Overview of technologies for immersive visual experiences: capture, processing, compression, standardization and display

Marek Domański

Poznań University of Technology

Chair of Multimedia Telecommunications and Microelectronics Poznań, Poland

Immersive visual experiences

Arbitrary direction of viewing

System: 3DoF

Arbitrary location of viewer

- virtual navigation
- free-viewpoint television

Both

System: 6DoF

Immersive video content

- **□** Computer-generated
- □ Natural content
 - Multiple camera around a scene
 also depth cameras, light-field cameras
 - Camera(s) located in a center of a scene
 360-degree cameras
 - Mixed
 - e.g.: wearable cameras

Video capture Common technical problems

Synchronization of cameras

Camera hardware needs to enable synchronization

Shutter release error < Exposition interval

Frame rate

High frame rate needed – Head Mounted Devices

Common task for immersive video capture: Calibration

Camera parameter estimation:

- Intrinsic the parameters of individual cameras –
 remain unchanged by camera motion
- Extrinsic related to camera locations in real word
 - do change by camera motion (even slight!)

Out of scope of standardization

Improved methods developed

Depth estimation

- By video analysis from at least 2 video sequences
 - Computationally heavy
 - Huge progress recently
- By depth cameras diverse products
 - Infrared illuminate of the scene
 - Limited resolution mostly

Out of scope of standardization

MPEG Test video sequences

- Large collection of video sequences with depth information
- Multiview, omnidirectional, lightfield, volumetric, etc.
- Used for experiments in standardization and algorithm testing

Immersive video path

Immersive video path

Scene representations

Basic representations used by MPEG

Multiview plus depth

Scene representations

Basic representations used by MPEG

• 360-degree + 360-degree depth

Scene representations

Basic representations used by MPEG

Point clouds

Immersive video compression

Immersive video path

Approximate bitrate for HD (1920×1080, 25 frame/s) [Mb/s]

Compressed video bitrates

$$B \approx A \cdot V$$
 [Mbps]

A – technology coefficient,

```
A = 4 for MPEG-2, A = 1 for HEVC,

A = 2 for AVC, A = 0.5 for VVC (expect).
```

V – format coefficient,

```
V=1 for SDTV (720×576, 25i),
V=4 for HDTV (1920×1080, 25i),
V=16 for UHDTV (3840×2160, 50p),
```

Approximate bitrate for HD (1920×1080, 25 frame/s) [Mb/s]

Immersive video compression

Enormous cost of development of new video technology from scratch

Compression of multiview plus depth video

Coding exploits inter-view redundancy:

Multiview extensions of video coding standards MPEG-2, AVC, HEVC (standardized)

Additionally exploits depth information:

3D extensions of video coding standards AVC, HEVC (standardized)

Compression of multiview plus depth video

Efficiency of Multiview/3D coding

- 10 50 % bitrate reduction vs. simulcast
- Efficient for dense camera locations on a line

Immersive video compression

Video examples

Inputs to HEVC encoders

Similar approach

Video-based Point Cloud

Audio:

MPEG surround MPEG-H 3D Audio

Edge server – user device link

Thank you