[go: up one dir, main page]

Skip to main content

High-Throughput Proteome Profiling of Plasma and Native Plasma Complexes Using Native Chromatography

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2628))

Abstract

We describe a high-throughput method for co-fractionation mass spectrometry (CF-MS) profiling for native plasma protein profiling. CF-MS allows the profiling of endogenous protein complexes between samples. Proteins often interact with other proteins and form macromolecular complexes that are different in disease states as well as cell states and cell types. This protocol describes an example for the sample preparation of 954 individual size exclusion chromatography (SEC) fractions, derived from 18 plasma samples that were separated into 53 fractions. Eighteen plasma samples were chosen based on the TMTpro multiplexing, but this methodology can be adapted for fewer or larger numbers of samples as appropriate. Our automated sample preparation method allows for high-throughput native plasma profiling, and we provide detailed methods for both a label-free and an isobaric labeling approach, discuss the merits of each approach, and detail the advantages of combining these strategies for comprehensive native plasma proteome profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhee H-W, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331

    Article  CAS  Google Scholar 

  2. Roux KJ, Kim DI, Raida M et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

    Article  CAS  Google Scholar 

  3. Huttlin EL, Bruckner RJ, Navarrete-Perea J et al (2021) Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184:3022–3040.e28

    Article  CAS  Google Scholar 

  4. Larance M, Kirkwood KJ, Tinti M et al (2016) Global membrane protein interactome analysis using in vivo crosslinking and mass spectrometry-based protein correlation profiling*. Mol Cell Proteom Mcp 15:2476–2490

    Article  CAS  Google Scholar 

  5. Andersen JS, Wilkinson CJ, Mayor T et al (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    Article  CAS  Google Scholar 

  6. Dunkley TPJ, Watson R, Griffin JL et al (2004) Localization of organelle proteins by isotope tagging (LOPIT)*. Mol Cell Proteomics 3:1128–1134

    Article  CAS  Google Scholar 

  7. Kirkwood KJ, Ahmad Y, Larance M et al (2013) Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics*. Mol Cell Proteomics 12:3851–3873

    Article  CAS  Google Scholar 

  8. Kristensen AR, Gsponer J, Foster LJ (2012) A high-throughput approach for measuring temporal changes in the interactome. Nat Methods 9:907–909

    Article  CAS  Google Scholar 

  9. Havugimana PC, Hart GT, Nepusz T et al (2012) A census of human soluble protein complexes. Cell 150:1068–1081

    Article  CAS  Google Scholar 

  10. Wessels HJCT, Vogel RO, van den Heuvel L et al (2009) LC‐MS/MS as an alternative for SDS‐PAGE in blue native analysis of protein complexes. Proteomics 9:4221–4228

    Article  CAS  Google Scholar 

  11. Havugimana PC, Goel RK, Phanse S et al (2022) Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat Commun 13:4043

    Article  CAS  Google Scholar 

  12. McAllister FE, Gygi SP (2013) Correlation profiling for determining kinase-substrate relationships. Methods 61:227–235

    Article  CAS  Google Scholar 

  13. Foster LJ, de Hoog CL, Zhang Y et al (2006) A mammalian organelle map by protein correlation profiling. Cell 125:187–199

    Article  CAS  Google Scholar 

  14. Dong M, Yang LL, Williams K et al (2008) A “Tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking. J Proteome Res 7:1836–1849

    Article  CAS  Google Scholar 

  15. Gaun AL, Olsson M et al (2022) Triple-threat quantitative multiplexed plasma proteomics analysis on immune complex disease MRL-lpr mice. Proteomics 22(19-20):2100242

    Article  Google Scholar 

  16. Gaun A, Hardell KNL, Olsson N et al (2021) Automated 16-Plex plasma proteomics with real-time search and ion mobility mass spectrometry enables large-scale profiling in naked mole-rats and mice. J Proteome Res 20:1280–1295

    Article  CAS  Google Scholar 

  17. Li J, Cai Z, Bomgarden RD et al (2021) TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J Proteome Res 20:2964–2972

