
SDU_loss_rate - The SDU_loss_ratio is fraction of SDUs lost or detected as errorneous. Loss ratio of MMT packets can be calculated as a function of SDU_loss_ratio and SDU_size. The SDU_loss_ratio is expressed in percentile.
generation_time - The time when the parameters are generated. The generation_time is expressed in milliseconds.
relative_bitrate - the available_bitrate change ratio(%) between the current NAM and the previous NAM information.
relative_buffert_fullness - the remaing buffer_fullness change ratio(%) between the current NAM and the previous NAM information.
relative_peak_bitrate - the peak_bitrate change ratio(%) between the current NAM and the previous NAM information.
BER - Bit Error Rate obtained from PHY or MAC layer. For BER from PHY layer, this value present as a positive value. For BER from MAC layer, this value present as a negative value which can be used as an absolute value.
8 MMT Signaling
8.1 Introduction
MMT Signaling defines the set of message formats to be used to provide the information for coded media consumption and delivery. The delivery of signaling message format is done by the various methods such as using SDP, SIP or MMT Protocol.

Five messages are defined for coded media consumption;

· Package Access (PA) message: It includes all tables required for MMT Package acess including MMT Package Table and MMT-CI Table;
· MMT Composition Information (MCI) message: It includes MCI Table encapsulating a complete MMT-CI or a subset of MMT-CI. It may also include MPT corresponding MCI table for fast MMT Package consumption;
· MMT Package Table (MPT) message : It includes MMT Package Table providing a whole information or a part of information required for a single MMT Package consumption;
· Clock Relation Information (CRI) message: it includes CRI Table providing the clock relation information used for the mapping between the NPT Clock and MPEG-2 System Time Clock;
· Device Capability Information (DCI) message: it includes DCI table providing the required (or recommended) device capability information for an MMT Package consumption.
Five messages are defined for coded media delivery;
· Measurement Configuration(MC) message: it provides information to configure a measurement;
· Application Layer Forward Error Correction (AL-FEC) message: it provides AL FEC configuration information;
· Hypothetical Receiver Buffer Model(HRBM) message: it provides information to configure HRBM operation;
· Automatic Repeat-Request(ARQ) messaget: It provides information required for ARQ operation;
· Reception Quality Feedback (RQF) message: It defines a format of measurement report from a receiving entity.
8.2 MMT Signaling Message
8.2.1 Introduction
MMT Signaling message uses general signaling message format consisting of 3 common fields, one specific field for each signaling message, and a payload. Payload carries MMT signaling table.,
The syntax and semantics of general signaling message format is given at 8.2.2 and 8.2.3 respectively.
8.2.2 Syntax
Syntax of general signaling message format is given at Table 19.

Table 19 — Syntax for general signaling message
	Syntax
	Value
	No. of bits
	Format

	Signaling_Message () {
message_id

version

length

extension_fields {

}

payload {

}

}
	
	16

8

16 or 32

	uimsbf

uimsbf

uimsbf

8.2.3 Semantics
message_id - It indicates a type of MMT Signaling message. Each MMT Signaling message has the unique value given at table 18.
version - It indicates the version of MMT Signaing message. MMT receiving entity can verify whether the received MMT Signaling message is updated or not
length - It indicates the length of MMT Signaling message. 2 bytes is the value for all MMT Signaing message except MCI message. Due to an amount of MMT-CI, MCI has 4 bytes as the value for length.
extension_fields - It provides specific information for each MMT Signaling message. The content and lengh of this field is specified per MMT Signaling message format.
8.3 Message for Consumption
8.3.1 Introduction
Signaling messages are used to deliver information for MMT Package consumption. MMT Signaling messages are composed of MMT signaling tables. Each MMT signaling table carries information about a sepcifc aspect of MMT Package such as MMT Package structure, MMT-CI or Clock. MMT Signaling message can aggregate multiple tables for the efficient information provision. For example, MCI message delivers MCI only or MCI and a corresponding MPT. The relation between a message and a table is shown at Figure 22.

PA messages shall carry PA table, MPT, MCI table and DCI table. PA message may carry CRI table. MCI message shall carry MCI table and may carry MPT. MPT message shall carry MPT. CRI message shall carry CRI table. DCI message shall carry DCI table. MCI message and MPT message can be split into multiple layers.

Some MMT signaling tables shares the same structure of information. For the efficient provision of those information, two descriptors are defined. They are Clock Relation Information descriptor and MMT_general_location_info descriptor.
[image: image20.png]-

~

PA message

PA Table

MCI Table (Layer 0) *

MPT (Layer 0)

MCI message (Layer 0)

~

*
____________ .
CRI Table 1
e - il
K DCI Table */
Legend
[m=— ===
Mandatory L Optional
* Only one place out of the multiple

locations for the same table

MCI Table (Layer 0) * MPT message (Layer 0)
MPT (Layer 0) MPT (Layer 0)
J J/
MCI message (Layer N) \ MPT message (Layer N) h
MCI Table (Layer N) * MPT (Layer N) *
- J
MPT (Layer N)
s
J
CRI message h DCI message
CRI Table DCI Table *
J/

Figure 22 — Structure of the MMT Signaling Messages and Tables
8.3.2 Package Access (PA) Message
8.3.2.1 Introduction
An Package Access (PA) message carries an PA table, which has the the information on all other signaling tables for a MMT Package. PA message also carries an MMT Composition Information (MCI) table and an MMT Package Table (MPT) for the fast consumption of MMT Package.

An MMT receving entity shall process the PA message before it processes any other messages.
8.3.2.2 Syntax
The syntax of the PA message is defined in and the semantics of its syntax elements are provided in Table 20. The loop count which is not indicated in the “value” column may be deduced from the length of the table.

Table 20 — PA Message Syntax
	Syntax
	Value
	No. of bits
	Format

	PA_message () {
message_id
version
length
extension_fields {

number_of_tables

for (i=0; i<N1; i++) {

table_id

table_version
table_length

}

}

payload {

for (i=0; i<N1; i++) {

table()

}

}

}
	N1

	16
8
16
8
8
8
16

	uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

8.3.2.3 Semantics
message_id - It indicates the type of MMT Signaling messages.
version - It indicates the version of MMT Signaling messages.
length - It indicates the length of MMT signaling messages. The length of this field is 16 bits. It indicates the length of the PA message counted in bytes starting from the next field to the last byte of the PA message. The value ‘0’ is never used for this field.
number_of_tables - It indicates the number of tables included in this PA message.
table_id - It indicates the table identifier of the table included in this PA message. It is a copy of the table_id field in the table included in the payload of this PA message.

table_version - It indicates the version of the table included in this PA message. It is a copy of the version field in the table included in the payload of this PA message.

table_length - It indicates the length of the table included in this PA message. It is a copy of the length field in the table included in the payload of this PA message. The actual length of the table is table_length + 5.

table() - It indicates an MMT signaling table instance. The tables in the payload appear in the same order as the table_ids in the extension field. An PA table shall be an instance for table().

8.3.3 MMT Composition Information (MCI) Message
8.3.3.1 Introduction
MMT Composition Information (MCI) message delivers a complete MMT-CI or a subset of MMT-CI. MCI message uses MCI table for encapsulating MMT-CI.

When a subset of MMT-CI is used, MMT-CI is partitioned into multiple MCI tables. MCI tables for a subset of MMT-CI shall have different table identifiers (table_ids). The table_id values of MCI tables for subset of MMT-CI are allocated in a contiguous space in the same increasing order. The MCI table having the lowest table_id value provides the base MMT-CI amongst the subset of MMT-CI and other MCI tables for the remaining subset of MMT-CI have different table_id value. The maximum number of MCI Table for a subset of MMT-CI is 16.
Each MCI message carrying a subset of MMT-CI may have different transmission period and include the MMT Package Table (MPT) associated with the MMT-CI that the MCI message carries.
8.3.3.2 Syntax
The syntax of the MCI message is defined in Table 21 and the semantics of its syntax elements are provided below Table 21.

Table 21 — MCI Message Syntax
	Syntax
	Value
	No. of bits
	Format

	MCI_message () {
message_id

version

length

extension_fields {

reserved

associated_MPT_flag

}

payload {

MCI_table()

if (associated_MPT_flag) {

MPT_table()

}

}

}
	N1

‘111 1111’

	16

8

16

7

1

	uimsbf

uimsbf

uimsbf

uimsbf

bslbf

8.3.3.3 Semantics
message_id: It indicates MCI message ID. The length of this field is 16 bits.

version: It indicates the version of MCI Message. The length of this field is 8 bits.
length: It indicates the length of the MCI message counted in bytes starting from the next field to the last byte of the MCI message. The value ‘0’ is never used for this field. The length of this field is 16 bits.
associated_MPT_flag: If this flag is set to ‘1’, it indicates MCI message also carries MPT related to a MMT-CI carried in the MCI message. The simultaneous delivery of MCI table and MPT for the same layer in an MCI message helps a MMT receiving entity reduce the time for MMT Package consumption signaling acquisition.

MCI_table(): an MCI table defined in 8.3.8.

MPT_table(): an MPT defined in 8.3.9.

8.3.4 MPT (MMT Package Table) Message
8.3.4.1 Introduction
The MMT signaling message carries an MMT Package Table (MPT).Each layered MPTs can be delivered by a different MPT messages.

MMT Package Table (MPT) provides the information for a single MMT Package. For layered delivery of an MMT Package having a layered MMT-CI, an MPT can be split into multiple layered MPTs. The Layer-0 MPT is the base MPT. MPTs at different layers shall have different table identifiers (table_ids). We assign 8 contiguously different values for MPT table_id so that we can have upto 15 layers of MPT with 1 table_id (the greatest number among the 16) assigned for a complete MPT. The smaller value of MPT table_id implies that the MPT layer is nearer to the base MPT.
An MPT may be included in an PA message with other tables for the efficient operation of signaling acquisition.

8.3.4.2 Syntax

The syntax of the MPT message is defined in Table 22 and the semantics of its syntax elements are provided below Table 22. An MPT message carries only one complete MPT or one Layer-N MPT.

Table 22 — MPT Message Syntax

	Syntax
	Value
	No. of bits
	Format

	MPT_message () {
message_id

version

length

extension_fields {

}

payload {

MPT()

}

}
	
	16

8

16

	uimsbf

uimsbf

uimsbf

8.3.4.3 Semantics

message_id - It indicates the ID of MPT Message. The length of this field is 16 bits.
version - It indicates the version of MPT message. MMT receiving entity can check whether the received message is new or not.

length - It indicates the length of the MPT message. The length of this field is 16 bits. It indicates the length of the MPT message counted in bytes starting from the next field to the last byte of the MPT message. The value ‘0’ is never used for this field.

MPT()- MPT defined in 8.3.9
8.3.5 Clock Relation Information (CRI) Message
8.3.5.1 Introduction
This optional message carries clock relation information to be used for mapping between the NTP timestamp and MPEG-2 System Time Clock (STC).
To achieve synchronization between the MMT Assets that uses NTP timestamps and the MPEG-2 ES that uses MPEG-2 Presentation Time Stamp (PTS), it is necessary to inform the relationship between the NTP timestamp and the MPEG-2 STC to an MMT receiving entity by periodically delivering values of the NTP_timestampe_sample and the STC_sample at the same time points. If more than one MPEG-2 ES with different MPEG-2 STCs are used, more than one CRI descriptors are delivered.

8.3.5.2 Syntax
The syntax of the CRI message is defined in Table 23 and the semantics of its syntax elements are provided below Table 23.

Table 23 — CRI Message Syntax

	Syntax
	Value
	No. of bits
	Format

	CRI_message () {
message_id

version

length

extension_fields {

}

payload {

CRI_table()

}

}
	
	16

8

16

	uimsbf

uimsbf

uimsbf

8.3.5.3 Semantics
message_id - It indicates the type of CRI messages. The length of this field is 16 bits.
version - It indicates the version of CRI messages. MMT receiving entity can check whether the received message is new or not. The length of this field is 8 bits.
length - It indicates the length of the CRI message counted in bytes starting from the next field to the last byte of the CRI message. The value ‘0’ is never used for this field. The length of this field is 16 bits.
CRI_table()- A CRI table defined in 8.3.10.

8.3.6 DCI (Device Capability Information) Message
8.3.6.1 Introduction
The DCI message delivers the Device Capability Information (DCI) table that provides the required device capabilities for the MMT Package consumption.

8.3.6.2 Syntax

The syntax of the DCI message is defined in Table 24 and the semantics of its syntax elements are provided below Table 24.

Table 24 — DCI Message Syntax

	Syntax
	Value
	No. of bits
	Format

	DCI_message () {
message_id

version

length

extension_fields {

}

payload {

DCI_table()

}

}
	
	16

8

16

	uimsbf

uimsbf

uimsbf

8.3.6.3 Semantics
message_id - It indicates DCI messages. The length of this field is 16 bits.
version - It indicates the version of DCI messages. MMT receiving entity can check whether the received message is new or not. The length of this field is 8 bits.
length - It indicates the length of the DCI message counted in bytes starting from the next field to the last byte of the DCI message. The value ‘0’ is never used for this field.

DCI_table()- It provided the required device capabilities for the MMT Package consumption. It is defined in 8.3.11.

8.3.7 PA Table
8.3.7.1 Introduction

A PA table provides the information on all other signaling tables for a MMT Package consumption.
8.3.7.2 Syntax
The syntax of the PA table is defined in Table 25 and the semantics of its syntax elements are provided below Table 25.
Table 25 — PA Syntax
	Syntax
	Value
	No. of bits
	Format

	PA () {
table_id

version

length
information_table_info {

number_of_tables

for (i=0; i<N1; i++) {

information_table_id

information_table_version

location {

MMT_general_location_info()

}

reserved

second_location_flag

if (second_location_flag == 1) {

second_location {

MMT_general_location_info()

}

}

}

}

reserved

private_extension_flag

if (private_extension_flag == 1)

private_extension {

}

}

}
	N1

‘1111 11’
‘1111 111’

	8

8

16

8

8

8

6

1

7

1

	uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf

bslbf

bslbf

bslbf

8.3.7.3 Semantics
table_id - indicates the identification of PA table.

version - It indicates Version of the PA table. The newer version overrides the older one as soon as it has been received.
length: It indicates the length of the PA table counted in bytes starting from the next field to the last byte of the PA table. The value ‘0’ is never used for this field.

number_of_tables - It indicates the number of information tables whose information is provided in this PA table.

information_table_id - It indicates the ID of information table whose information is provided in this PA table. The table_id of PA table never appear here.

information_table_version - It indicates the version of the information table whose information is provided in this PA table.

MMT_general_location_info - It provides the location of the information table whose information is provided in this PA table. MMT_general_location_info is defined in Table 32.

second_location_flag - If this flag is set “1”, an alternative address where a MMT receiving entity gets the information table is provided.

MMT_general_location_info_for_second_location - It provides the information of an alternative address where a MMT receiving entity gets the information table. Only location_type from 0x07 to 0x0B shall be used in MMT_general_location_info for second location.

private_extension_flag - If this flag is ‘1’, the private extension is present.

private_extension - A syntax element group serving as a container for proprietary or application-specific extensions.

8.3.8 MCI Table
8.3.8.1 Introduction
An MCI table carries complete MMT-CI or subset of MMT-CI, which is a part of complete MMT-CI. In case of subset of MMT-CI, an MCI table for each subset is delivered in a separate message.
8.3.8.2 Syntax
The syntax of the MCI table is defined in Table 26 and the semantics of its syntax elements are provided below Table 26.
Table 26 — MCI Table Syntax

	Syntax
	Value
	No. of bits
	Format

	MCI_table () {
table_id
version
length

reserved

CI_mode
for (i=0; i<N1-1; i++) {

CI_byte

}

}
	N1
‘111 1111’

	8

8
16
7

1

8

	uimsbf

uimsbf

uimsbf

bslbf

bslbf

uimsbf

8.3.8.3 Semantics
table_id - It indicates the identifier of the MCI table. A complete MMT-CI and each layer of subset of MMT-CI shall have distinct table identifiers. Thus order of subset of MMT-CI layer number can be implicitly represented by this field. Since the table_id values are assigned contiguously, the MMT-CI layer number can be deduced from this field, i.e., the MMT-CI layer number equals this field minus the table_id of the base MCI table. The number 0 indicates base MMT-CI and the numbers 1~14 indicate subset of MMT-CI. The number 15 has a special meaning since it indicates a complete MMT-CI.

version - It indicates Version of the MCI table. The newer version overrides the older one as soon as it has been received if table_id indicates a complete MCI, if Layer-0 MCI has the same version value as this field (when CI_mode is ‘1’), or if all lower-layer MCIs have the same version value as this field (when CI_mode is ‘0’). If Layer-0 MCI table has a newer version, all enhancement-layer MMT-CIs previously stored within a MMT receiving entity are treated as outdated. When the MMT-CI layer number is not 0 and CI_mode is ‘1’, the contents of the MCI table with version different from that of Layer-0 MMT-CI stored in a MMT receiving entity shall be ignored. Also when the MMT-CI layer number is not 0 and CI_mode is ‘0’, the contents of the MCI table with version different from that of lower-layer MMT-CIs stored in a MMT receiving entity shall be ignored. It shall be modulo-256 incremented per version change.

length - It indicates the length of the MCI table counted in bytes starting from the next field to the last byte of the MCI table. The value ‘0’ is never used for this field.
CI_mode - It indicates the mode of a layered MMT-CI processing.
Table 27 — value of CI_mode
	Value
	Description

	0
	“sequential_order_processing_mode”

	0x0010
	“order_irrelevant_processing_mode”

In “sequential_order_processing_mode” and with the layer number of this MMT-CI non-zero, a MMT receiving entity shall receive all lower-layer MMT-CIs with the same version as this MMT-CI before it processes this MMT-CI. In other words, a MMT receiving entity can’t process Layer-3 MMT-CI if it doesn’t have Layer-2 MMT-CI with the same version.
In “order_irrelevant_processing_mode” and with the layer number of this MMT-CI non-zero, a MMT receiving entity should process a MMT-CI right after it receives the MMT-CI as long as the Layer-0 MMT-CI stored in a MMT receiving entity has the same version as this MMT-CI.

CI_byte - A byte in MMT-CI.

8.3.9 MP Table
8.3.9.1 Introduction

A complete MP Table (MPT) has the information related to an MMT Package including the list of all MMT Assets. The layered MPT has a part of information from the complete MPT. In addition, layer0 MPT has the minimum information required for MMT Package comsumption.
8.3.9.2 Syntax
The syntax of the MPT is defined in Table 28 and the semantics of its syntax elements are provided below Table 28.
Table 28 — MPT Syntax

	Syntax
	Value
	No. of bits
	Format

	MPT() {
table_id
version
length

If (table_id == LAYER_0_MPT_TABLE_ID) {

MMT_package_id {

MMT_package_id_length

for (i=0; i<N1; i++) {
MMT_package_id_byte
}

}

}
MPT_descriptors {

MPT_descriptors_length
for (i=0; i<N2; i++) {

MPT_descriptors_byte

}

}

}
number_of_assets
for (i=0; i<N3; i++) {

asset_id {

asset_id_length

for (j=0; j<N4; j++) {

asset_id_byte

}

}
reserved
asset_clock_relation_flag
if (asset_clock_relation_flag == 1) {
asset_clock_relation_id

reserved

asset_timescale_flag
if (asset_time_scale_flag == 1) {
asset_timescale
}
}
asset_location {
MMT_general_location_info()
}

asset_descriptors {

asset_descriptors_length
for (j=0; j<N5; j++) {

asset_descriptors_byte

}
}
}
}
	N1
N2
N3
N4
‘1111 111’

‘1111 111’
N5

	8

8
16
8

8

16
8
8
8

8

7
1
8
7
1

32
16
8

	uimsbf

uimsbf

uimsbf

uimsbf

uimsbf
uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf
bslbf
uimsbf

bslbf
bslbf
uimsbf

uimsbf

uimsbf

8.3.9.3 Semantics
table_id - It indicates ID of the MPT. A complete MPT and each Layered MPTs shall use the different table identifiers. Thus MPT layer number is implicitly represented by this field. Since the table_id values are assigned contiguously, the MPT layer number can be deduced from this field, i.e., the MPT layer number equals this field minus the table_id of the base MPT. The MPT layer number provides the layer number of this MPT. The number 0 indicates base MPT and the numbers 1~14 indicate layered MPT. The number 15 has a special meaning since it indicates a complete MPT.

version - it is the version of the MPT. If MPT layering is employed, this field indicates the version of the Layer-N MPT. The newer version of a complete or a Layer-0 MPT overrides the older one as soon as it has been received. If Layer-0 MPT has a newer version, all enhancement-layer MPTs previously stored within a MMT receiving entity are treated as outdated. The newer version of Layer-N MPT where N is 1~14 overrides the older one only if the version is the same as that of the current Layer-0 MPT. Otherwise the received MPT is ignored.

length - The length of the MPT counted in bytes starting from the next field to the last byte of the MPT table. The value ‘0’ is never used for this field.

MMT_package_id - A globally unique identifier of the MMT Package.

MMT_package_id_length - The length in bytes of the MMT_package_id is string excluding the terminating null character

MMT_package_id_byte - A byte in the MMT_package_id is string. The terminating null character is not included in the string.
MPT_descriptors - It provides descriptors for MPT.

MPT_descriptors_length - The length of the descriptor syntax is loop. The length is counted from the next field to the end of the descriptor syntax loop. Several descriptors can be inserted in this syntax loop. For example, additional_package_information_URL descriptor can be included here, which provides the URL of package information web page for this package.

MPT_descriptors_byte - one byte in the descriptors loop.

number_of_assets - It provides the number of MMT Assets whose information is provided by this MPT.

asset_id - It provides MMT Asset identifier. An asset_id is an ASCII string without the terminating null character that is equal to one of the id attributes of the AI elements in MMT-CI.
asset_id_length - It provides the length in bytes of the asset_id.

asset_id_byte - A byte in the asset_id.

asset_clock_relation_flag - It indicates whether an MMT Asset uses NTP clock or other clock system as the clock reference. If this flag is ‘1’, asset_clock_relation_id field is included. If this field is ‘0’, the NTP clock is used for the MMT Asset.
asset_clock_relation_id - It provides a clock relation identifier for the MMT Asset. This field is used to reference the clock relation delivered by a CRI_descriptor() for the MMT Asset. The value of this field is one of the clock_relation_id values provided by the CRI descriptors. (see sub-clause 8.3.12.1)
asset_timescale_flag - It indicates whether “asset_timescale” information is provided or not. If this flag is ‘1’, asset_timescale field is included and if this flag is set to ‘0’, asset_timescale is 90,000 (90kHz).
asset_timescale - It provides information of time unit for all timestamps used for the MMT Asset expressed in the number of units in one second.

MMT_general_location_info_for_asset_location - It provides the location information of MMT Asset. General location reference information for MMT Asset defined in 8.3.12.2 is used. Only location_type (‘0x00~0x06’) shall be used for an MMT Asset location.

asset_descriptors_length: The number of bytes counted from the next field to the end of the MMT Asset descriptors syntax loop.

asset_descriptors_byte: A byte in MMT Asset descriptors.
8.3.10 CRI Table
8.3.10.1 Introduction

The Clock Relation Information (CRI) table defined in Table 29 is delivered by the CRI message. Also, it may be delivered by a PA message.
8.3.10.2 Syntax
The syntax of the CRI table is defined in Table 29 and the semantics of its syntax elements are provided below Table 29.

A CRI table may include multiple CRI descriptors. (see sub-clause 8.3.12.1).
Table 29 — CRI Table Syntax

	Syntax
	Value
	No. of bits
	Format

	CRI_table () {
table_id

version

length

for (i=0; i<N; i++) {

CRI_descriptor()
}

}
	
	8

8

16

152

	uimsbf

uimsbf

uimsbf

uimsbf

8.3.10.3 Semantics
table_id - It indicates table identifier of the CRI table.

version - It indicates version of the CRI table. The newer version overrides the older one as soon as it has been received.
length - It indicates the length of the CRI table counted in bytes starting from the next field to the last byte of the CRI table. The value ‘0’ is never used for this field. This value shall be multiple of 19bytes.
CRI_descriptor() - A clock relation information (CRI) descriptor. It is defined in 8.3.12.1.
8.3.11 DCI Table

8.3.11.1 Introduction
The Device Capability Information (DCI) presents the required device capabilities for the consumption of the MMT Package.
8.3.11.2 Syntax
The syntax and semantics of the DCI table is defined in Table 30.
Table 30 — DCI Table Syntax

	Syntax
	Value
	No. of bits
	Format

	DCI_table() {
table_id

version

length

number_of_assets

for (i=0; i<N1; i++) {

asset_id {

asset_id_length

for (j=0; j<N2; j++) {

asset_id_byte

}

}

mime_type

reserved

codec_complexity_flag

if (codec_complexity_flag == 1) {

if (mime_type == VIDEO_MIME_TYPE) {
video_codec_complexity {

video_average_bitrate

video_maximum_bitrate

horizontal_resolution

vertical_resolution

temporal_resolution

video_minimum_buffer_size

}

} else if (mime_type == AUDIO_MIME_TYPE) {
audio_codec_complexity {

audio_average_bitrate

audio_maximum_bitrte

audio_minimum_buffer_size

}

}

}

if (mime_type == DOWNLOAD_MIME_TYPE) {
download_capability {

required_storage

}

}

}

}
	N1

N2

‘111 1111’

	8

8

16

8

8

4*8

7

1

16

16

16

16

8

16

16

16

16

32

	uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf

bslbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

8.3.11.3 Semantics
table_id - It indicates ID of DCI table.

version - It indicates a version of DCI table. The newer version overrides the older one as soon as it has been received.
length - It provides the length of DCI table counted in bytes starting from the next field to the last byte of the DCI table. The value ‘0’ is never used for this field.

number_of_assets - It indicates the number of MMT Assets.

asset_id - It provides ID of MMT Asset. It is the id attribute of AI element in MMT-CI. (see sub-clause 5.4.5.2)
mime_type - It provides the MIME type of the MMT Asset. . If the value of codec complexity in mime_type is different from the value of codec complexity provided by DCI table, then the value from DCI table shall take priority.
codec_complexity_flag - If this flag is ‘1’, it provides the codec complexity.
video_codec_complexity - It provides the complexity the video decoder has to deal with.
video_average_bitrate - It provides the average bit-rate of the video in kilo-bit/s.

video_maximum_bitrate - It provides the maximum bit-rate of the video in kilo-bit/s.

horizontal_resolution - It provides the horizontal resolution of the video in pixels.
vertical_resolution - It provides the vertical resolution of the video in pixels.
temporal_resolution - It provides the temporal resolution of the video in frames per second.
video_mimimum_buffer_size - It provides the minimum size of video decoder buffer needs to be processed in kilo-bytes.
audio_codec_complexity - The complexity the audio decoder has to deal with.
audio_average_bitrate - It provides the average bit-rate in kilo-bit/s.

audio_maximum_bitrate - It provides the maximum bit-rate in kilo-bit/s.

audio_minimum_buffer_size - It provides the minimum size of audio decoder buffer needs to be processed in kilo-bytes.
download_capability - It provides the required capability for download.

required_storage - It provides the size of storage in kilo-bytes required to download.
8.3.12 Descriptors
There are descriptor and information related to MMT table.

8.3.12.1 Clock Relation Information (CRI) Descriptor
8.3.12.1.1 Introduction
Clock Relation Information (CRI) descriptor is used to specify the relationship between the NTP timestamp and the MPEG-2 STC. The value of clock reference related with the MMT Asset derived from the MPEG-2 TS is specified by a clock_relation_id.

CRI_descriptors are carried in a Clock Relation Information (CRI) table.
8.3.12.1.2 Syntax

The syntax of CRI_descriptor() is defined in Table 31 and the semantics of its syntax elements are provided below Table 31.

Table 31 — CRI_descriptor() Syntax
	Syntax
	Value
	No. of bits
	Format

	CRI_descriptor() {
descriptor_tag

descriptor_length

clock_relation_id

reserved

STC_sample

NTP_timestamp_sample

}
	’11 1111’

	16

16

8

6

42

64

	uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

8.3.12.1.3 semantics
descriptor_tag - A tag value indicating the type of a descriptor.
descriptor_length - The length in bytes counted from the next byte after this field to the last byte of the descriptor.
clock_relation_id - The identifier of a clock relation.

STC_sample - The MPEG-2 STC value that corresponds to the following NTP_timestamp_sample. The sample value of STC is in 42-bit format.
NTP_timestamp_sample - The sample value of NTP timestamp that corresponds to the preceding STC_sample.

8.3.12.2 MMT_general_location_info
8.3.12.2.1 Syntax
An MMT_general_location_info is used to provide location information. The syntax of the MMT_general_location_info is defined in Table 32 and the semantics of its syntax elements are provided below Table 32 .

Table 32 — MMT_general_location_info Syntax

	Syntax
	Value
	No. of bits
	Format

	MMT_general_location_info() {
location_type
if (location_type == 0x00) {
packet_ id
} else if (location_type == 0x01) {
ipv4_src_addr
ipv4_dst_addr
dst_port
packet_ id
} else if (location_type == 0x02) {
ipv6_src_addr
ipv6_dst_addr
dst_port
packet_ id
} else if (location_type == 0x03 || location_type == 0x04) {
network_id
MPEG_2_transport_stream_id
reserved
MPEG_2_PID
} else if (location_type == ‘0x05’) {
URL_length
for (i=0; i<N1; i++) {
URL_byte
}
} else if (location_type == ‘0x06’) {
URL_length
for (i=0; i<N2; i++) {
URL_byte
}
byte_offset
length

} else if (location_type == ‘0x07’) {
} else if (location_type == ‘0x08’) {

message_id

} else if (location_type == ‘0x09’) {

packet_ id

message_id

} else if (location_type == ‘0x0A’) {

ipv4_src_addr
ipv4_dst_addr
dst_port

packet_ id

message_id

} else if (location_type == ‘0x0B’) {

ipv6_src_addr
ipv6_dst_addr
dst_port

packet_ id

message_id

}
}
	‘111’

N1
N2

	8
16
32
32
16
16
128
128
16
16
16
16
3
13
8
8
8
8
16
16
8

16

8

32

32

16

16

8

128
128
16

16

8

	uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf
uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

8.3.12.2.2 Semantics
location_type - This field indicates the type of the location information as defined in Table 33.

Table 33 — Value of location_type

	Value
	Description

	0x00
	A data path in the same UDP/IP flow as the one that carries the data structure to which this MMT_general_location_info() belongs

	0x01
	A data path in a UDP/IP (version 4) flow

	0x02
	A data path in a UDP/IP (version 6) flow

	0x03
	A program within an MPEG-2 TS in a broadcast network. The program is indicated by a PMT PID is described in ISO/IEC 13818-1.

	0x04
	An elementary stream (ES) in an MPEG-2 TS over the IP broadcast network

	0x05
	URL

	0x06
	A byte range in the file addressed by a URL

	0x07
	The same MMT signaling message as the one that carries the data structure to which this MMT_general_location_info() belongs

	0x08
	An MMT signaling message delivered in the same data path as the one that carries the data structure to which this MMT_general_location_info() belongs

	0x09
	An MMT signaling message delivered in a data path in the same UDP/IP flow as the one that carries the data structure to which this MMT_general_location_info() belongs

	0x0A
	An MMT signaling message delivered in a data path in a UDP/IP (version 4) flow

	0x0B
	An MMT signaling message delivered in a data path in a UDP/IP (version 6) flow

	0x0C~0xFF
	reserved

packet_id - packet_id in MMT packet header. (see sub-clause 6.3)
ipv4_src_addr - IP version 4 source address of an IP application data flow.
ipv4_dst_addr - IP version 4 destination address of an IP application data flow.

dst_port - Destination port number of an IP application data flow.
ipv6_src_addr - IP version 6 source address of an IP application data flow.
ipv6_dst_addr - IP version 6 destination address of an IP application data flow.

network_id - broadcast network identifier that carries the MPEG-2 TS.
MPEG_2_transport_stream_id - MPEG-2 TS identifier.

MPEG_2_PID - PID of MPEG-2 TS packet carrying the ES.

URL_length - Length in bytes of a URL. The terminating null (0x00) shall not be counted.

URL_byte - A byte data in a URL. The terminating null (0x00) shall not be included.

byte_offset - A byte offset from the first byte of a file.

length - The length in bytes.

message_id - MMT signaling message identifier. (see below Table 34)
8.3.13 ID and Tags values
The values of the message identifier (message_id) are assigned in Table 34.
Table 34 — Message Identifier (message_id) Values
	Value
	Description

	0x0000 ~ 0x00FF
	reserved

	0x0100
	PA messages

	0x0500 ~ 0x44FF
	MCI messages.

For a package, 16 contiguous values are allocated to MCI messages.

If the value % 16 equals 15, the MCI message carries complete MMT-CI.

If the value %16 equals N where N = 0 ~ 14, the MCI message carries Layer-N MMT-CI.

	0x2500 ~ 0x84FF
	MPT messages.

For a package, 16 contiguous values are allocated to MPT messages.

If the value % 16 equals 15, the MPT message carries complete MPT.

If the value %16 equals N where N = 0 ~ 14, the MPT message carries Layer-N MPT.

	0x4500
	CRI messages

	0x4900
	DCI messages

	0x8D00 ~ 0xFFFF
	reserved

The values of the table identifier (table_id) are assigned in Table 35.
Table 35 — Table Identifier (table_id) Values
	Value
	Description

	0x00 ~ 0x0F
	reserved

	0x10
	PA table

	0x11 ~ 0x1F
	Layer-0 MCI table ~ Layer-15 MCI table

	0x20
	Complete MCI table

	0x21 ~0x30
	reserved

	0x31 ~ 0x3F
	Layer-0 MPT ~ Layer-15 MPT

	0x40
	Complete MPT

	0x41 ~ 0x50
	Reserved

	0x51
	CRI table

	0x52
	DCI table

	0x53 ~0xFF
	reserved

The values of descriptor tag are assigned in Table 36.
Table 36 — Descriptor Tag Values
	Value
	Description

	0x0000 ~ 0x000F
	reserved

	0x0010
	CRI descriptor

	0x0011
	MMT_gerneral_location_info

	0x0012 ~0xFFFF
	reserved.

8.4 Messages for Delivery
8.4.1 Introduction

The signaling messages for the coded media delivery are mesuarement configuration message, AL-FEC message, HRBM message, ARQ message, and reception quality feedback message.

8.4.2 Measurement Configuration Message
8.4.2.1 Introduction

An Measurement Configuration (MC) message provides the information required for an measurement. It provides the information of measurement item (e.g. a receiving entity buffer status, round trip delay), measurement condition such as a measurement starting time and a period and measurement report. Syntax of MC message is shown in Table 37 and semantics are follows.
8.4.2.2 Syntax
Table 37 — MC Message Syntax

	Syntax
	No. of bits
	Mnemonic

	Measurement_configuration (){
	
	

	message_id
	16
	

	version
	8
	

	length
	16
	

	extenion_fiels {
	
	

	 extension_fields_byte
	
	

	}
	
	

	payload{
	
	

	 measurement_item
	
	

	 measurement_execution time{
	
	

	 immediately
	
	

	 measurement_start_time
	
	

	 measurement_start_condition
	
	

	 }
	
	

	 measurement_period{
	
	

	 once
	
	

	 periodic_measure_time
	
	

	 measure_condition
	
	

	 }
	
	

	 measurement_report{
	
	

	 server_address
	
	

	 reception_quality_feedback()
	
	

	 }
	
	

	 }
	
	

	}
	
	

8.4.2.3 Semantics

message_id - It indicates MC message ID. The length of this field is 16 bits.
version - It indicates the version of MC messages. MMT receiving entity may check whether the received message is new or not. The length of this field is 8 bits.
length - It indicates the length of MC messages. The length of this field is 16 bits. It indicates the length of the MC message counted in bytes starting from the next field to the last byte of the MC message. The value ‘0’ shall not be used.
measurement_item - It indicates the item for measurement such as Round Trip Time (RTT) delay, receiving entity buffer status, inter-arrival jitter, propagation delay, packet loss ratio, and available bit-rate.
measurement_execution_time - It indicates when MMT receiving entity start measuring the item indicated by measurement_item. It has three modes. They are “immediatelay”, “measurement_start_time”, and “measurement_start_condition”.
Table 38 — value of measurement_execution_time
	Value
	Description

	immediately
	it indicates MMT receiving entity to start the measurement immediately.

	measurement_start_time
	it indicates MMT receiving entity to start the measurement at the time indicated by this field

	measurement_start_condition
	it indicates MMT receiving entity to start the measurement with a certain condition.

measurement_period - It indicates how frequently MMT receiving entity measures the item indicated by measurement_item. It has three modes. They are “once”, “periodic_measure_time”, and “measure_condition”.

Table 39 — value of measurement_period
	Value
	Description

	once
	it indicates MMT receiving entity to execute the measurement only once.

	periodic_measure_time
	it indicates MMT receiving entity to execute measurements periodically.

	measure_condition
	it indicates MMT receiving entity to execute the measurement with a certain condition.

measurement_report - it provides information on the measurement report. It has server address where MMT receiving entity sends a measurement result and a template to be used for measurement report.

server_address - it provides the location of server that receives an MMT measurement results.

reception_quality_feedback - as defined in 8.4.6
8.4.3 Application Layer Forward Error Correction (AL-FEC) Messages

8.4.3.1 Introduction

AL-FEC messages provides AL FEC configuration message for an MMT Asset. The syntax of AL-FEC message is shown in Table 40 and the semantics are follows.
8.4.3.2 Syntax
Table 40 — AL-FEC Message
	Syntax
	Values
	No. of bits
	Mnemonic

	AL_FEC (){
	
	
	

	 message_id
	
	16
	

	 version
	
	8
	

	 length
	
	16
	

	 extension_fields{
	
	
	

	 extension_fields_Byte
	
	
	

	}
	
	
	

	payload{
	
	
	

	fec_flag
	
	1
	

	reserved
	
	7
	

	if (fec_flag==1) {
	
	
	

	length_of_fec_flow_descriptor
	
	16
	

	fec_flow_descriptor() {
	
	
	

	number_of_fec_flows
	N1
	8
	

	for i=1 to N1 {
	
	
	

	fec_flow_id
	
	8
	

	source_flow_id
	
	8
	

	fec_coding_structure
	
	4
	

	 if (fec_coding_structure == 0001) {
	
	
	

	 length_of_parity_payload
	
	16
	

	 parity_flow_id
	
	8
	

	 fec_code_id_for_pairty_flow
	
	8
	

	 maximum_k_for_parity_flow
	
	24
	

	 maximum_p_for_parity_flow
	
	24
	

	 ibg_mode
	
	2
	

	if (ibg_mode == 10) {
	
	
	

	num_of_parity_payload_per_packet
	
	16
	

	num_of_sub_payload_per_info_payload
	
	8
	

	}
	
	
	

	}
	
	
	

	if (fec_coding_structure == 0010) {
	
	
	

	 num_of_sub_block_per_source_block
	
	8
	

	 length_of_pairty_payload
	
	26
	

	 for j=1 to 2 {
	
	
	

	 parity_flow_id
	
	8
	

	 fec_code_id_for_pairty_flow
	
	8
	

	 maximum_k_for_parity_flow
	
	24
	

	 maximum_p_for_parity_flow
	
	24
	

	}
	
	
	

	 ibg_mode
	
	2
	

	 if (ibg_mode == 10) {
	
	
	

	 num_of_parity_paylaod_per_packet
	
	16
	

	 num_of_sub_paylaod_per_info_paylaod
	
	8
	

	 }
	
	
	

	 }
	
	
	

	if (fec_coding_structure == 0011) {
	
	
	

	 num_of_layer_for_LAFEC
	N2
	8
	

	 length_of_parity_paylaod
	
	16
	

	 fec_code_id_for_pairty_flow
	
	8
	

	 for j=1 to N2 {
	
	
	

	 parity_flow_id
	
	8
	

	 maximum_k_for_parity_flow
	
	24
	

	 maximum_p_for_parity_flow
	
	24
	

	 }
	
	
	

	 ibg_mode
	
	2
	

	 if (ibg_mode == 10) {
	
	
	

	 num_of_parity_paylaod_per_packet
	
	16
	

	 num_of_sub_paylaod_per_info_paylaod
	
	8
	

	 }
	
	
	

	 }
	
	
	

	 }
	
	
	

	}
	
	
	

	}
	
	
	

	}
	
	
	

	}
	
	
	

	
	
	
	

8.4.3.3 Semantics

message_id - It indicates AL-FEC messages.
version - It indicates the version of AL-FEC messages. MMT receiving entity can check whether the received message is new or not.
length - It indicates the length of AL-FEC messages. The length of this field is 16 bits. It indicates the length of the AL-FEC message counted in bytes starting from the next field to the last byte of the AL-FEC message. The value ‘0’ is never used for this field.
fec_flag - It indicates whether there is at least one source flow delivered with AL-FEC protection. If every source flows are delivered without AL-FEC protection, all the remaining message is not be delivered.

Table 41 — value of fec_flag
	Value
	Description

	b0
	there is no FEC source flow

	b1
	there is at least one FEC source flow

length_of_fec_flow_descriptor - It indicates the length of fec_flow_descriptor (0 in unit of bytes.
source_flow_id - It indicates an arbitrary integer number for identifying an FEC source flow. Each FEC source flow has its associated one FEC protected Flow.

number_of_fec_flows - It indicates the number of FEC protected flows.

fec_flow_id - It indicates an arbitrary integer number for identifying an FEC protected flow. Each FEC protected flow has its associated one FEC source flow and one or more FEC parity flows.

fec_coding_structure - It indicates the applied AL-FEC coding structure for its associate FEC source flow.
Table 42 — value of fec_coding_structure
	Value
	Description

	b0000
	AL-FEC is not applied

	b0001
	One stage FEC coding structure

	b0010
	Two stage FEC coding structure

	b0011
	Layer-aware FEC coding structure

	b0100 ~ b1111
	resereved

num_of_sub_block_per_source_block - It provides the number of FEC sub-blocks consisting an FEC source block for two stage coding structure.

num_of_layer_for_LAFEC - It provides the number of layers of the media protected by layer-aware FEC coding structure.

length_of_pairty_paylaod - It provides the length of a FEC parity payload in byte unit.

parity_flow_id - It provides an arbitrary integer number for identifying FEC parity flow

fec_code_id_for_parity_flow - It provides the applied FEC code for its associated FEC parity flow.

maximum_k_for_parity_flow - It provides the maximum allowed number of FEC information payloads in an FEC information block for its associated FEC parity flow.

maximum_p_for_parity_flow - It provides the maximum allowed number of FEC parity payloads in an FEC information block for its associated FEC parity flow.

ibg_mode - It indicates the applied IBG mode.
Table 43 — value of ibg_mode
	Value
	Description

	b00
	ibg_mode0 (with constant FEC source payload size)

	b01
	ibg_mode1 (with variable FEC source payload size)

	b10
	ibg_mode2 (with variable FEC source payload size)

	b11
	Reserved

num_of_parity_paylaod_per_packet - It provides the number of FEC parity payloads carried in an FEC parity packet when ibg_mode2 is used.

num_of_sub_paylaod_per_info_paylaod - It provides the number of FEC information sub-payloads consisting an FEC information payload when ibg_mode2 is used.

8.4.4 Hypothetical Receiver Buffer Model (HRBM) Message
8.4.4.1 Introduction

A Hypothetical Receiver Buffer Model (HRBM) message provides the information of the fixed end-to-end transmission delay and memory requirement to MMT a receiving entity for the efficient operation in a broadcasting environment.
8.4.4.2 Syntax
Table 44 — HRBM Message Syntax
	Syntax
	Values
	No. of bits
	Mnemonic

	HRBM (){
	
	
	

	 message_id
	
	16
	

	 version
	
	8
	

	 length
	
	16
	

	 extension_fields{
	
	
	

	 extension_fields_Byte
	
	
	

	}
	
	
	

	payload{
	
	
	

	 required_buffer_size
	
	32
	

	 fixed_end_to_end_delay
	
	32
	

	}
	
	
	

	}
	
	
	

8.4.4.3 Semantics

message_id - It indicates HRBM messages.
version - It indicates the version of HRBM messages. MMT receiving can check whether the received message is new or not.
length - It indicates the length of HRBM messages. It indicates the length of the HRBM message counted in bytes starting from the next field to the last byte of the HRBM message. The value ‘0’ is never used for this field.

required_buffer_size - It provides the information of the required buffer size of MMT Assets for MMT receing entity. The unit of buffer size is Byte.

fixed_end_to_end_delay - It provides the information of the fixed_end_to_end_delay between sending entity and receving entity. The unit of delay is ms.
8.4.5 ARQ Signaling

8.4.5.1 Introduction
Figure 23 illustrates ARQ (Automatic Repeat reQuest) signaling process. ARQ is an error control method in data communication which relies on the receiver of the data acknowledging reception of messages correctly. There is a timeout parameter that is specified at the start of the session. Only when the timeout has elapsed will the receiver send such an acknowledgement. There are three distinct steps to the ARQ operations.

First, ARQ configuration information, which includes the policy to be adopted by the MMT sending entity and MMT receiving entity in the event of packet loss, shall be transmitted from the transmitting MMT sending entity to the MMT receiving entity either in-band or out-of-band. At the MMT receiving entity the ARQ configuration information will be stored. With in-band transmission of ARQ configuration information this information will be transmitted in the same channel as the media. With out-of-band transmission of ARQ configuration information this information will be transmitted in a separate channel to the media. The MMT receiving entity configures the ARQ system with the ARQ configuration information in readiness for sending ARQ feedback message to the MMT sending entity.

In the event of a lost packet, this loss shall be detected at the MMT receiving entity, and a feedback message shall be generated according to the ARQ configuration information that has been stored, and then transmitted to the MMT sending entity.

The MMT sending entity receives this feedback message and then generates the retransmission message according to the ARQ configuration information and transmits to the MMT receiving entity. The MMT receiving entity receives the retransmission message that has been generated according to the ARQ configuration information. The MMT receiving entity is able to substitute the lost media packet from the retransmission message.

Details of each of these steps with the associated syntax and semantics will be described in the following three clauses.

[image: image21]
8.4.5.2 ARQ signaling message

8.4.5.2.1 Introduction
ARQ configuration information, which includes the policy to be adopted by the MMT sending entity and MMT receiving entity in the event of packet loss, shall be transmitted at the beginning of a session as the ARQ signaling message from the transmitting MMT sending entity to the MMT receiving entity either in-band or out-of-band. The ARQ signaling message provides information to the receiver about:

· The profile for the retransmission mechanism

· The profile for the feedback mechanism

· The timeout window based on which the receiver could determine if a retransmission request is needed. This is the time that a MMT sending entity will keep a packet of data in buffer, and thus available for retransmission.

The syntax and the semantics in the following clauses provide one method for retransmission and one method for feedback. However, it is expected that alternative methods for both retransmission and for feedback may be added to the MMT standard.
8.4.5.2.2 Syntax

Syntax for ARQ signaling message is shown in Table 45.
Table 45 — Syntax for ARQ signaling
	Syntax
	Values
	No. of bits
	Mnemonic

	arq_signal_message() {
arq_profile_identifier

fb_profile_identifier

rtx_window

}
	
	32

32

32
	uimsbf

uimsbf

uimsbf

8.4.5.2.3 Semantics
arq_profile_identifier - indicates the standard for retransmit. For example when this field is set to “ZARQ”，then this indicates the retransmit packet is one MMT packet, the transmit method is in-band or out-of-band. When the flow_identifier is set to, say, 0xF0 then this indicates the retransmit flow.

fb_profile_identifier - indicates the standard for feedback. For example when this field is set to “ZFBP”，then this indicates the feedback packet contains the arq_fb_message as defined in 8.4.5.1 is carried in-band or out-of-band. When the flow_identifier is set to, say, 0xE0 then this indicates the feedback flow.

rtx_window - indicates the retransmit window size. The unit is milliseconds

8.4.5.3 ARQ feedback message

8.4.5.3.1 Introduction
In the event of packet loss, this loss shall be detected at the receiving device and a feedback message shall be generated according to the ARQ configuration information, and then transmitted to the sender. When the receiver detects that one or more packets have been lost it forms a mask of up to 255 bytes where each bit in a byte corresponds to an MMT packet. This allows for retransmission request up to 255x8 packets to be made in one ARQ feedback message.
The method of packet loss detection is beyond the scope of this standard.
8.4.5.3.2 Syntax

Syntax for ARQ feedback message is shown in Table 46.
Table 46 — Syntax for ARQ feedback message
	Syntax
	Values
	No. of bits
	Mnemonic

	arq_fb_message() {
MMT_packet_flow_identifier

MMT_packet_sequence_number

masklength

for(i=0; i<masklength; i++)

{

 mask_byte

}

}
	
	8

 32

8
8
	

8.4.5.3.3 Semantics
MMT_packet_flow_identifier - This field indicates the flow identifier.
MMT_packet_sequence_number - This field corresponds to the MMT_packet_sequence_number of the 1st packet indicated by the mask_byte that is identified as having been detected to be lost, and hence requiring re-transmission.

mask_length - indicates the length of the data behind the mask in bytes.

mask_byte - mask field, each bit correspond to a MMT packet. If the packet behind the packet with packet_id is lost, then the corresponding bit will be set to 1.

8.4.5.4 ARQ packet section
8.4.5.4.1 Introduction
When the sending MMT sending entity receives the ARQ feedback message it generates the retransmission message according to the ARQ configuration information and transmits the original MMT packet corresponding to the bits in the mask as defined in 8.4.5.3. The receiver is thus able to substitute the lost media packet from the retransmission message.
There is a well known problem with ARQ when networks experience congestion and degradation. In such a situation if a data packet is lost and then the receiver requests re-transmission of this packet – then the act of re-transmission itself will lead to further network degradation. A solution to this is to re-transmit at a higher priority than when the initial data packet was sent to the receiver. In MMT it is possible to obtain the current network condition and the priority of the lost packet, and with this information the lost packet will be re-transmitted according to policy set for a given application.
8.4.5.4.2 Syntax

Syntax for ARQ packet section is shown in Table 47.
Table 47 — Syntax for ARQ packet section containing retransmitted packet
	Syntax
	Values
	No. of bits
	Mnemonic

	arq_packet_section() {
 original_MMT_packet_data

}
	
	8

	uimsbf

8.4.5.4.3 Semantic
original_MMT_packet_data - the retransmit packet data.

8.4.6 Reception Quality Feedback
8.4.6.1 Introduction
The MMT receiving entity sends the reception quality feedback to the MMT sending entity to inform it of the reception quality of the received MMT stream. The MMT receiving entity will need to keep track of the reception quality per MMT sending entity for the MMT stream.

[image: image22.emf]Receiver

T

F,S

(

i

)

Sender

T

F,R

(

i

)

T

B,R

T

B,S

Delay1

MMT transport packet(

i

) T

F,S

(

i

)

Delay1

= T

F,R

(

i

)-T

F,S

(

i

)

reception quality

feedback

Delay1, T

B,R

Delay2

= T

B,S

-T

B,R

RTT= Delay1 + Delay2

Delay2

Figure 24 — Round Trip Time (RTT) calculation
The MMT receiving entity provides information in the feedback to allow the MMT sending entity to calculate the round-trip time (RTT) which is shown in Figure 24. In Figure 24, Delay1 is the delivery time of the MMT transport packet from sender to receiver. Delay1 is calculated by the subtracting TF,S(i) (NTP time at delivery instant of i-th MMT transport packet) from TF, R(i) (NTP time at arrival instant of i-th MMT transport packet). The Delay2 is the delivery time for the MMT transport packet from receiver to sender. The Delay2 is calculated by subtracting TB,R (NTP time at delivery instant of the feedback report, i.e. feedback_timestamp) from the TB,S (NTP time at arrival instant of the feedback report). Thus, the sender can calculate the RTT by adding Delay1 and Delay2.

8.4.6.2 Syntax
The syntax for the reception quality feedback is shown in Table 48.
Table 48 — Syntax for reception_quality_feedback
	Syntax
	Values
	No. of bits
	Mnemonic

	Reception_Quality_Feedback () {
	
	
	

	 measurement_duration
	
	16
	unsigned short

	packet_loss_ratio
	
	8
	unsigned char

	reserved
	
	8
	unsigned char

	onter_arrival_jitter
	
	32
	unsigned integer

	 RTT_parameter() {
	
	
	

	propagation_delay
	
	32
	unsigned integer

	feedback_timestamp
	
	32(64)
	unsigned integer

	}
	
	
	

	}
	
	
	

8.4.6.3 Semantics
measurement_duration - Duration in seconds measured for the parameters in the feedback.

packet_loss_ratio - Ratio of the number of lost MMT transport packets to the total number of transmitted packets. This value is equivalent to taking the integer part after multiplying the loss fraction by 256. The packet_loss_ratio is a result measured within the measurement_duration.

inter_arrival_jitter - Deviation of the difference in packet spacing at the receiver compared to the sender for a pair of packets, measured in timestamp units. It can be estimated based on the time difference between the arrivals of adjacent MMT transport packets. The inter_arrival_jitter is an average result measured within the measurement_duration.

RTT_parameter - Parameter used for calculating the round trip time (RTT). RTT is the length of time required for the MMT transport packet to be sent and the length of time it takes for an acknowledgement to be received. When computing the RTT, sender records the time when the feedback is received. RTT is calculated by subtracting the feedback_timestamp from the recorded time and adding the propagation_delay.

propagation_delay - Propagation delay for the MMT transport packet to arrive at the receiver. The receiver calculates the propagation_delay by the subtracting the NTP time at the delivery instant of a MMT transport packet from the NTP time at the arrival instant of the MMT transport packet. The propagation_delay can be an average result of a propagation delay measured within the measurement_duration.

feedback_timestamp - NTP time in which the feedback is issued from the receiver. This parameter is used to measure the propagation delay from the receiver to the sender.

Note: If the message header contains the timestamp, the feedback_timestamp can be omitted.
9 Hypothetical Receiver Buffer Model
9.1 Introduction

The Hypothetical Receiver Buffer Model (HRBM) is used to ensure operation under a fixed end-to-end delay and limited memory requirement for buffering of incoming MMT packets. The hypothetical receiver buffer model is used by the MMT sending entity to emulate the behavior of the receiving entity. It is described in the following sub-clause in more detail.

The MMT sending entity runs the hypothetical receiver buffer model to ensure that any processing it performs on the packet stream is within the reception constraints in the receiver. The sending entity determines the required buffering delay and the required buffer size and signals this information to the receiving entities.

At the receiving entity, several buffers are involved in reconstruction of MPU from the MMT packets received. Some delivery operations such as FEC coding, interleaving and retransmission introduce delay and jitter that requires buffering at the receiving entity to remove it. The hypothetical receiver buffer model defines operations of the buffers at the receiving entity to ensure that at any time the buffer occupancy is within the buffer size requirement. The buffers whose operation is defined are depicted in the following figure and are described in detail in the following sub-clauses.

[image: image23.emf]FEC Decoding

Buffer

De-jitter Buffer

MMTP De-

capsulation

Buffer

S S S P

MMTP

Packet

S S

MFU/

MPU

Figure 25 — MMTP Hypothetical Receiver Model

9.2 FEC Decoding Buffer

FEC decoding is typical for many applications, where lower layer transmission may not be sufficient to recover from channel errors or when network congestion may cause packet drops or excessive delays. To perform FEC decoding, a buffer is required where incoming packets are stored until sufficient source and repair data is available to perform FEC decoding.

In this hypothetical receiver buffer model, the FEC decoding buffer works as follows:

· The FEC decoding buffer is initially empty

· Insert incoming packet i with transmission timestamp ts into the FEC decoding buffer, if buffer_occupancy + packet_size < max_buffer_size, otherwise discard packet i as being non-compliant

· If FEC is applied to packet i

a. Determine source block j to which packet i belongs

b. Determine insertion time t of first packet of source block j
c. At time t+FEC_buffer_time move all packets (after FEC correction, if needed) of source block j to the de-jitter buffer
d. Discard repair packets
The FEC_buffer_time is the required buffer time since the reception of the first packet of a source block and until FEC decoding is attempted. This time is typically calculated based on the FEC block size.

9.3 De-jitter Buffer

The de-jitter buffer ultimately ensures that MMTP packets experience a fixed transmission delay from source to the output of the MMT Protocol stack, assuming a maximum transmission delay. Data units that experience a transmission delay larger than the maximum transmission delay might be discarded by the receiver as being very late.

The de-jitter buffer operates as follows:

· The de-jitter buffer is initially empty

· Insert the MMT packet as it arrives

· Remove MMT packet at time ts+Δ, where ts is the timestamp of the MMT packet and Δ is the signaled fixed end-to-end delay

After the de-jittering is applied, all MMT packets that arrived correctly or were recovered through FEC/retransmissions will have experienced the same end-to-end delay.

9.4 MMT Packet De-encapsulation Buffer

The MMT packet de-encapsulation buffer is used to perform MMT packet processing before output to the upper layers. The output of the MMT Protocol processor may either be the MFU payload (in low-delay operation) or a complete MPU. MPUs may be fragmented into smaller packets or aggregated into larger packets, depending on their size. The de-encapsulation (removal of the MMT packet and payload headers) and any required de-fragmentation/de-aggregation of the packets are then performed as part of the MMT Protocol processing. This procedure may require some buffering delay, called de-encapsulation delay, to perform assembly when an MPU is fragmented into multiple MMT packets. However, de-encapsulation delay is not considered as part of the transmission delay and the availability of an MPU for consumption by the coded media layer will be guaranteed by the entity fragmenting the MPU into multiple MMT packets, regardless of the de-capsulation delay.

The MMT packet de-encapsulation buffer works as follows:

· The MMT packet de-encapsulation buffer is initially empty.
· The MMT packet is inserted into the MMT packet de-capsulation buffer immediately after the de-jittering is performed.
· For MMT packets carrying aggregated payload, remove the packet and payload header and split the aggregate into separate MPUs.

· For MMT packets carrying fragmented payload, the packet is kept in the buffer until all corresponding fragments are received correctly or until a packet is received that does not belong to the same fragmented MPU.
· If all fragments of an MPU are received, remove MMT packet and payload header, reassemble and forward the re-constructed MPU to the upper layer, otherwise discard fragments of a non-complete MPU.
9.5 Usage of Hypothetical Receiver Buffer Model

Based on this hypothetical receiver buffer model, the delivery MMT sending entity is able to determine the transmission schedule, the buffer size and the buffering delay Δ, so that no packets are dropped, assuming a maximum delivery delay in the target path. The MMT sending entity guarantees that packets that experience a transmission delay below a set threshold will be output to the upper layer after a constant delay and without causing the MMT receiving entity buffer to underflow or overflow.

9.6 Estimation of end-to-end delay and buffer requirement

The MMT sending entity estimates the maximum expected and tolerable transmission delay in the transmission path down to the receivers. If FEC is in use, the MMT sending entity adds an FEC buffering delay that covers for the time needed to assemble a source block, in the case FEC decoding is required to recover lost MMTP packets. Finally, any delays that might be incurred by fragmentation of packets (and other operations) are added. The resulting estimation of the MMT packet delivery delay is then signaled to the receivers as the fixed end-to-end transmission delay.

[image: image24.png]fixed end — to — end delay = maximum transmissiondelay + FEC buffering time

In order to estimate the resulting buffer requirement, the MMT sending entity uses the fixed end-to-end delay and subtracts the minimum transmission delay for the path down to the receiver and then estimates the buffer size requirement as the product of maximum bitrate of the MMT packet stream and the calculated buffered data duration.

[image: image25.png](maximumdelay — minimum delay) * maximum bitrate

9.7 HRBM signaling
After determining the required buffer size and the fixed end-to-end delay for the system, the MMT sending entity communicates this information to the MMT receiving entity. This is done using the signaling protocol between the MMT sending entity and the MMT receiving entity. The MMT sending entity continuously runs the hypothetical receiver buffer to verify that the selected end-to-end delay and buffer size are aligned and do not cause buffer under-runs or overruns. At the receiver side, the receiver is instructed to perform buffering so that each data unit experiences the signaled fixed end-to-end delay Δ before it is forwarded to upper layers. Under the assumption that clocks are synchronized, the output time is then calculated based on the transmission timestamp and the signaled fixed end-to-end delay. An MMT Protocol signaling message is defined to carry the information to the receivers. Additionally, the information is also transmitted out-of-band.
Annex A
(informative)

Example of MMT Composition Information

A.1 Introduction
This Annex shows examples of MMT Composition Information.
A.2 Example 1: Area change
[image: image26.emf]Area 1:Video Area 3 :

Advertisement

Area 2 : Information

1920

1440 480

1

0

8

0

8

1

0

2

7

0

View 1

Video 1

Audio 1

Image 1

Text 1

Figure A. 1 — Initial View of Area chagne
There are 7 different types of MMT Asset in MMT Package. MMT-CI is provided as Figure A. 1 first. The initial View is updated as Figure A. 2 by following conditions:

Text1 in Area 2 is updated to text2 at 18:00(wall-clock time).
If Image1 in Area3 is selected, Area3 is update to Area4 and Area5. Area4 represents Image2. And Area 5 represents Text 3

[image: image27.emf]Area 1:Video Area 4 :

Advertisement

Area 2 : Information

1920

1440 480

1

0

8

0

8

1

0

2

7

0

View 1

Video 1

Audio 1

Text 2

Area 5 :

Information

Image 2

Text 3

4

1

0

4

0

0

Figure A. 2 — Later View of Area change
[image: image28.emf]View 1

Area 1

Time Line

Video1(Asset1)

audio1(Asset2)

Area 2

Area 3

Area 4

image1(Asset5)

image2(Asset6)

text3(Asset7)

Area 5

text1(Asset3) text2(Asset4)

0

“18:00”

Select

“imge1”

Figure A. 3 — Timeline of Area change
Table A. 1 — MMT-CI of Area change
	<html>

<head>

<title>Entertainment</title>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" src="mmt://asset1.m2v" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset2" src="mmt://asset2.mp3" MMT-CI:mediatype="audio"/>

<MMT-CI:AI id="Asset3" src="mmt://asset3.txt" MMT-CI:mediatype="text"/>

<MMT-CI:AI id="Asset4" src="mmt://asset4.txt" MMT-CI:mediatype="text"/>

<MMT-CI:AI id="Asset5" src="mmt://asset5.jpg" MMT-CI:mediatype="image"/>

<MMT-CI:AI id="Asset6" src="mmt://asset6.jpg" MMT-CI:mediatype="image"/>

<MMT-CI:AI id="Asset7" src="mmt://asset7.txt" MMT-CI:mediatype="text"/>

</MMT-CI:LoA>

<MMT-CI:view id="View1" width="1920px" height="1080px" MMT-CI:begin="0s" MMT-CI:end="indefinite">

<MMT-CI:divLocation id="divL1" width="1440px" height="810px" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL2" width="1920px" height="270px" MMT-CI:left="0px" MMT-CI:top="810px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area2"/>

<MMT-CI:divLocation id="divL3" width="480px" height="810px" MMT-CI:left="1440px" MMT-CI:top="0px" MMT-CI:begin="0s" MMT-CI:end="image1.Click" MMT-CI:refDiv="Area3"/>

<MMT-CI:divLocation id="divL4" width="480px" height="410px" MMT-CI:left="1440px" MMT-CI:top="0px" MMT-CI:begin="image1.Click" MMT-CI:end="indefinite" MMT-CI:refDiv="Area4"/>

<MMT-CI:divLocation id="divL5" width="480px" height="400px"
 MMT-CI:left="1440px" MMT-CI:top="410px" MMT-CI:begin="image1.Click" MMT-CI:end="indefinite" MMT-CI:refDiv="Area5"/>

</MMT-CI:view>

</head>

<body>

<div id="Area1" style="position:absolute; left:0px; top:0px; width:1440px; height:810px" width="1440px" height="810px">

<video id="video1" src="asset1.m2v" MMT-CI:refAsset="Asset1" style="position:absolute; left:0px; top:0px; width:1440px; height:810px" width="1440px" height="810px" MMT-CI:begin="0s"/>

<audio id="audio1" src="asset2.mp3" MMT-CI:refAsset="Asset2" MMT-CI:begin="0s"/>

</div>

<div id="Area2" style="position:absolute; left:0px; top:810px; width:1920px; height:270px" width="1920px" height="270px">

<MMT-CI:text id="text1" MMT-CI:refAsset="Asset3" MMT-CI:left="0px" MMT-CI:top="0px" width="1920px" height="270px" MMT-CI:begin="0s" MMT-CI:end="18:00"/>

<MMT-CI:text id="text2" MMT-CI:refAsset="Asset4" MMT-CI:left="0px" MMT-CI:top="0px" width="1920px" height="270px" MMT-CI:begin="text1.end"/>

</div>

<div id="Area3" style="position:absolute; left:1440px; top:0px; width:480px; height:810px" width="480px" height="810px">

</div>

<div id="Area4" style="position:absolute; left:1440px; top:0px; width:480px; height:410px" width="480px" height="410px">

</div>

<div id="Area5" style="position:absolute; left:1440px; top:410px; width:480px; height:400px" width="480px" height="400px">

<MMT-CI:text id="text3" MMT-CI:refAsset="Asset7" MMT-CI:left="0px" MMT-CI:top="0px" width="480px" height="410px" MMT-CI:begin="0s"/>

</div>

</body>

</html>

The style and src attribute of the div, video, audio, img element are described to show MMT-CI at HTML5 device similar with MMT device.
A.3 Example 2: View change
[image: image29.emf]Area 1:Video Area 3 :

Widget

Area 2 : Information

1920

1440 480

1

0

8

0

8

1

0

2

7

0

View 1

Video 1

Audio 1

Widget 1

Text 1

Figure A. 4 — Initial View of View change
There are 2 Views and 7 Assets in MMT Package. MMT-CI provides View as Figure A. 4 first. The initial View is updated as Figure A. 5 by following conditions:
If Text1 in Area2 is selected, View 1 is update to View 2.

After updating, Vidio1 and Audio1 are played continuously. And Video2 in Area5 is sync with Video1.
[image: image30.emf]Area 1:Video Area 4 : Video

Area 5 : Video

1920

960 960

1

0

8

0

5

4

0

5

4

0

View 2

Video 1

Audio 1

Area 6 : Video

Video 2

Video 3

Video 4

Figure A. 5 — Later View of View change
[image: image31.emf]View 1

Area 1

Time Line

video1(Asset1)

audio1(Asset2)

Area 2

Area 3

widget1(Asset4)

video2(Asset5)

Area 4

text1(Asset3)

0

Select

“text1”

View 2

Area 5

video3(Asset6)

video4(Asset7)

Area 6

Figure A. 6 — Timeline of View change
Table A. 2 — MMT-CI of View change
	<html>

<head>

<title>Sports</title>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" src="mmt://asset1.m2v" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset2" src="mmt://asset2.mp3" MMT-CI:mediatype="audio"/>

<MMT-CI:AI id="Asset3" src="mmt://asset3.txt" MMT-CI:mediatype="text"/>

<MMT-CI:AI id="Asset4" src="mmt://asset4.bt" MMT-CI:mediatype="widget"/>

<MMT-CI:AI id="Asset5" src="mmt://asset5.m2v" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset6" src="mmt://asset6.m2v" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset7" src="mmt://asset7.m2v" MMT-CI:mediatype="video"/>

</MMT-CI:LoA>

<MMT-CI:view id="View1" width="1920px" height="1080px" MMT-CI:begin="0s" MMT-CI:end="text1.Click">

<MMT-CI:divLocation id="divL1" width="1440px" height="810px" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL2" width="1920px" height="270px" MMT-CI:left="0px" MMT-CI:top="810px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area2"/>

<MMT-CI:divLocation id="divL3" width="480px" height="810px" MMT-CI:left="1440px" MMT-CI:top="0px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area3"/>

</MMT-CI:view>

<MMT-CI:view id="View2" width="1920px" height="1080px" MMT-CI:begin="text1.Click">

<MMT-CI:divLocation id="divL4" width="960px" height="540px" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL5" width="960px" height="540px" MMT-CI: left="960px" MMT-CI:top="0px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area4"/>

<MMT-CI:divLocation id="divL6" width="960px" height="540px"
 MMT-CI:left="0px" MMT-CI:top="540px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area5"/>

<MMT-CI:divLocation id="divL7" width="960px" height="540px"
 MMT-CI:left="960px" MMT-CI:top="540px" MMT-CI:begin="0s" MMT-CI:end="indefinite" MMT-CI:refDiv="Area6"/>

</MMT-CI:view>

</head>

<body>

<div id="Area1" style="position:absolute; left:0px; top:0px; width:1440px; height:810px" width="1440px" height="810px">

<video id="video1" src="asset1.m2v" MMT-CI:refAsset="Asset1" style="position:absolute; left:0px; top:0px; width:1440px; height:810px" width="1440px" height="810px" MMT-CI:begin="0s"/>

<audio id="audio1" src="asset2.mp3" MMT-CI:refAsset="Asset2" MMT-CI:begin="0s"/>

</div>

<div id="Area2" style="position:absolute; left:0px; top:810px; width:1920px; height:270px" width="1920px" height="270px">

<MMT-CI:text id="text1" MMT-CI:refAsset="Asset3" MMT-CI:left="0px" MMT-CI:top="0px" width="1920px" height="270px" MMT-CI:begin="0s"/>

</div>

<div id="Area3" style="position:absolute; left:1440px; top:0px; width:480px; height:810px" width="480px" height="810px">

<MMT-CI:widget id="widget1" MMT-CI:refAsset="Asset4" MMT-CI:left="0px" MMT-CI:top="0px" width="480px" height="810px" MMT-CI:begin="0s"/>

</div>

<div id="Area4" style="position:absolute; left:960px; top:0px; width:960px; height:540px" width="960px" height="540px">

<video id="video2" src="asset5.m2v" MMT-CI:refAsset="Asset5" style="position:absolute; left:0px; top:0px; width:960px; height:540px" MMT-CI:left="0px" MMT-CI:top="0px" width="960px" height="540px" MMT-CI:begin="video1.begin"/>

</div>

<div id="Area5" style="position:absolute; left:0px; top:540px; width:960px; height:540px" width="960px" height="540px">

<video id="video3" src="asset6.m2v" MMT-CI:refAsset="Asset6" style="position:absolute; left:0px; top:0px; width:960px; height:540px" MMT-CI:left="0px" MMT-CI:top="0px" width="960px" height="540px" MMT-CI:begin="0s"/>

</div>

<div id="Area6" style="position:absolute; left:960px; top:540px; width:960px; height:540px" width="960px" height="540px">

<video id="video4" src="asset7.m2v" MMT-CI:refAsset="Asset7" style="position:absolute; left:0px; top:0px; width:960px; height:540px" MMT-CI:left="0px" MMT-CI:top="0px" width="960px" height="540px" MMT-CI:begin="0s"/>

</div>

</body>

</html>

The style and src attribute of the div, video, audio, img element are described to show MMT-CI at HTML5 device similar with MMT device.
A.4 Example 3: Multi-screen Presentation – MMT Asset Sharing
[image: image32.png]Areal Area?2 Areal Area?2

The primary device The primary device

Area2

The secondary device The secondary device

Figure A. 7 — Presentation of MMT Asset sharing
This sub-clause provides a simple example for MMT Asset Sharing. In the following example, an Area or Areas in a primary screen can be shared with the secondary screen after beginning of multi-screen presentation. The Figure A. 7 shows the presentation of this example.
	<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" MMT-CI:src="mmt://package1/asset1" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset2" MMT-CI:src="mmt://package1/asset2" MMT-CI:mediatype="video"/>

</MMT-CI:LoA>

<MMT-CI:view MMT-CI:width="1920px" MMT-CI:height="1080px">

<MMT-CI:divLocation id="divL1" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="0%" MMT-CI:top="0%" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL2" MMT-CI:width="30%" MMT-CI:height="100%" MMT-CI:left="70%" MMT-CI:top="0%" MMT-CI:refDiv="Area2" MMT-CI:plungeOut="sharable"/>

</MMT-CI:view>
</head>
<body>

<div id="Area1" MMT-CI:width="1000px" MMT-CI:height="1000px">

<video id="video1" MMT-CI:refAsset="Asset1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>

<div id="Area2" MMT-CI:width="600px" MMT-CI:height="1000px">

<video id="video2" MMT-CI:refAsset="Asset2" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>

</body>

</html>

A.5 Example 4: Multi-screen Presentation – Dynamic MMT Asset Sharing
[image: image33.png]Areal Area?2 Areal

The primary device The primary device

Area2

The secondary device The secondary device

Figure A. 8 — Presentation of Dynamic MMT Asset sharing
This sub-clause provides a simple example for Dynamic MMT Asset Sharing. In the following example, one of the Areas in a primary screen moves to the secondary screen after beginning of multi-screen presentation, and the Area remained in the primary screen is repositioned in the center. The Figure A. 8 shows the presentation of this example.
	<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" MMT-CI:src="mmt://package1/asset1" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset2" MMT-CI:src="mmt://package1/asset2" MMT-CI:mediatype="video"/>

</MMT-CI:LoA>

<MMT-CI:view id="View1" MMT-CI:width="1920px" MMT-CI:height="1080px">

<MMT-CI:divLocation id="divL1_1" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="0%" MMT-CI:top="0%" MMT-CI:begin="0s AreaBack" MMt-CI:end="divL2.AreaOut" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL2" MMT-CI:width="30%" MMT-CI:height="100%" MMT-CI:left="70%" MMT-CI:top="0%" MMT-CI:refDiv="Area2" MMT-CI:plungeOut="dynamic"/>

<MMT-CI:divLocation id="divL1_2" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="15%" MMT-CI:top="0%" MMT-CI:begin="divL2.AreaOut" MMT-CI:end="AreaBack" MMT-CI:refDiv="Area1"/>

</MMT-CI:view>
</head>

<body>

<div id="Area1" MMT-CI:width="1000px" MMT-CI:height="1000px">

<video id="video1" MMT-CI:refAsset="Asset1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>

<div id="Area2" MMT-CI:width="600px" MMT-CI:height="1000px">

<video id="video2" MMT-CI:refAsset="Asset2" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>

</body>

</html>

The other way to express this example is to use two Views. The following shows the head element using the way. The others are same with above.
	<head>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" MMT-CI:src="mmt://package1/asset1" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset2" MMT-CI:src="mmt://package1/asset2" MMT-CI:mediatype="video"/>

</MMT-CI:LoA>

<MMT-CI:view id="View1" MMT-CI:width="1920px" MMT-CI:height="1080px" MMT-CI:begin="0s AreaBack" MMt-CI:end="divL2.AreaOut">

<MMT-CI:divLocation id="divL1_1" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="0%" MMT-CI:top="0%" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL2" MMT-CI:width="30%" MMT-CI:height="100%" MMT-CI:left="70%" MMT-CI:top="0%" MMT-CI:refDiv="Area2" MMT-CI:plungeOut="dynamic"/>

</MMT-CI:view>

<MMT-CI:view id="View2" MMT-CI:width="1920px" MMT-CI:height="1080px" MMT-CI:begin="divL2.AreaOut" MMT-CI:end="AreaBack">

<MMT-CI:divLocation id="divL3" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="15%" MMT-CI:top="0%" MMT-CI:refDiv="Area1"/>

</MMT-CI:view>
</head>

A.6 Example 5: Multi-screen Presentation – Complementary MMT Asset
[image: image34.png]Areal Area?2 Areal Area?2

The primary device The primary device

Area3

The secondary device The secondary device

Figure A. 9 — Presentation of Complementary MMT Asset
This sub-clause provides a simple example for Complementary MMT Asset. In the following example, an Area invisible at the primary screen moves to a secondary screen after beginning of multi–screen presentation. The Figure A. 9 shows the presentation of this example.
	<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" MMT-CI:src="mmt://package1/asset1" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset2" MMT-CI:src="mmt://package1/asset2" MMT-CI:mediatype="video"/>

<MMT-CI:AI id="Asset3" MMT-CI:src="mmt://package1/asset3" MMT-CI:mediatype="widget"/>

</MMT-CI:LoA>

<MMT-CI:view id="View1" MMT-CI:width="1920px" MMT-CI:height="1080px">

<MMT-CI:divLocation id="divL1" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="0%" MMT-CI:top="0%" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL2" MMT-CI:width="30%" MMT-CI:height="100%" MMT-CI:left="70%" MMT-CI:top="0%" MMT-CI:refDiv="Area2"/>

<MMT-CI:divLocation id="divL3" MMT-CI:width="1024px" MMT-CI:height="768px" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:refDiv="Area3" MMT-CI:plungeOut="complementary"/>

</MMT-CI:view>
</head>
<body>

<div id="Area1" MMT-CI:width="1000px" MMT-CI:height="1000px">

<video id="video1" MMT-CI:refAsset="Asset1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>

<div id="Area2" MMT-CI:width="600px" MMT-CI:height="1000px">

<video id="video2" MMT-CI:refAsset="Asset2" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>

<div id="Area3" MMT-CI:width="1024px" MMT-CI:height="768px">

<MMT-CI:widget id="widget1" MMT-CI:refAsset="Asset3" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>
</body>

</html>

A.7 Example 6: MMT Asset Receiving in Multi-screen Presentation
[image: image35.png]Areal

Areal

The 1st
received
Area

Figure A. 10 — Presentation of MMT Asset receiving in Multi-screen
This sub-clause provides a simple example for MMT Asset receiving. In the following example, the primary screen receives an Area from the secondary screen after beginning of multi-screen presentation, and the existing Area in the primary screen is resized. The Figure A. 10 shows the presentation of this example.
	<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" MMT-CI:src="mmt://package1/asset1" MMT-CI:mediatype="video"/>

</MMT-CI:LoA>

<MMT-CI:view id="View1" MMT-CI:width="1920px" MMT-CI:height="1080px" MMT-CI:begin="0s divL3.AreaOut AreasOut" MMT-CI:end="AreaIn(1)">

<MMT-CI:divLocation id="divL1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:refDiv="Area1"/>

</MMT-CI:view>

<MMT-CI:view id="View2" MMT-CI:width="1920px" MMT-CI:height="1080px" MMT-CI:begin="AreaIn(1)" MMT-CI:end="divL3.AreaOut AreasOut">

<MMT-CI:divLocation id="divL2" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="0%" MMT-CI:top="0%" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL3" MMT-CI:width="30%" MMT-CI:height="100%" MMT-CI:left="70%" MMT-CI:top="0%" MMT-CI:plungeIn="1"/>

</MMT-CI:view>
</head>
<body>

<div id="Area1" MMT-CI:width="1000px" MMT-CI:height="1000px">

<video id="video1" MMT-CI:refAsset="Asset1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px"/>

</div>
</body>

</html>

When the primary screen receives two Areas in this example, the second received Area will be not shown although the first received Area will be shown because there is no more blank Area. On the other hand, if the head element in this example is changed as following, the first and second Areas will be shown as Figure A. 11.
	<head>

<MMT-CI:LoA>

<MMT-CI:AI id="Asset1" MMT-CI:src="mmt://package1/asset1" MMT-CI:mediatype="video"/>

</MMT-CI:LoA>

<MMT-CI:view id="View1" MMT-CI:width="1920px" MMT-CI:height="1080px" MMT-CI:begin="0s divL3.AreaOut AreasOut" MMT-CI:end="AreaIn(1)">

<MMT-CI:divLocation id="divL1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:refDiv="Area1"/>

</MMT-CI:view>

<MMT-CI:view id="View2" MMT-CI:width="1920px" MMT-CI:height="1080px" MMT-CI:begin="AreaIn(1)" MMT-CI:end="divL3.AreaOut AreasOut">

<MMT-CI:divLocation id="divL2" MMT-CI:width="70%" MMT-CI:height="100%" MMT-CI:left="0%" MMT-CI:top="0%" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation id="divL3" MMT-CI:width="30%" MMT-CI:height="100%" MMT-CI:left="70%" MMT-CI:top="0%" MMT-CI:plungeIn="1"/>

<MMT-CI:divLocation id="divL4" MMT-CI:width="30%" MMT-CI:height="30%" MMT-CI:left="0%" MMT-CI:top="70%" MMT-CI:begin="AreaIn(2)" MMT-CI:plungeIn="2"/>

</MMT-CI:view>
</head>

[image: image36.png]The 1st
Areal Areal received

Area
The 2nd
received
Area

Figure A. 11 — Presentation of changed MMT Asset receiving in Multi-screen
A.8 Example 7: Multiple Source Support
This sub-clause provides a simple example for multiple-source support of a MMT Asset. In the following example, three video MMT Assets that have the same context exist at different locations. The first one is used for a big screen device such as HDTV. Another is used for a small screen device such as a smart phone. The other is used for a middle size screen device such as tablet PC.
	<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<MMT-CI:LoA>

<MMT-CI:AI id=”Asset1” MMT-CI:mediatype=”video”>

<source MMT-CI:src=”mmt://asset1.m2v” type=”video/mpv” media=”screen and (min-width:1920px) and (min-height:1080px)”/>

<source MMT-CI:src=”http://example.com/asset1_1024k.mp4" type="video/mp4" media="handheld and (min-width:1024px) and (min-height:768px)"/>

<source MMT-CI:src="http://example.com/asset1_512k.mp4" type="video/mp4" media="handheld and (max-width:1024px) and (max-height:768px)"/>

</MMT-CI:AI>

</MMT-CI:LoA>

<MMT-CI:view id="View1" MMT-CI:width="1920px" MMT-CI:height="1080px">

<MMT-CI:divLocation id="divL1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:refDiv="Area1"/>

</MMT-CI:view>
</head>
<body>

<div id="Area1" MMT-CI:width="1920px" MMT-CI:height="1080px">

<video id="video1" MMT-CI:width="100%" MMT-CI:height="100%" MMT-CI:left="0px" MMT-CI:top="0px" refAsset="Asset1"/>

</div>
</body>

</html>

A.9 Example 8: Multiple Composition Support
[image: image37.png]Areal Area2

Area3 Aread

Area?2
Areal

Area3

Width:1920 Height:1080

Width:1024 Height:768
Orientation:landscape

Areal

Aread

Width:1024 Height:768
Orientation:portrait

Figure A. 12 — Multiple composition support
This sub-clause provides a simple example for multiple composition support of Views and Areas. In the following example, there are two Views. The first View shows four Areas on big screen devices. The second View shows two or three Areas on handheld devices according to orientation.
	<MMT-CI:view MMT-CI:width="1920px" MMT-CI:height="1080px" media="screen and (min-width:1920px) and (min-height:1080px)">

<MMT-CI:divLocation MMT-CI:width="960px" MMT-CI:height="540px" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:refDiv="Area1"/>

<MMT-CI:divLocation MMT-CI:width="960px" MMT-CI:height="540px" MMT-CI:left="960px" MMT-CI:top="0px" MMT-CI:refDiv="Area2"/>

<MMT-CI:divLocation MMT-CI:width="960px" MMT-CI:height="540px" MMT-CI:left="0px" MMT-CI:top="540px" MMT-CI:refDiv="Area3"/>

<MMT-CI:divLocation MMT-CI:width="960px" MMT-CI:height="540px" MMT-CI:left="960px" MMT-CI:top="540px" MMT-CI:refDiv="Area4"/>
</MMT-CI:view>
<MMT-CI:view MMT-CI:width="1024px" MMT-CI:height="768px" media="handheld">

<MMT-CI:divLocation MMT-CI:width="700px" MMT-CI:height="768px" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:refDiv="Area1" media="(orientation:landscape)"/>

<MMT-CI:divLocation MMT-CI:width="324px" MMT-CI:height="382px" MMT-CI:left="700px" MMT-CI:top="0px" MMT-CI:refDiv="Area2" media="(orientation:landscape)"/>

<MMT-CI:divLocation MMT-CI:width="324px" MMT-CI:height="382px" MMT-CI:left="700px" MMT-CI:top="382px" MMT-CI:refDiv="Area3" media="(orientation:landscape)"/>

<MMT-CI:divLocation MMT-CI:width="768px" MMT-CI:height="512px" MMT-CI:left="0px" MMT-CI:top="0px" MMT-CI:refDiv="Area1" media="(orientation:portrait)"/>

<MMT-CI:divLocation MMT-CI:width="768px" MMT-CI:height="512px" MMT-CI:left="0px" MMT-CI:top="512px" MMT-CI:refDiv="Area4" media="(orientation:portrait)"/>
</MMT-CI:view>

A.10 Example 9: Hierarchical MMT-CI
The following two examples are somewhat similar except for that the code for Example 2 has external URIs for xlink:href attributes while the code for Example 1 has internal URIs.
A.10.1 Example 1: Layered MMT-CI
Main MMT-CI provides the mandatory information for the Area1 and related assets; video1 and audio1. The asset information for Area2 and Area3 and the area information for Area2 and Area3 are delivered separately in different MMT-CI layers. After receiving layer-0 MMT-CI, layer-1 MMT-CI that includes asset information on two text MMT Assets, Asset10 an Asset20, and layer-2 MMT-CI that includes area information on Area2 and Area3, the whole MMT-CI is expanded as shown in Figure C. 3. In this use case, there are 3 layers of MMT-CI; Layer-0 CI (base MMT-CI), Layer-1 MMT-CI (for Asset10 and Asset20), and Layer-2 MMT-CI (for Area2 and Area3).
· Base CI (Layer-0 MMT-CI):
	<html>

<head>

<title>Entertainment</title>

<MMT-CI:LoA>

<MMT-CI:AI id=”Asset0” src=”mmt://Asset0” mediatype=”video”/>

<MMT-CI:AI id=”Asset1” src=”mmt://Asset1” mediatype=”audio”/>

<MMT-CI:AI xmlns:xlink=”http://www.w3.org/1999/xlink”

xlink:href=”mmt://CI.layer.1” xlink:actuate=”onRequest”

</MMT-CI:AI>

</MMT-CI:LoA>

<MMT-CI:view id=”View1” >

<MMT-CI:divLocation id=”divL1” MMT-CI:refDiv=”Area1” />

<MMT-CI:divLocation id=”divL2” MMT-CI:refDiv=”Area2” />

<MMT-CI:divLocation id=”divL3” MMT-CI:refDiv=”Area3” />

</MMT-CI:view>

</head>

<body>

<div id=”Area1”>

<video id=”Video1” MMT-CI:refAsset=”Asset0” />

<audio id=”Audio1” MMT-CI:refAsset=”Asset1” />

</div>

<div xmlns:xlink=”http://www.w3.org/1999/xlink”

xlink:href=”mmt://CI.layer.2” xlink:actuate=”onRequest”

</div>

</body>

</html>

· Layer-1 MMT-CI:
	<MMT-CI:AI id=”Asset20” src=”mmt://Asset20” mediatype=”text” />

<MMT-CI:AI id=”Asset30” src=”mmt://Asset30” mediatype=”text” />

· Layer-2 MMT-CI:
	<div id=”Area2”>

 <text id=”Text1” MMT-CI:refAsset=”Asset20” />

</div>

<div id=”Area3”>

 <text id=”Text2” MMT-CI:refAsset=”Asset30” />

</div>

A.10.2 Example 2: Fragmented MMT-CI
A service is composed of MMT Assets provided by two different MMT sending entities and a view for the service is structured by two Areas. Main MMT-CI provides spatial information of the areas and information for MMT Assets consumed in Area1. Those MMT Assets for Area1 and the main MMT-CI are delivered from the main MMT sending entity. Sub-MMT-CI provides information for MMT Assets consumed in Area2. Those MMT Assets for Area2 and the sub-MMT-CI are delivered from a sub-MMT sending entity.
While the layer-0 and the upper-layer MMT-CIs are delivered from single MMT sending entity in the case of above layered MMT-CI, main/sub MMT-CIs are delivered from a plurality of different MMT sending entities /networks in the case of fragmented MMT-CI. Each MMT sending entity has its own MMT Assets, and MMT-CI is fragmented to multiple parts of MMT-CI, main MMT-CI and sub-MMT-CIs, according to the MMT Assets owned by the MMT sending entities. The purpose of the fragmented MMT-CI mechanism is to allow separate management of MMT-CIs and their associated MMT Assets by different MMT sending entities. MMT receiving entity receives main MMT-CI and sub-MMT-CIs composing a service and consumes the corresponding MMT Assets.
· Main MMT-CI on main MMT sending entity: main-s:
	<html>

<head>

<title>Entertainment</title>

<MMT-CI:LoA>

<MMT-CI:AI id=”AssetV0” src=”mmt://main-s/AssetV0” mediatype=”video”/>

<MMT-CI:AI id=”AssetA0” src=”mmt://main-s/AssetA0” mediatype=”audio”/>
<MMT-CI:AI xmlns:xlink=”http://www.w3.org/1999/xlink”

xlink:href=”mmt://sub-s/CI.1” xlink:actuate=”onLoad”/>
</MMT-CI:LoA>

<MMT-CI:view id=”View1”>

<MMT-CI:divLocation id=”divL1” MMT-CI:refDiv=”Area1”/>

<MMT-CI:divLocation id=”divL2_1” MMT-CI:refDiv=”Area2”/>
</MMT-CI:view>

</head>

<body>

<div id=”Area1”>

<video id=”Video0” MMT-CI:refAsset=”AssetV0”/>

<audio id=”Audio0” MMT-CI:refAsset=”AssetA0”/>

</div>

<div xmlns:xlink=”http://www.w3.org/1999/xlink”

xlink:href=”mmt://sub-s/CI.2” xlink:actuate=”onLoad”/>
</body>

</html>

· Sub-MMT-CI.1 on sub MMT sending entity: sub-s:
	<MMT-CI:AI id=”AssetV1” src=”mmt://sub-s/AssetV1” mediatype=”video”/>

<MMT-CI:AI id=”AssetA1” src=”mmt://sub-s/AssetA1” mediatype=”audio”/>

· Sub-MMT-CI.2 on sub MMT sending entity: sub-s:
	<div id=”Area2”>
<video id=”Video2” MMT-CI:refAsset=”AssetV1”/>

<audio id=”Audio2” MMT-CI:refAsset=”AssetA1”/>

</div>

Annex B
(informative)

The QoS management Model for MMT
B.1 Usage of ARQ
B.1.1 Introduction

The ARQ process and the type of information signaled between the sending entity and the receiving entity are described in 8.4.1. In this Annex the management model is described.

B.1.2 Usage of ARQ for QoS management

Figure 16 illustrates the ARQ management process. The 1st step in the ARQ process is for the ARQ configuration information message to be generated at the sending entity and then to be delivered to the receiving entity. At the MMT receiving entity the ARQ configuration information will be stored.The receiving entity continues with receiving MMT media packets, and checks for lost packets. A timeout parameter, profile indicator for the feedback mechanism and profile indicator for the retransmission mechanism are included in the ARQ configuration message. From the timeout parameter the receiver will be able to determine if a packet is indeed lost. Once the receiving entity determines that a packet has been lost a feedback message is generated according to the rules or criteria as defined in the ARQ configuration message that are saved in the receiver. The feedback message is then sent to the sending entity which then generates the retransmission message according to the ARQ configuration information and transmits to the MMT receiving entity. The MMT receiving entity receives the retransmission message that has been generated according to the ARQ configuration information. The MMT receiving entity is able to substitute the lost media packet from the retransmission message.
There is a well known problem with ARQ when networks experience congestion and degradation. In such a situation if a data packet is lost and then the receiver requests re-transmission of this packet – then there is the case where the act of re-transmission itself will lead to further network degradation. A solution to this is to re-transmit at a higher priority than when the initial data packet was sent to the receiver. In MMT it is possible to obtain the current network condition and the priority of the lost packet, and with this information the lost packet will be re-transmitted according to policy set for a given application.
B.2 Usage of ADC, CLI and QoS indicator
B.2.1 Introduction

In this Annex C. describes how to utilize the QoS tools such as ADC (Asset Delivery Characteristics), CLI (Cross Layer Interface), and QoS fields in an MMT packet. They are used accordingly in 3 different categories of QoS control mechanism such as best effort, per class QoS, and per flow QoS.
B.2.2 Use case : QoS management for Best effort

For best effort, networks do not provide any QoS control mechanism. To that end, a sending entity and a receiving entity can control the QoS management without any support from networks. RTCP (Realtime Transport Control Protocol), transport layer protocol is only possible QoS management tool under best effort IP environment. In this environment networks are regarded as a black box and end-to-end QoS parameters such as delay and Packet Loss Ratio (PLR) can be measured by using RTCP mechanism.
A MMT sending entity could then take any action based on the measured values. For example, if PLR becomes high, a sending entity may lower code ratio (k/n) as transmitting more repair packets to prevent losing more number of packets. CLI provides more accurate and more prompt QoS information about time varying last mile channel condition. With this information both server-driven QoS and client-driven QoS can be easily achieved by accompanying with any feedback scheme. ADC in which recommended QoS requirement for the associated MMT Asset are described, can be used in a sending entity to help deciding actions based on CLI. The actions may include decision of MMT Assets to be transmitted and code ratio to prevent packet loss for a given channel.
It is well known that both per class QoS and per flow QoS require support from networks and per class QoS mechanism is coarser than that of per flow QoS as depicted below.
B.2.3 Use case: QoS management for per Class

Per class QoS is a priority-based tool, where every packet has priority identifier in terms of its significance. On congestion in the middle of network, packets of less significance are dropped first.
In this specification, for the priority of an MMT Asset is defined in QoS descriptor in ADC. The sending entities such as MANE (Media Aware Network Element), Intelligent CDN and application level of cloud computing may handle this priority information to decide whether to forward a packet based on its own policy.
B.2.4 Use case: QoS management for per Flow

Per flow QoS is a reservation based tool. Certain amount of resources is guaranteed in per flow QoS while all resources are shared in best effort and per class service. For each MMT Asset, network resources along the path are reserved during a service. ADC includes information about amount of required resources. The ADC parameters are compatible to those defined in IETF[1] and 3GPP[2]. It shall be noted that CLI is not used in this scheme since network guarantees resources.
Table B. 1 — QoS management for MMT
	Type
	ADC
	MMT packet QoS identifiers
	CLI

	Best -effort
	Used for adaptation according to current channel condition reported through CLI
	Not used
	Measure time-varying channel parameters.

	per-Class QoS
	Used for adaptation based current channel condition reported through CLI
	Priority identifier is used in the sending entity such as MANE* for selective forwarding
	Measure time-varying channel parameters.

	per-Flow QoS
	Used for resource reservation during call setup
	Flow identifier is used for the sending entity such as MANE* to identify packets for which reserved resources are guaranteed.
	Not used because it is a guaranteed service.

* MANE : MANE(Media Aware Network Element)

[1] IETF RFC2212, “Specification of Guaranteed Quality of Service,” 1997.

[2] 3GPP TS23.107, “Quality of Service (QoS) concept and architecture,” 2002.
Annex C
(informative)

Examples of Hybrid delivery in MMT

C.1 Introduction
This Annex provides information on implementation of MMT in hybrid delivery cases.
Hybrid delivery is defined as simultaneous delivery of one or more content components over more than one physically different type of network. One example is that one media component is delivered on broadcast channels and the other media component is delivered on broadband networks. The other example is that one media component is delivered on broadband networks and the other media component is delivered on another broadband networks.
C.2 Classification of hybrid delivery

Basic concept of hybrid delivery is to combine media components on different channels. However, in detail, there are some types of hybrid delivery. The classification is shown in the following:

· Live and non-live

· Combination of streaming components (Figure C. 1)
· Combination of streaming component with pre-stored component (Figure C. 2)
· Presentation and decoding

· Combination of components for synchronized presentation (Figure C. 1)
· Combination of components for synchronized decoding (Figure C. 3)
· Same transport schemes and different transport schemes

· Combination of MMT components

· Combination of MMT component with another-format component
 such as MPEG-2 TS

[image: image38.emf]Decoder

Broadcast

channel

Broadband

networks

Synchronized

presentation

Figure C. 1 — Combination of streaming components for presentation
[image: image39.emf]Decoder

Broadband

networks

Synchronized

presentation

Storage

Figure C. 2 — Combination of streaming component with pre-stored component for presentation
[image: image40.emf]Decoder

Synchronized decoding

Broadcast

channel

Broadband

networks

Figure C. 3 — Combination of components for decoding
So-called seamless switching can be categorized into hybrid delivery of streaming components for presentation since switching components is possible when both components are synchronized for presentation.

C.3 Technical elements for hybrid delivery

While a lot of information is specified in MMT Signaling Messages and MMT-CI, three types of information are mainly required for hybrid delivery.

· MMT Asset information

· Information on spatial relationships among media components

· Signaling Message for Media Consumption

The following clauses detail the implementation of the information in individual cases categorized in clause C.2.

C.4 Detailed implementation
C.4.1 Use case : Combination of MMT and MPEG-2 TS for synchronized presentation
C.4.1.1 MMT Asset information

In order to identify the type and location of media components, the following signaling messages are required.

· MMT_general_location_information message

This message specifies the address of a media component. In the case of combination with MPEG-2 TS on broadcast channels, MEGP-2 TS location is used.

A typical example is to identify network_id (16 bits assigned by SDO), MPEG-2 transport_stream_id (16 bits assigned by the operator), and MPEG-2 PID (13 bits assigned by the operator).

C.4.1.2 Information on temporal relationships among media components

MPEG-2 TS components have timestamps based on STC. MMT components have timestamps based on UTC. To synchronize these different types of timestamps in MMT and MPEG-2 TS, Clock Relation Information messages are required.

· Clock Relation Information message can carry a set of STC_sample and NTP_timestanp_sample, that are identical timing.

At an MMT compliant receiving entity, the STC based clock in MPEG-2 TS can be converted to the wall clock based on UTC by processing the Clock Relation Information. An MMT component and an MPEG-2 TS component are presented in synchronized manner since both components can share the same time domain as wall clock.
Annex D
(informative)

Usage of MMT AL-FEC
D.1 Usage of two stage FEC coding structure
D.1.1 Introduction

For error resilience timed and non-timed data delivery service, FEC scheme based on block (N, K) code is applied. For given code rate CR (= K/N), FEC recovery performance on application layer is mainly dependent on loss rate, loss model and FEC source block length K. For given packet loss rate and on given loss model, the greater K it is, the lower overhead it requires for target FEC recovery performance while the longer delay it introduces and the more buffer memory it requires. However, the smaller K it is, the higher FEC overhead it requires while the less delay (low delay service) it is achievable and the less buffer memory it requires.
Usually, MMT Asset for timed data requires low delay under reasonable FEC recovery performance and MMT Asset for non-timed data does not allow any loss and these delivery characteristics about required QoS for delivery of MMT Assets are described in MMT-ADC. For this, MMT Asset for timed data is delivered and protected with relatively smaller FEC block to support low delay and MMT Asset for non-timed data is delivered and protected with relatively greater FEC block to get higher FEC recovery performance and lower FEC overhead. Therefore, Case 3 of two stage FEC coding structure is used for delivery service of hybrid contents which requires two different QoSs such as AV and File data.
On the other hands, when MMT Asset for timed data such as AV streaming delivery service is multicasted (or broadcasted), some end-users (User Group A) of the multicast (or broadcast) group can be under relatively good channel condition (e.g. 1% packet loss or random packet loss) and the others (User Group B) can be under relatively bad channel condition (e.g. 10% packet loss or burst packet loss). For this, it is preferable the MMT Asset to be delivered and protected with relatively smaller FEC block to provide low delay service to User Group A and with relatively greater FEC block to provide reasonable FEC recovery performance to User Group B. Therefore, Case 3 of two stage FEC coding structure is used for streaming multicasting (or broadcasting) service of MMT Asset for timed-data.
D.1.2 Use Case: Hybrid contents delivery
When hybrid contents, which consists of MMT Assets (Video and Audio for timed-data and File for non-timed data), are delivered, each MMT Asset is packetized in MMT payloads and the packetized MMT payloads for the MMT Assets are multiplexed on MMT packets r to be single FEC source flow (a sequence of MMT packets for the MMT Assets). The single FEC source flow is segmented into one or more FEC source blocks and each FEC source block is protected by Case 3 of two stage FEC coding structure which is described in sub-clause 6.5.2.1 in this specification.
During FEC decoding process, MMT Assets for timed-data are recovered by using FEC 1 decoder in FEC sub-block units to provide low delay service and MMT Assets for non-timed data are recovered by using both FEC 1 decoder in FEC sub-block units and FEC 2 decoder in FEC source block units to provide higher FEC recovery performance.
D.1.3 Use Case: Streaming multicasting (or broadcasting) to two different end-user groups which is under two different channel conditions each other.
When AV contents, which consists of MMT Assets (Video and Audio for timed-data), are multicasted (or broadcasted) to two different end-user groups who are under two different channel conditions each other, each MMT Asset is packetized in MMT payloads and the packetized MMT payloads for the MMT Assets are multiplexed on MMT packets to be single FEC source flow (a sequence of MMT packets for the MMT Assets). The single FEC source flow is segmented into one or more FEC source blocks and each FEC source block is protected by Case 3 of two stage FEC coding structure which is described in sub-clause 6.5.2.1 in this specification.
During FEC decoding process, User Group A, who is under relatively good channel condition, recovers the MMT Assets by using FEC 1 decoder in FEC sub-block units for low delay service and User Group B, who is under relatively bad channel condition, recovers the MMT Assets by using FEC 1 decoder in FEC sub-block units and FEC 2 decoder in FEC source block units to get reasonable FEC recovery performance.

Moving from User Group B to User Group A would be done without any service interruption while moving from User Group A to User Group B would require service interruption due to longer delay.
D.2 FEC Decoding Method For ibg_mode2
D.2.1 Introduction

This Annex provides recommendations for the FEC decoding method when MMT employs ibg_mode2 as FEC information block format. Depending on FEC encoding scheme, FEC decoding algorithm can be decided. However, this Annex does not cover a specific FEC decoding algorithm, but deals with only the method to choose a proper unit of data for FEC decoding. This Annex provides some examples of FEC decoding unit and a method to choose a proper unit.

D.2.2 FEC information block format for ibg_mode2
In ibg_mode2, FEC information block (FIB) usually consists of FEC source payloads of variable sizes. Figure A.1 presents an example of FIB for ibg_mode2 which is built of 6 FEC source payloads having distinct sizes. More precisely, the 6 FEC source payloads and some padding data (e.g., all 00h) have been placed into the FIB. Note that any FEC source payload shall be started at the first byte of an FEC information sub-payload in FIB. The role of padding data may be regarded as adjusting the start point of FEC source payloads.

The columns of FIB in Figure D. 1 correspond to the FEC information payloads of size T [bytes] which is composed of N(=4) FEC information sub-payloads of size T/N. In other words, the FIB consists of K(=13) FEC information payloads of size T, i.e., K*N(=52) FEC information sub-payloads of size T/N(=T/4). Furthermore, an FIB can be divided into N regions which consist of K FEC information sub-payloads, respectively, such as Regions-1, 2, 3, 4 in Figure D. 1. The concept of regions in an FIB will be used for recommended FEC decoding method, later.

[image: image41.emf]Region –1

Region –2

Region –3

Region –4

Padding Data

T

T/4

T/4

T/4

T/4

K

Figure D. 1 — Example of FEC information block
D.2.3 Regionalization of FEC Information Block for FEC decoding
First, assume that the second and fifth FEC source payloads in Figure D. 1 are lost, i.e., two FEC source payloads are not received in the receiver side. When an FEC source payload is lost, the receiver cannot acquire its boundary information in the FIB since its MMT FEC source payload ID and size information are also lost. In other words, the receiver cannot acquire the information on the start and end positions of FEC source payload and the amount of padding data, and so on. Therefore, the receiver can rebuild FIB as depicted in Figure D. 2. Note that MMT FEC source payload ID provides information related to the start position of the FEC source payload in FIB in terms of the FEC information sub-payload for ibg_mode2.For example, the start position of the second and fifth FEC source payloads in Figure D. 1 in terms of FEC information sub-payloads may be 6 and 37. After rebuilding the FIB from received FEC source payloads, the receiver carries out the FEC decoding process to recover the lost FEC source payloads.

[image: image42.emf]Region –1

Region –2

Region –3

Region –4

K

Erased (Lost) Data

Figure D. 2 — FIB rebuilt when 2 FEC source payloads are lost
The unit of data used during the decoding process can be changed according to decoding requirements, e.g., the decoding complexity, latency and the performance of erasure recovery, etc. For the first example, Figure D. 3 presents the FEC decoding method based on FEC information payload unit. To carry out the decoding process based on FEC information payload, FIB in Figure D. 2 should be interpreted into the FIB in Figure D. 3. It is easily checked that any FEC information payload including lost FEC source payload is regarded as a lost FEC information payload. Consequently, the rebuilt FIB has seven lost FEC information payloads, and therefore, at least seven FEC parity payloads are required to recover the lost FEC source payloads perfectly.

[image: image43.emf]...

FEC Parity

Payloads

Region –1

Region –2

Region –3

Region –4

Decoding

Figure D. 3 — FEC decoding based on FEC information payload unit
The advantage of FEC decoding based on FEC information payload unit is low-complexity decoding due to one erasure pattern during the decoding for the given FIB. More precisely, the preprocessing, e.g., Gaussian elimination to form a decoding schedule, is required only once and the subsequent process is related to simple repeated computations.
For the second example, Figure D. 4 presents the FEC decoding method based on 2 FEC information sub-payloads unit. Here 2-sub-payload means a virtual unit for 2 sub-payloads bonded in each divided region. To carry out the FEC decoding based on multiple FEC information sub-payloads, a regionalization step is required. After rebuilding the FIB from received FEC source payloads in Figure D. 1, the FIB should be divided into two regions as depicted in Figure D. 4. One region consists of Regions-1 and -2, and the other consists of Regions-3 and -4. Next, any FEC information 2-sub-payload including lost FEC source payload is regarded as a lost FEC information 2-sub-payload.

Consequently, one region and the other of FIB in Figure D. 4 have six and five lost FEC information 2-sub-payloads, respectively. Therefore, at least six FEC parity payloads are required to recover the lost FEC source payloads perfectly. Finally, FEC decoding is carried out with a proper amount of FEC parity payloads for each region. Note that FEC parity payloads also should be transformed into FEC parity 2-sub-payloads for FEC decoding.

In general, the erasure patterns of two regions are different in case of FEC decoding based on multiple FEC information sub-payloads unit. Therefore, the preprocessing for FEC decoding (e.g., Gaussian elimination) shall be applied to each divided region in FIB, i.e., two distinct FEC decoding processes are carried out. This causes an increase of decoding complexity compared with FEC decoding based on FEC information payload, while the performance of erasure recovery can be improved for the given FEC parity payloads since the number of erasures is reduced. Note the number of erasures and their positions for the first and second examples are different.

[image: image44.emf]Region–1

Region–2

Region–3

Region–4

...

FEC Parity

2-Sub-payloads

...

FEC Parity

2-Sub-payloads

Decoding–1

Decoding–2

Figure D. 4 — FEC decoding based on multiple information sub-payloads unit
For the third example, Figure D. 5 presents the FEC decoding based on FEC information sub-payload unit. In this case, the FIB should be divided into four regions as depicted in Figure D. 5. The four regions are the same as Regions-1, -2, -3, and -4 in Figure D. 2. Furthermore, each region has five, four, five, and five lost information sub-payloads, respectively. Therefore, at least five FEC parity payloads are required to recover the lost FEC source payloads perfectly. Finally, FEC decoding is carried out with a proper amount of FEC parity payloads for each region. Note that FEC parity payloads also should be transformed into FEC parity sub-payloads for FEC decoding.

In general, the erasure pattern of each region is different in case of FEC decoding based on FEC information sub-payloads unit. Therefore, the preprocessing for FEC decoding (e.g., Gaussian elimination) shall be applied to each region in the FIB, i.e., four distinct FEC decoding processes are carried out. This causes an increase of decoding complexity compared with FEC decoding based on FEC information 2-sub-payload, while the performance of erasure recovery can be improved for the given FEC parity payloads since the number of erasures is reduced. Note the number of erasures and their positions for the first, second, and third examples are different.
The unit of data used during the decoding process is related to the decoding complexity and the performance, i.e., there is a trade-off between them. The smaller FEC decoding unit induces the larger decoding complexity, while its performance of erasure recovery becomes better. Therefore, it is important to choose a proper unit of data for FEC decoding according to system requirements.

[image: image45.emf]Region–1

Region–2

Region–3

Region–4

Decoding–1

Decoding–2

Decoding–3

Decoding–4

...

FEC Parity

Sub-payloads

...

FEC Parity

Sub-payloads

...

FEC Parity

Sub-payloads

...

FEC Parity

Sub-payloads

Figure D. 5 — FEC decoding based on information sub-payload unit
D.2.4 How to choose a proper unit of data for FEC decoding
As previous described, the number of erasures depends on the unit of data for FEC decoding, as depicted in Figure D. 6. It is clear that the smaller unit is, the less erasures are induced. On the other hands, the larger unit is, the smaller decoding complexity is induced. Therefore, it is recommended to choose FEC information sub-payload for the best FEC performance and choose FEC information payload for the smallest decoding complexity as the FEC decoding unit.

However, if there is not much difference for the number of erasures among the FEC decoding units, it would be better for FEC decoder to choose the large unit as possible since the effect of decreasing complexity is more dominant than that of degrading the performance, i.e., the performance degradation may not be critical. At this point, the number of erasures for each unit can be a measure to choose a proper unit of data for FEC decoding. More precisely, after counting erasures for each FEC decoding unit by several counters, compare their values and determine a proper FEC decoding unit based on a predetermined selection rule. For example, if the difference between the numbers of erasures for two decoding units is larger than a predetermined threshold value, the FEC decoder chooses a smaller unit, otherwise, a larger unit.

[image: image46.emf]Region –1

Region –2

Region –3

Region –4

E_Counter-1(0)

= 6

E_Counter-1(1)

= 5

E_Counter-2(0)

= 5

E_Counter-2(1)

= 4

E_Counter-2(2)

= 5

E_Counter-2(3)

= 5

E_Counter-0

= 7

K

Figure D. 6 — Example of counting erasures for each FEC decoding unit
Bibliography

[1] ISO/IEC 13818-1 | ITU-T Rec. H.222.0, Information technology – Generic coding of moving pictures and associated audio information: Systems

[2] ISO/IEC 13818-2 | ITU-T Rec.H.262, Information technology – Generic coding of moving pictures and associated audio information: Video
[3] ISO/IEC 14496-10, Information technology – Coding of audio-visual objects – Part 10: Advanced Video Coding

[4] ISO/IEC 23007-1, Information technology – Rich media user interfaces – Part 1: Widgets
[5] IETF RFC 4281, The Codecs Parameter for ‘Bucket’ Media Types, November 2005.

[6] IETF RFC 5646, Tags for Identifying Languages, September 2009.
Construct arq_signal_message with ARQ configuration info.

Substitute lost media packets from retransmitted message

Retransmit MMT packet

Generate retransmission message according to arq_signal_message

Send MMT packet with arq_fb_message

If media packet loss detected construct feedback message according to arq_signal_message

Send MMT packet with arq_signal_message

Send MMT packet with media data

ARQ system configured with arq_signal_message

Client

Server

Figure � SEQ Figure * ARABIC �23� — overview of ARQ signaling

� In this sentence, the case in which another-format component is encapsulated into MMT-format is excluded.

� When an MMT component is combined with another-format component, the latter component may be neither an Asset nor an MPU.

Document type: International Standard
Document subtype: REF DDDocSubType * CHARFORMAT
Document stage: (30) Committee
Document language: E
STD Version 2.1c2

_1411393885.vsd
Region – 1

_1411984031.vsd
FEC parity block
 (P PPLs)

F
E
C

P
A
R
I
T
Y

P
L

#
0

F
E
C

P
A
R
I
T
Y

P
L

#
1

F
E
C

I
N F
O

P
L

#
0

...

F
E
C

P
A
R
I
T
Y

P
L

#
P-1

F
E
C

I
N F
O

P
L

#
1

...

S Bytes

F
E
C

I
N F
O

P
L

#
K-1

FEC information (sub-)block
(K IPLs)

FEC Block (K+P PLs)

_1412066438.vsd
html

head

body

title

LoA

AI

AI

AI

view

div

video

img

audio

divLocation

div

div

divLocation

divLocation

view

view

_1413809147.vsd
Area 1

View

Area 3

Area 2

Asset
(Video)

Asset
(Audio)

Text

Caption

Image

_1411985280.vsd
S Bytes (=8*S rows)

1st Information Symbol Part
(= K Symbols)

2nd Information Symbol Part
(= K Symbols)

...

(8*S/m)th Information Symbol Part
(= K Symbols)

...

jth Information Symbol Part
(= K Symbols)

1st m rows

...

...

Information (Sub-)Block
(K IPLs)

2nd m rows

jth m rows

(8*S/m)th m rows

1st Parity Symbol Part
(= P Symbols)

Parity Block (P PPLs)

...

...

2nd Parity Symbol Part
(= P Symbols)

jth Parity Symbol Part
(= P Symbols)

(8*S/m)th Parity Symbol Part
(= P Symbols)

_1412021826.vsd
S
O
U
R
C
E

P
L

#
0

S
O
U
R
C
E

P
L

#
1

...

Smax Bytes

S
O
U
R
C
E

P
L

#
K1-1

1st Information Sub-Block
(K1 IPLs)

Information Block (K IPLs)

Padding Data

Padding Data

S
O
U
R
C
E

P
L

#
K1

S
O
U
R
C
E

P
L

#
K1+1

...

S
O
U
R
C
E

P
L

#
K1+K2-1

2nd Information Sub-Block
(K2 IPLs)

...

S
O
U
R
C
E

P
L

#
K-KM

S
O
U
R
C
E

P
L

#
K-KM+1

...

S
O
U
R
C
E

P
L

#
K-1

Mth Information Sub-Block
(KM IPLs)

...

Smax Bytes

...

...

...

S0

S1

SK1-1

...

SK1

2 bytes

SK1+1

...

...

SK1+
K2-1

SK-
KM

SK-
KM+1

...

SK-1

Si

ith SPL Length Field, where i = 0,1,…,K-1

1st Sub-Block
(K1 SPLs)

Source Block (K SPLs)

2nd Sub-Block
(K2 SPLs)

Mth Sub-Block
(KM SPLs)

I
N
F
O
R

P
L

#
K1-1

I
N
F
O
R

P
L

#
K1

I
N
F
O
R

P
L

#
K1+1

I
N
F
O
R

P
L

#
K1+K2-1

I
N
F
O
R

P
L

#
K-KM

I
N
F
O
R

P
L

#
K-KM+1

I
N
F
O
R

P
L

#
K-1

I
N
F
O
R

P
L

#
1

I
N
F
O
R

P
L

#
0

_1411985281.vsd
S Bytes (=8*S rows)

1st Parity Symbol Part
(= P Symbols)

Parity Block (P PPLs)

...

...

2nd Parity Symbol Part
(= P Symbols)

jth Parity Symbol Part
(= P Symbols)

(8*S/m)th Parity Symbol Part
(= P Symbols)

1st m rows

...

...

2nd m rows

jth m rows

(8*S/m)th m rows

Parity Block (P PPLs)

P
A
R
I
T
Y

P
L
#
0

P
A
R
I
T
Y

P
L
#
1

...

...

P
A
R
I
T
Y

P
L
#
P-1

P
A
R
I
T
Y

P
L
#
i

_1411985279.vsd
Information (Sub-)Block
(K IPLs)

I
N F
O

P
L

#
0

I
N F
O

P
L

#
1

...

I
N F
O

P
L

#
K-1

1st Information Symbol Part
(= K Symbols)

S Bytes (=8*S rows)

2nd Information Symbol Part
(= K Symbols)

...

(8*S/m)th Information Symbol Part
(= K Symbols)

...

jth Information Symbol Part
(= K Symbols)

1st m rows

...

...

I
N F
O

P
L

#
i

Information (Sub-)Block
(K IPLs)

2nd m rows

jth m rows

(8*S/m)th m rows

...

_1411973981.vsd
FEC Decoding Buffer

De-jitter Buffer

MMTP De-capsulation Buffer

S

S

S

P

S

MMTP Packet

S

MFU/MPU

_1411978237.vsd
S
O
U
R
C
E

P
L

#
0

S
O
U
R
C
E

P
L

#
1

...

S Bytes

S
O
U
R
C
E

P
L

#
K1-1

1st Information Sub-Block
(K1 IPLs)

Information Block (K IPLs)

S
O
U
R
C
E

P
L

#
K1

S
O
U
R
C
E

P
L

#
K1+1

...

S
O
U
R
C
E

P
L

#
K1+K2-1

2nd Information Sub-Block
(K2 IPLs)

...

S
O
U
R
C
E

P
L

#
K-KM

S
O
U
R
C
E

P
L

#
K-KM+1

...

S
O
U
R
C
E

P
L

#
K-1

Mth Information Sub-Block
(KM IPLs)

...

S Bytes

...

...

...

1st Sub-Block
(K1 SPLs)

Source Block (K SPLs)

2nd Sub-Block
(K2 SPLs)

Mth Sub-Block
(KM SPLs)

I
N
F
O
R

P
L

#
K1-1

I
N
F
O
R

P
L

#
K1

I
N
F
O
R

P
L

#
K1+1

I
N
F
O
R

P
L

#
K1+K2-1

I
N
F
O
R

P
L

#
K-KM

I
N
F
O
R

P
L

#
K-KM+1

I
N
F
O
R

P
L

#
K-1

I
N
F
O
R

P
L

#
1

I
N
F
O
R

P
L

#
0

_1411400289.vsd
...

FEC Parity Payloads

_1411403142.vsd
Decoding–1

_1411472497.vsd
Region – 1

_1411403118.vsd
...

FEC Parity
2-Sub-payloads

_1411398003.vsd
Region – 1

_1409475188.vsd
�

FEC block
constructor

FEC information (sub-) blocks

FEC Encoder

FEC packet Builder

FEC source payloads

FEC parity blocks

FEC packet blocks

Signaling
Encoder

FEC
Configuration
Information

FEC Out-of-band
Signals

FEC In-band
Signals

AL-FEC
In MMT

FEC parity payloads
Source MMT FEC Payload ID
Parity MMT FEC Payload ID

_1409475340.vsd
FEC information
sub-block (ER1)

_1409475513.vsd

S
O
U
R
C
E

P
L

#
0

(34 Bytes)

S
O
U
R
C
E

P
L

#
1

(30 Bytes)

S
O
U
R
C
E

P
L

#
2

(56 Bytes)

S
O
U
R
C
E

P
L

#
3

(40 Bytes)

S
O
U
R
C
E

P
L

#
4

(48 Bytes)

34

FEC source block
(KSP SPLs)

40

48

T (=32) Bytes

FEC information block
(KIP IPLs)

30

56

T/2 (=16) Bytes

T/2 (=16) Bytes

IPL#0

IPL#1

IPL#2

IPL#3

IPL#4

IPL#5

IPL#6

IPL#7

Padding Data

_1409475294.vsd
1st sub-block

FEC 1 Encoder

Mth P1

FEC 2 Encoder

P2

FEC Source block

2nd sub-block

Mth sub-block

...

1st sub-block

2nd sub-block

Mth sub-block

...

2nd P1

1st P1

_1388671728.unknown

_1406409710.vsd
Enhancement representation (ER 1)

_1403263514.vsd
TF,R(i)�

Receiver�

TF,S(i)�

TB,R�

Sender�

TB,S�

Delay1

Delay2

_1388666641.unknown