    Article  CAS  Google Scholar 

  18. Heusel M, Bludau I, Rosenberger G et al (2019) Complex‐centric proteome profiling by SEC‐SWATH‐MS. Mol Syst Biol 15:e8438

    Article  Google Scholar 

  19. O’Connell JD, Paulo JA, O’Brien JJ et al (2018) Proteome-wide evaluation of two common protein quantification methods. J Proteome Res 17:1934–1942

    Article  Google Scholar 

  20. Yu Q, Xiao H, Jedrychowski MP et al (2020) Sample multiplexing for targeted pathway proteomics in aging mice. Proc Natl Acad Sci USA 117:9723–9732

    Article  CAS  Google Scholar 

  21. Gerber SA, Rush J, Stemman O et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci 100:6940–6945

    Article  CAS  Google Scholar 

  22. Käll L, Canterbury JD, Weston J et al (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4:923–925

    Article  Google Scholar 

  23. Huttlin EL, Jedrychowski MP, Elias JE et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    Article  CAS  Google Scholar 

  24. Ting L, Rad R, Gygi SP et al (2011) MS3 eliminates ratio distortion in isobaric labeling-based multiplexed quantitative proteomics. Nat Methods 8:937–940

    Article  CAS  Google Scholar 

  25. Hu LZ, Goebels F, Tan JH et al (2019) EPIC: software toolkit for elution profile-based inference of protein complexes. Nat Methods 16:737–742

    Article  CAS  Google Scholar 

  26. Stacey RG, Skinnider MA, Scott NE et al (2017) A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE). BMC Bioinform 18:457

    Article  Google Scholar 

  27. Van SJ, Haupt A, Schulte U et al (2021) CEDAR, an online resource for the reporting and exploration of complexome profiling data. Biochimica Et Biophysica Acta Bba - Bioenergetics 1862:148411

    Article  Google Scholar 

  28. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectr 5:976–989

    Article  CAS  Google Scholar 

  29. Perkins DN, Pappin DJC, Creasy DM et al (1999) Probability‐based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  30. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open‐source MS/MS sequence database search tool. Proteomics 13:22–24

    Article  CAS  Google Scholar 

  31. Orsburn BC (2021) Proteome discoverer—a community enhanced data processing suite for protein informatics. Proteomes 9:15

    Article  CAS  Google Scholar 

  32. Zhang J, Xin L, Shan B et al (2012) PEAKS DB: De Novo sequencing assisted database search for sensitive and accurate peptide identification*. Mol Cell Proteom Mcp 11(M111):010587

    Google Scholar 

  33. Bern M, Kil YJ, Becker C (2012) Byonic: advanced peptide and protein identification software. Curr Protoc Bioinform 40:13.20.1–13.20.14

    Article  Google Scholar 

  34. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  Google Scholar 

  35. Kong AT, Leprevost FV, Avtonomov DM et al (2017) MSFragger: ultrafast and comprehensive peptide identification in shotgun proteomics. Nat Methods 14:513–520

    Article  CAS  Google Scholar 

  36. Senkler J, Senkler M, Eubel H et al (2017) The mitochondrial complexome of Arabidopsis thaliana. Plant J 89:1079–1092

    Article  CAS  Google Scholar 

  37. Páleníková P, Harbour ME, Ding S et al (2021) Quantitative density gradient analysis by mass spectrometry (qDGMS) and complexome profiling analysis (ComPrAn) R package for the study of macromolecular complexes. Biochimica Et Biophysica Acta Bba - Bioenergetics 1862:148399

    Article  Google Scholar 

  38. Strien JV, Guerrero-Castillo S, Chatzispyrou IA et al (2019) COmplexome Profiling ALignment (COPAL) reveals remodeling of mitochondrial protein complexes in Barth syndrome. Bioinformatics 35:3083–3091

    Article  Google Scholar 

  39. Giese H, Ackermann J, Heide H et al (2015) NOVA: a software to analyze complexome profiling data. Bioinformatics 31:440–441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona E. McAllister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaun, A., Olsson, N., Wang, J.C.K., Eaton, D.L., McAllister, F.E. (2023). High-Throughput Proteome Profiling of Plasma and Native Plasma Complexes Using Native Chromatography. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics