
Lattice-Based Group Signatures
in the Standard Model, Revisited

Nam Tran1,2⋆, Khoa Nguyen1, Dongxi Liu2,
Josef Pieprzyk2,3, and Willy Susilo1 ⋆⋆

1 University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
ndt141@uowmail.edu.au, khoa@uow.edu.au, wsusilo@uow.edu.au

2 CSIRO Data61, Marsfield, 26 Pembroke Road, NSW 2122, Australia
3 Institute of Computer Science, Polish Academy of Sciences, Poland
Dongxi.Liu@data61.csiro.au, Josef.Pieprzyk@data61.csiro.au

Abstract. The study of lattice-based group signatures has been a promi-
nent research direction since 2010. While recent advances in the field
have yielded schemes in the random oracle model with strong security
properties and nearly practical efficiency, the current state of affairs
for lattice-based group signatures in the standard model is still much
less satisfactory. Existing schemes, proposed by Katsumata and Yamada
(EUROCRYPT’19) or implied by generic non-interactive zero-knowledge
proofs for NP (by Peikert and Shiehian at CRYPTO’19 and by Waters
at STOC’24), either only fulfil a weak notion of anonymity called self-
less anonymity, or require a strong lattice assumption, or suffer from
extremely large signatures and/or public keys.
This work aims to enhance the state of affairs for lattice-based group
signatures in the standard model. We provide improved constructions
that simultaneously achieves: (i) signature and public key sizes signifi-
cantly smaller than those of known schemes; (ii) full anonymity in the
CPA and CCA senses; (iii) security based on standard SIS and LWE
assumptions with polynomial approximation factors regarding worst-
case lattice problems (in general lattices). Our design approach slightly
departs from that of existing pairing-based and lattice-based construc-
tions. In the design process, we adapt and develop several lattice-based
cryptographic ingredients that may be of independent interest. At the
heart of our constructions is a reasonably efficient non-interactive zero-
knowledge proof system for relations typically appearing in advanced
privacy-preserving lattice-based cryptographic protocols. These relations
are addressed by a trapdoor Σ-protocol with an inverse polynomial
soundness error, which is made non-interactive via the standard-model
Fiat-Shamir transform of Canetti et al. (STOC’19) and a compiler by
Libert et al. (ASIACRYPT’20).

⋆ Nam Tran is supported by CSIRO Data61 PhD Scholarship and CSIRO Data61
Top-up Scholarship.

⋆⋆ Willy Susilo is supported by the Australian Research Council Australian Laureate
Fellowship FL230100033.

1 Introduction

Group signature, introduced in the seminal work of Chaum and van Heyst [23], is
a fundamental privacy-preserving primitive allowing registered users of a group
to anonymously sign messages on behalf of the whole group. Yet, users are kept
accountable for their actions since the signer of any problematic signature can
be traced by an opening authority – should the need arise. These two appealing
features enable group signatures to find applications in various real-life scenarios,
such as private-and-accountable access to public transport, anonymous online
communications, e-bidding and e-commerce systems, just to name a few. On
the theoretical front, designing secure and efficient group signature schemes is
interesting and challenging, since those advanced constructions usually require a
sophisticated combination of several cryptographic building blocks. The present
work focuses on group signatures from lattices.

Background and Motivation. The study of lattice-based group signatures,
initiated by Gordon et al. [34], has been a prominent and highly active research
direction since the rise of lattice-based cryptography [65,31,30,57]. There have
been proposed various improvements in terms of security and efficiency. In the
following, we will give a brief overview on the development progress of lattice-
based group signatures, categorized into schemes proven secure in the random
oracle model (ROM) and those in the standard model.

Lattice-Based Group Signatures in the ROM. The pioneering work by
Gordon et al. [34] yielded a scheme with a signature size linear in the num-
ber of group users N . While the scheme only satisfies CPA-full-anonymity [8], in
which the anonymity adversary is not given access to the opening oracle, the
strongest notion of CCA-full-anonymity [5] was then achieved in a follow-up work
by Camenisch et al. [18]. Then the linear barrier was overcome by Laguillaumie
et al. [41], who put forward the first scheme with a signature size logarithmic
in N , at the cost of relatively large parameters. Simpler and more efficient so-
lutions with O(logN) signature size and some additional functionalities were
then proposed in subsequent works [42,50,63,44,51,69]. Ling et al. [52] kept up
the improvement in terms of asymptotic efficiency by introducing a scheme with
constant-size signatures, i.e., O(1) in N .

However, all these schemes are not concretely efficient, due to a large depen-
dency on other major parameters, such as security parameter λ and lattice di-
mension n. A recent line of work [26,11,56,55,6,10] has significantly improved the
concrete efficiency of lattice-based group signatures, producing signature sizes of
just about tens of KBs. It is worth noting that all the aforementioned schemes
achieve in the ROM the standard notions of CPA/CCA-full-anonymity, with one
exception: the scheme from [42] only satisfies a weaker notion of anonymity,
namely, selfless-anonymity [15,9]. While full-anonymity allows the adversary to
corrupt all group users, selfless-anonymity prevents it from exposing the sign-
ing keys of the two users in question. In other words, signatures do not remain
anonymous to anyone knowing the signing keys (and in particular, to the signers
themselves). This contrast is easily seen in the borderline case where the group

2

has exactly two users: while full-anonymity allows the adversary to obtain the
signing keys of both users in the group, selfless-anonymity does not allow the
adversary to know any of the keys.

Lattice-Based Group Signatures in the Standard Model. Achieving
security in the standard model was a particularly challenging obstacle in the de-
velopment of lattice-based group signatures. The main reason was the then lack
of lattice-based non-interactive zero-knowledge (NIZK) proofs in the standard
model. A breakthrough was made by Katsumata and Yamada [37] who intro-
duced a novel approach for obtaining group signatures without NIZKs, based
on a special type of attribute-based signatures (ABS) [58] (which can be viewed
as a kind of designated-prover NIZKs [40]) and a secret-key encryption (SKE)
scheme with some additional properties. Their results yielded several interest-
ing constructions of lattice-based group signatures in the standard model. Their
first instantiation (henceforth, KY19-I) is a scheme relying on standard Short-
Integer-Solution (SIS) [2] and Learning-With-Errors (LWE) [65] assumptions
with polynomial approximation factors (w.r.t. the underlying worst-case lattice
problems). However, its signature size and public key size are linear in N . Their
second construction (henceforth, KY19-II) achieves constant-size signature and
public key, but it has to rely on a relatively strong assumption: subexponential
hardness of SIS. It is worth noting that, for both constructions, the dependencies
on security parameter λ and lattice dimension n are quite heavy (see Table 1 for
more details). Furthermore, in terms of anonymity property, these constructions
only achieve selfless-anonymity (in the CCA sense). A high-level reason for this
limitation is that the KY19 design approach does not make use of public-key en-
cryption – which has been shown [1] to be necessary for achieving full-anonymity.

Shortly after the publication of [37], Peikert and Shiehian [64] solved the
long-standing problem of constructing NIZKs for all NP statements based on
the standard LWE assumption in the standard model, using techniques inspired
by Canetti et al. [20,19], which make use of correlation intractable (CI) hash func-
tions. Recently, another line of work [67,68,13] successfully realized a primitive
called hidden bit generator (HBG) from lattice assumptions and as a corollary
they obtain a generic NIZK based on the NIZK system in the hidden bit model of
Feige, Lapidot and Shamir [28]. Theoretically speaking, these results imply the
feasibility of designing lattice-based group signatures achieving full-anonymity in
the standard model. However, to apply their protocol, one would need to convert
statements of the form “I have a valid membership certificate from the group
manager, and I have honestly encrypted my identity” typically used in building
group signatures following the sign-then-encrypt-then-prove paradigm to an in-
stance of the Graph Hamiltonicity problem. Such a conversion would require an
expensive Karp reduction and would lead to a significantly large group signature
size, estimated of order Ω(n6λ log3 λ). Achieving noticeably better efficiency for
NIZK-based group signatures from lattices in the standard model has been a
tough open question for the last 5 years.

As a summary, while practically relevant lattice-based group signatures with
strong security properties have been obtained in the ROM, the situation for

3

their standard-model counterparts is much less satisfactory: known schemes ei-
ther only fulfil the weak notion of selfless-anonymity, or require a strong lattice
assumption, or suffer from extremely large signatures and/or public keys. This
unpleasant state of affairs inspires us to investigate the problem of

Constructing lattice-based group signatures in the standard model simultaneously
featuring reasonably short signatures and keys, relying on mild lattice assump-
tions and achieving full anonymity.

We remark that we do not aim to achieve practical efficiency for lattice-based
group signatures in the standard model, given the current lack of truly practi-
cal NIZKs without the ROM. For advanced cryptographic primitives, there is
usually a big research gap between theoretical feasibility and concrete efficiency,
which may require many steps of development to fill in. We can observe such sit-
uations in primitives like MPC and FHE, and, in particular, in the development
of lattice-based group signatures in the ROM. As we discussed above, during
2010 – 2018, the focus was to improve asymptotic efficiency, from signature
size O(λ2 · N) in [34,18] to O(λ · logN) in [41,50,63,44], and then to constant-
size signature O(λ) in [52]. Once the achieved asymptotic efficiency had been
somewhat optimal, we then have witnessed the introduction of schemes with
concrete efficiency such as [26,11,56,55,6,10] since 2018. Hence, for lattice-based
group signatures in the standard model, we believe it is important at this point
to improve the asymptotic efficiency and reduce the currently large gap be-
tween theory and practice. Even though such attempts may not directly yield a
practically-interesting construction, they may inspire follow-up works that will
eventually lead to concretely efficient schemes.

Our Contributions. In this work, we provide an affirmative answer to the
problem discussed above. Specifically, we put forward a lattice-based group sig-
nature scheme in the standard model that enjoy the following properties:

– Signature size O(nλ log2 λ), which is significantly short signature sizes, com-
pared to the schemes KY19-I and KY19-II from [37] and (potential) con-
structions relying on generic NIZKs for NP. For the latter, we consider the
NIZK based on CI hash function from [64] (that we name NIZK-CI), and
recent constructions from hidden-bit generator [67,68,13] (that we name
NIZK-HBG).

– Public key size O(n2 log3 λ), which is smaller than those of KY19-I and
KY19-II by a factor at least O(n2 log λ).

– Our scheme achieves CCA-full-anonymity, and relies on standard SIS and
LWE assumptions with polynomial approximation factors, which is compa-
rable to KY19-I and constructions based on generic NIZKs.

We summarize the comparison between our scheme and other (known and
potential) lattice-based group signatures in the standard model in Table 1. One
can observe that our construction not only enjoys strong security properties but
also considerably improves the previous designs in terms of asymptotic efficiency.
When it comes to concrete parameters, we estimate that for 128 bits of security
and for a group of N = 220 users, our scheme produces signature sizes at least

4

Scheme Signature Public key Anonymity Assumptions

KY19-I [37] O(Nn log2 λ+ n2 log3 λ) O(Nn4 log4 λ) CCA-Selfless
SIS

LWE

KY19-II [37] O(n3 log4 λ) O(n4 log4 λ) CCA-Selfless
subexp-SIS

LWE

NIZK-CI [64]
(via [36,31,45])

O(n6λ log3 λ) O(n2 log3 λ) CCA-Full
SIS

LWE

NIZK-HBG [67,68,13]
(via [36,31,45])

O(n6λ log3 λ) O(n2 log3 λ) CCA-Full
SIS

LWE

Ours O(nλ log2 λ) O(n2 log3 λ) CCA-Full
SIS

LWE

Table 1. Comparison of signature sizes, public key sizes, anonymity notions and lattice
assumptions between our scheme and other (known and potential) lattice-based group
signatures in the standard model. Three governing parameters are used for the size
estimations: security parameter λ, the number of group users N ∈ poly(λ), and lattice
dimension n = Ω(λ). The size estimations for KY19-I and KY19-II are done based
on the constructions and parameters provided in [37]. While the schemes NIZK-CI
and NIZK-HBG have not been explicitly proposed, we may obtain it via the same
supporting techniques as for our scheme: the signature scheme from [36], the dual-
Regev encryption [31] and the compiler from [45]. Our estimation shows that these
schemes have huge signature sizes, due to the expensive overhead of Karp reduction
for transforming the defining relations of our scheme to a graph-based relation.

several orders of magnitude smaller than those of KY19-I, KY19-II and of the
potential constructions via NIZK-CI and NIZK-HBG. The public key size of
our scheme is also about two orders of magnitude smaller than those of KY19-I
and KY19-II.

Technical Overview. At a high level, our construction employs the tradi-
tional sign-then-encrypt paradigm for designing fully anonymous group signa-
tures following the BMW model [5], yet we introduce several modifications in
the process. The generic approach makes use of three major building blocks. The
first ingredient is an ordinary signature scheme compatible with zero-knowledge
proofs of a message-signature pair, which is used by the group manager to gen-
erate membership certificates for all group members. The second ingredient is
a public-key encryption scheme that will be used to encrypt the signer’s iden-
tity. And the final ingredient is an NIZK proof system that can handle relations
involving messages-signatures and ciphertexts-plaintexts in the aforementioned
components. For the signature layer, we choose the recently proposed scheme
from [36] which we refer to as JRS signature scheme. The JRS signature fea-
tures a short public key and that can be based on a standard SIS assumption
over general lattices. For the encryption layer, we choose the dual-Regev encryp-
tion scheme [31], which also offers a reasonably small public key and is based on
the LWE assumption.

In our construction, the group public key consists of (A,B = A·T,C,D,u) ∈
Zn×m
q ×Zn×m

q ×Zn×m
q ×Zn×ℓm

q ×Zn
q , where T ∈ Zm×m is a small norm matrix.

Unlike the generic construction from [5] where group manager signs users’ pub-

5

lic keys, we implement a delegation mechanism, in which each user is given a
trapdoor Rid for a matrix that “encodes” the identity id. When issuing a group
signature on a message m, such a trapdoor allows the user to issue a JRS signa-
ture for m. This is done using an idea similar to the one employed in [26,56,55],
in which a user id is uniquely associated with a matrix

Aid = (A | id ·G−B) ,

where G ∈ Zn×m is a gadget matrix. Via the Gaussian sampling technique
of [59], the setup authority can generate the secret key of an identity id ̸= 0,
which is a small norm matrix Rid ∈ Zm×m satisfying AidRid = C. The secret
Rid will act as the secret signing key of user id under JRS signature scheme.

We also depart from the usual signing methods adopted in previous standard-
model group signature schemes [49,48] from pairings, where signers sign a mes-
sage using a one-time signature and use their secret signing keys to certify the
corresponding one-time verification key. Such an approach, although convenient,
usually results in a blow-up of public-key size as the verification key of (lattice-
based) one-time signatures is often not compact. Hence, we let signers sign di-
rectly on messages. Namely, if the message is m ∈ {0, 1}ℓm , a user id signs m
by generating a JRS signature (τ,x) consisting of a non-zero scalar tag τ and a
discrete Gaussian vector x ∈ Z3m that satisfy

(Aid | τ ·G−C)x = u+D ·m mod q.

The above signing process differs from the original construction of [36], in which
the signer also produces a short randomness r such that

(Aid | τ ·G−C)x = u+A · r+D ·m mod q.

Simply put, signer creates a KTX commitment [38] on the message m. In our
construction, there is no need for committing to m and thus the commitment
part can be ignored. With this modification, we obtain a variant of JRS signa-
ture scheme that can be viewed as a plain lattice-based counterpart of Ducas-
Micciancio ring-based construction [27].

At this point, the standard approach of [5] requires encrypting id and the
signature (τ,x), then proving in ZK that encryption is correct and (τ,x) is a
valid JRS signature. However, encrypting the entire signature (τ,x) might be an
overkill as we observe that certain part of x can be revealed while essentially leak-
ing no information about signer’s identity id. This comes from a nice property of
Gaussian sampling algorithms [21,22], exploiting the fact that a discrete Gaus-
sian vector s of high dimension, conditioned on a linear equation Us = v mod q,
can be sampled by sampling some components of s independently of the matrix
part in U. This observation serves as a key technical point of the construction
from [63], and the same can be adapted in our scheme. Observe that (τ,x) should
satisfy

(A | id ·G−B | τ ·G−C) · x = u+D ·m mod q,

then we can let a signer id reveal the component s1 and s2 in x corresponding to
the matrix part id·G−B and τ ·G−C, but keep secret: the part s corresponding

6

to A, the identity id and the tag τ which depends on signer’s state. Conveniently,
the relation showing validity of a JRS signature now becomes

A · s+ id ·Gs1 + τ ·Gs2 = u+Dm+Bs1 +Cs2 mod q,

which is linear in the secret s, id and τ . Thus, it suffices for signer id to encrypt
s, id and τ under dual-Regev encryption, then prove well-formedness of the ci-
phertext as well as the validity of a JRS signature, which is a linear constraint
on s, id and τ . In particular, our method allows us to avoid quadratic relations,
which were required in previous constructions such as [42,50,44,43,52].

It remains the task of designing a standard-model NIZK system for the signer
to prove knowledge of a valid witness satisfying some linear relations, and the
witness is encrypted to a given ciphertext. We therefore would need a reasonably
efficient NIZK system for handling such equations. By “reasonably efficient”, we
mean to avoid the need to repeat an atomic zero-knowledge protocol Ω(λ) times
to achieve a negligible soundness error, as in [45]. Our wishful thinking is that
the NIZK can be done in just “one shot”, i.e., the number of protocol repeti-
tions is simply 1. While this feat has been achieved in number-theoretic-based
NIZKs in the standard model (e.g., [47]) and lattice-based NIZKs in the ROM
(e.g., [10]), it still remains a longstanding open problem to do so from lattices
and in the standard model. Instead, we employ an atomic protocol with an
inverse-polynomial soundness error 1/C, for some C ∈ poly(λ). Asymptotically,
the protocol needs to be repeated O(λ/log λ) times for a soundness level 1−2−λ.
However, when it comes to concrete parameters, to achieve soundness 1−2−128,
one only needs κ = 8 repetitions when C = 216, which is still much better than
κ = 128 – if the underlying protocol has soundness error 1/2.

Let us now discuss the techniques in more detail by considering a CPA-secure
variant of our scheme. In essence, we need an NIZK for a relation specified by

t = R · x mod q,

c =

(
U⊤

V⊤

)
r+ e+

(
0

⌊q/2K⌋x

)
mod q,

(1)

where the witness x is a small-norm vector. Essentially, the relation captures
the fact that x satisfies some linear relation and that a dual-Regev ciphertext c
encrypts x. Since the relation is linear in the witness and with some constraints
over the norms, this suffices for the blueprintΣ-protocol of Lyubashevsky [53,54].
In this Σ-protocol, the prover produces a response (zx, zr, ze) satisfying

a+ c · t = R · zx mod q,

v + c · c =

(
U⊤

V⊤

)
· zr + ze +

(
0m

⌊q/2K⌋ · zx

)
mod q;

(2)

where c is a verifier’s challenge chosen from some set of small integer, and (a,v)
is a prover’s first message. Here, rather than using single-bit challenge as in [53],
we let challenge space be the set of integer {0, 1, . . . , C} where C is polynomial

7

in the security parameter λ, thus requiring about λ/ log λ executions in parallel
to make the soundness error negligible.

To remove verifier’s randomness and obtain an NIZK proof, one could apply
the well-known Fiat-Shamir transformation [29], with the caveat that soundness
can only be argued in the ROM and might not be preserved when employing
concrete hash functions. Quite recently, the breakthrough result of Canetti et
al. [19] showed that the Fiat-Shamir transformation [29] can be soundly instan-
tiated without random oracles, assuming the underlying Σ-protocol is trapdoor.
In simple terms, this requires that for any false statement, there is at most one
verifier’s challenge that the prover can cheat4, and there is a trapdoor informa-
tion (which could be language-dependent) allowing one to efficiently identify this
“bad” challenge from any false statement and any prover’s first message. If we
consider the Σ-protocol of [53,54] that proves (1), this requires that for a false
statement (t, c), we can find the unique challenge c such that there is a response
(zx, zr, ze) satisfying verification equations of (2). A closer look shows that the
second equation of (2)

v + c · c =

(
U⊤

V⊤

)
· zr + ze +

(
0m

⌊q/2K⌋ · zx

)
mod q,

can be interpreted as “there exist encryption randomness (zr, ze) and a plaintext
zx such that v+ c · c mod q is a dual-Regev ciphertext encrypting zx with ran-
domness (zr, ze)”. Hence, (zx, zr, ze) can be recovered from v+c·c mod q, as one
can embed an LWE-inversion trapdoor (e.g. Micciancio-Peikert trapdoor [59])
allowing to recover the randomness of encryption (and thus the corresponding
plaintext). Such a capability enables an efficient “bad” challenge finding algo-
rithm in a very strong sense: not only the algorithm finds the unique challenge
that a dishonest prover can cheat, but it also retrieves the corresponding response
the prover must produce.

Therefore, we obtain a trapdoor Σ-protocol for the relation defined by (1),
by following Lyubashevksy’s framework and utilizing the randomness recovery
property underlying dual-Regev encryption scheme. The corresponding NIZK
argument system for (1) can be achieved via Fiat-Shamir transform with cor-
relation intractable hash functions of [19,64]. However, the resulting NIZK can
only achieve a weak-form of programmability as proven in [24], and might not
be enough for anonymity of group users. In particular, even for CPA-anonymity,
the zero-knowledge property of the NIZK argument obtained in the framework
of [19,64,24] is not sufficient for our construction, as it requires the ability to
modify the key of the correlation intractable hash function, which is chosen at
the time the group is set up.

To tackle the above issue, we turn to the stronger compilers of [45], which can
build a multi-theorem zero-knowledge and sound NIZK system generically from
any trapdoor Σ-protocol. In particular, they also provided a compiler turning
any trapdoor Σ-protocol into a simulation-sound NIZK under standard lattice

4 This is also known as optimal soundness [25].

8

assumptions. Looking ahead, our CCA-anonymous group signature employs the
latter along with the standard double encryption technique from [60].

Regarding the traceability of the group signatures, we note that since the
construction does not explicitly follow the generic BMW framework [5], trace-
ability is not directly reduced to the security of the employed digital signature
scheme. Furthermore, due to soundness slack of the NIZK system for relation (1),
an NIZK proof only guarantees that there exists (x, c) such that R · x = c · t,
and that c · c has the form of a dual-Regev ciphertext. As a consequence, a ci-
phertext c in the signature might not be well-formed and not decrypted to any
identity at all. As such, to argue traceability we directly reduce the adversary
to one which solves an instance of SIS problem.

Discussions and Open Questions. Our results significantly narrow the ef-
ficiency gap between group signatures in the standard model and those in the
ROM. However, there is still room for improvement. For instance, one could
further enhance the efficiency of the protocol in Section 3.2 by utilizing batching
techniques such as in [54], or working with structured lattices to extend the size
of the challenge space. Nevertheless, to the best of our knowledge these tech-
niques are not compatible with the trapdoor Σ-protocol framework. Therefore,
constructing a one-shot trapdoor Σ-protocol for lattice-based relations would
be an interesting direction for future research. Such a protocol, if it existed,
would immediately yield a group signature with efficiency rivaling that of its
counterparts in the ROM, in a way similar to the ring signature of [47].

Quite recently, there has been an interesting line of work generalizing group
signatures to privacy-preserving signature systems with advanced tracing capa-
bilities [46,61,62]. In this broader context, we hope that this work may motivate
further research into lattice-based constructions of these advanced primitives in
the standard model.

At the heart of our group signatures is a standard model NIZK proof of a valid
signature on a message for the JRS signature scheme. Upon closer inspection,
such an NIZK can be extended to prove knowledge of a valid message-signature
pair. Looking this way, the techniques presented in this paper may have poten-
tial applications in anonymous credentials [17,4], anonymous attestations [14],
decentralized e-cash systems [16], group encryptions [39], i.e., primitives relying
on NIZK proving possession of a message-signature pair as a building block. We
note that constructing any of these schemes from lattices in the standard model
remains an open question.

Organization. The rest of the paper is organized as follows. Section 2 recalls
some definitions and results frequently used in the paper. Section 3 describes our
trapdoor Σ-protocol, which serves as a core building block for the CCA-secure
group signature in Section 4. Several supporting materials are provided in the
Appendix.

9

2 Preliminaries

2.1 Basic Notations

Throughout this paper, vectors are treated as column vectors and denoted by
bold, lower-case letters. Matrices are denoted by bold, upper-case letters. The
coordinates of a vector are indexed in an array-like manner, starting from 1; for
example, given an n-th dimensional vector v, then v = (v[1], . . . ,v[n]). For two
vectors v1,v2; the concatenation is a column vector and denoted by (v1,v2).

For n ∈ N, we let [n] denote the set {1, . . . , n}. We let bin(n) ∈ {0, 1}⌈logn⌉

be the binary representation of n in little-endian, which satisfies n = bin(n)[1]+
bin(n)[2] · 2 + . . .+ bin(n)[⌈log n⌉] · 2⌈logn⌉−1.

The ℓ2-norm and ℓ∞-norm of x ∈ Rn are respectively denoted by ∥x∥2 and
∥x∥∞. For a matrix R = (r1| · · · |rm) ∈ Rn×m, we let ∥R∥2 be the operator
norm of the linear function defined by R. We have that ∥Rx∥2 ≤ ∥R∥2 ∥x∥2 for
any x ∈ Rm and ∥R∥2 ≤ maxi ∥ri∥2.

For a finite set S, we let U(S) denote the uniform distribution over S. We
write x← D when x is sampled from a probability distribution D.

2.2 Lattice-Based Cryptography

Hardness Assumptions We recall the SIS and LWE problems.

Definition 2.1. The SIS problem SISq,n,m,B, where n,m are dimensions, q is
a modulus and B is a norm bound such that n < m and 0 < B < q, asks to find
z ∈ Zm

q satisfying A · z = 0 mod q and 0 < ∥z∥2 ≤ B given A← U(Zn×m
q).

Definition 2.2. The LWE problem LWEn,q,χ, where n is a dimension, q is a
modulus and χ is a distribution over Z, asks a computationally-bounded adver-
sary A to distinguish between m = poly(n) samples drawn from one of the two
distributions:

1. (A,As+ e mod q) for a secret s← U(Zn
q), a matrix A← U(Zm×n

q) and an
error e← χm;

2. (A,b) for A← U
(
Zm×n
q

)
and b← U

(
Zm
q

)
.

Gaussian and Statistical Lemmas The discrete Gaussian distribution on a
lattice Λ ⊂ Zl centered around c ∈ Zl with width σ > 0 is given by the mass
function

DΛ,c,σ(z) =
exp

(
−π∥z− c∥2/2σ2

)∑
v∈Λ

exp (−π∥v − c∥2/2σ2)
.

We write DΛ,σ to denote the discrete Gaussian distribution centered at 0 with
width σ. In the case Λ = Zl, we simply write Dl

σ.

Lemma 2.1 ([3]). For any full-rank lattice L ⊂ Rn and any σ > 0, we have
Pr [∥v∥ > σ

√
n] ≤ 2−2n where v← DL,σ.

10

Throughout this paper, we use of a variant of Leftover Hash Lemma.

Lemma 2.2 (Adapted from [33, Lemma 1]). Let q ≥ 2 be a prime and D
be a distribution over Zm

q with min-entropy k. For any ε > 0 and k ≥ n log q +
2 log(1/ε) +O(1), the statistical distance between the two distributions{

(A,A · y mod q) : A← U
(
Zn×m
q

)
;y← D

}
,{

(A,u) : A← U
(
Zn×m
q

)
;u← U

(
Zn
q

)}
is at most ε.

Trapdoor Sampling We recall the notion of gadget matrix [59], that is a
matrix of the form

Gn,m =
(
In ⊗

(
1 2 . . . 2⌈log q⌉−1) | 0m−n⌈log q⌉

)
∈ Zn×m

q .

For a matrix A ∈ Zn×m
q where m > n⌈log q⌉, a G-trapdoor of A with an

invertible tag matrix H ∈ Zn
q is a small-norm matrix R ∈ Zm×w such that

A ·R = H ·Gn,w mod q. For sufficiently large m, we can efficiently generate a
near-uniform matrix A ∈ Zn×m

q along with a short G-trapdoor.

Lemma 2.3 ([59]). There exists a PPT algorithm TrapGen that takes as input
(1n, 1m), a prime modulus q ≥ 2 such that m ≥ 2n log q, and an invertible tag
H ∈ Zn

q . It outputs a matrix A ∈ Zn×m
q along with a G-trapdoor T ∈ Zm×w with

tag H where w > n log q, and that A is distributed statistically close to uniform
over Zn×m

q and ∥T∥2 ≤ O(
√
n log q).

TrapGen may work as follows: for a dimension n, a prime modulus q, a di-
mension m such that m = 2n⌈log q⌉ + Ω(λ) where λ is a security parameter
and a tag H ∈ Zn

q , TrapGen outputs A =
(
A | HGn,n⌈log q⌉ −AR

)
∈ Zn×m

q ,

where A ← U(Zn×(m−n⌈log q⌉)
q), R ← U({0, 1}(m−n⌈log q⌉)×n⌈log q⌉). It is easy to

see that T = (R⊤ | In⌈log q⌉)
⊤ ∈ Zm×n⌈log q⌉ is a G-trapdoor of A with tag

H and ∥T∥2 ≤
√
m− n⌈log q⌉ = O(

√
n log q), and Lemma 2.2 implies that the

distribution of A is within a distance at most 2−Ω(λ) to uniform.
The result of [59] states that one can sample from any discrete Gaussian and

invert LWE samples provided a sufficiently short G-trapdoor.

Lemma 2.4 (Adapted from [59, Theorem 5.1]). Given a matrix A ∈
Zn×m
q , a G-trapdoor T ∈ Zm×w of A with tag H ∈ Zn×n

q , where w ≥ n log q,
there exist PPT algorithms Invert and SampleD that with overwhelming probabil-
ity over all random choices, do the following:

– If b = A⊤ · s + e mod q, where s ∈ Zn
q and ∥e∥ < q/

(
2
√
5 ·
√

1 + ∥T∥22

)
,

the deterministic algorithm Invert(R,A,b) outputs s and e. Otherwise, it
outputs ⊥.

11

– For any u ∈ Zn
q and any σ ≥ O(1) ·

√
1 + ∥R∥22, the randomized algorithm

SampleD(T,A,u, s) output s ∈ Zm from a distribution within a statistical
distance 2−Ω(n) to Dm

σ , conditioned on A · s = u mod q.

The security argument of our construction implicitly uses the following result.

Lemma 2.5 (Adapted from [21, Theorem 3.4]). Let n, q,m, k, s be positive
integers such that m ≥ 2n log q and s ≤ k. Let σ > ω(

√
logm) be a Gaussian

width. For any u ∈ Zn
q and uniformly distributed A = (A1 | A2) ∈ Zn×km

q , where

A1 ∈ Zn×sm
q and A2 ∈ Zn×(k−s)m

q ; consider a (possibly inefficient) algorithm

that: (i) samples x1 ← D(k−s)m
σ ; (ii) samples x2 ← Dsm

σ conditioned on A1x1 =
u − A2x2 mod q; (iii) outputs x = (x1,x2). Then the output x is distributed
within a statistical distance negl(n) to Dkm

σ , conditioned on A · x = u mod q.

Rejection Sampling The trapdoor Σ-protocol in Section 3.2 will make use of
rejection sampling technique [54].

Lemma 2.6 (Adapted from [54, Theorem 4.6]). Let V ⊆ Zl of which all el-
ements have norms at most T , let σ be a real number such that σ = ω(T

√
logm),

and h : V → [0, 1] be a probability distribution. Then, there exists a real number
M such that the distribution of the following algorithm A:

1. v← h; z← Dl
σ,v

2. output (z,v) with probability min

(
Dl

σ(z)

M · Dl
σ,v(z)

, 1

)
is within statistical distance 2−ω(log m)

M from the output distribution produced by
the following algorithm F :

1. v← h; z← Dl
σ

2. output (z,v) with probability 1/M .

Moreover, the probability that A outputs something is at least 1−2−ω(log m)

M . More

concretely, if σ = αT for any positive α, then M = e12/α
2+1/(2α2), the output of

A is within statistical distance 2−100/M of the output of F , and the probability

that A outputs something is at least 1−2−100

M .

2.3 Trapdoor Σ-Protocol

We recall the notion ofΣ-protocols in the common reference string (CRS) model.

Definition 2.3 (Adapted from [19]). Consider a language L = (Lzk,Lsnd)
associated with two NP relations Rzk,Rsnd. A 3-move interactive proof system
Π = (Genpar,GenL,P,V) in the common reference string model is a Σ-protocol
for L if it satisfies the following conditions:

12

– The PPT algorithm Genpar(1
λ) on input a security parameter λ ∈ N outputs

public parameters par.
– The PPT algorithm GenL(par, infoL), on input public parameters par and

a language-specific information infoL, outputs the language-reference string
crsL of the full common reference string crs = (par, crsL).

– 3-Move Form: P and V both take as inputs crs = (par, crsL), with par ←
Genpar(1

λ) and crsL ← GenL(1
λ,L), and a statement x and proceed as fol-

lows: (i) P takes as input w ∈ Rzk(x), computes (a, st) ← P (crs, x, w) and
sends a to V; (ii) V sends back a random challenge Chall from the challenge
space C; (iii) P finally sends a response z = P(crs, x, w,a,Chall, st) to V; (iv)
On input of a transcript (a,Chall, z), V outputs 1 or 0.

– Completeness: If (x,w) ∈ Rzk and P honestly computes (a, z) for a chal-
lenge Chall, V(crs, x, (a,Chall, z)) outputs 1 with probability 1− negl(λ).

– Special zero-knowledge: There is a PPT simulator ZKSim that, on input
a crs, a statement x ∈ Lzk and a challenge Chall ∈ C, outputs (a, z) ←
ZKSim(crs, x,Chall) such that (a,Chall, z) is computationally indistinguish-
able from a real transcript with challenge Chall (for w ∈ Rzk(x)).

– Special soundness: for any common reference string crs ← Gen(1λ), any
x ̸∈ Lsnd, and any first message a sent by the prover, there is at most one
challenge Chall = f(crs, x,a) for which a valid transcript (crs, x,a,Chall, z)
exists for some third message z. The function f is called the “bad challenge
function” associated with Π. That is, if x ̸∈ Lsnd and the challenge differs
from the bad challenge, the verifier never accepts.

The notion of trapdoor Σ-protocol was proposed by Canetti et al. [19], formulated
as follows:

Definition 2.4 (Adapted from [19]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L = (Lzk,Lsnd) is a trap-
door Σ-protocol if it satisfies the properties of Definition 2.3 and there exists
PPT algorithms (TrapGen,BadChallenge) with the following properties:

– TrapGen(par, infoL) is a randomized algorithm, on input public parameters
par and an information infoL, outputs the language dependent part crsL of
the common reference string crs = (par, crsL) and a trapdoor τΣ ∈ {0, 1}ℓτ
for some ℓτ (λ).

– BadChallenge(τΣ , crs, x,a) on input a trapdoor τΣ, a CRS crs = (par, crsL),
an instance x and a first-move message a, outputs a challenge Chall.

We require the following:

– CRS Indistinguishability: The distributions of crsL, output from Genpar
and TrapGen are indistinguishable.

– Correctness: For any x ̸∈ Lsnd; all pairs (crsL, τΣ) ← TrapGen(par, infoL)
and any prover’s first-move message a, we have that

BadChallenge(τΣ , crs, x,a) = f(crs, x,a).

13

In a trapdoor Σ-protocol, for any false statement x ̸∈ Lsnd there exists at most
one challenge that prover can response; such challenge can be efficiently com-
puted by BadChallenge algorithm, given as inputs a trapdoor information τ (that
may depend on the crs), a false statement x ̸∈ Lsnd and a first-move message a.

2.4 Correlation Intractable Hash Functions

We provide the definition of correlation intractable hash functions following
Canetti et al. [19]. They considered a class of a binary relation R ⊆ X × Y
that is unique-output, i.e. for any x ∈ X , there is at most one y ∈ Y such
that (x, y) ∈ R. Such a relation R is efficiently searchable in time T if there
is a function f efficiently computable in time T such that if (x, y) ∈ R then
f(x) = y.

For a unique-output, efficiently searchable relation R, a hash family H that
is correlation intractable w.r.t R satisfies that, for a hash function h with key
k generated from H, it is computationally hard for a PPT adversary to find
(x, y) ∈ R, such that h(k, x) = y. More formally, let λ ∈ N be a security
parameter. A hash family with input length n(λ) and output length m(λ) is
a collection H = {hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}m(λ)} of keyed functions
realized by efficient algorithms (Gen,Hash) where Gen(1λ) outputs a key k ∈
{0, 1}s(λ) and Hash(k, x) computes a hash value hλ(k, x).

Definition 2.5 ([19]). For a relation ensemble {Rλ ⊆ {0, 1}n(λ)×{0, 1}m(λ)},
a hash function family H = {hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}m(λ)} is R-
correlation intractable if, for any PPT adversary A, we have

Pr[k ← Gen(1λ), x← A(k) : (x, hλ(k, x)) ∈ R] = negl(λ).

[19] also considered a stronger definition of somewhere statistically correlation
intractable for a hash family H. Namely, the family H has two indistinguishable
key generation algorithms KeyGen and StatGen; and with high probability over
the hash key k output by StatGen, there is no x ∈ X such that (x, h(k, x)) ∈ R.

Definition 2.6 ([19]). Given a collection of relation ensemble R, a hash family
H is somewhere statistically correlation intractable w.r.t. R if there is an efficient
fake key generation algorithm StatGen with the following properties:

– StatGen(1λ, aux) takes as inputs a security parameter λ and an auxiliary
input aux. It outputs a hashing key k;

– For any R ∈ R, there is an auxiliary input auxR with these properties:
• Key indistinguishability: The distributions {k : k ← Gen(1λ)} and
{k : k ← StatGen(1λ, auxR)} are computationally indistinguishable.

• Statistical Correlation Intractability: With high probability over the
choice of k ← StatGen(1λ, auxR), no pair (k, h(k, x)) satisfies R, i.e. we
have

Pr
k←StatGen(1λ,auxR)

[∃x ∈ {0, 1}n(λ) : (x, h(k, x)) ∈ R] ≤ 2−Ω(λ).

14

– Universality: for any λ ∈ N, input x ∈ {0, 1}n, and output y ∈ {0, 1}m, we
have Pr[h(k, x) = y | k ← Gen(1λ)] = 2−m.

– Programmability: there exists an efficient algorithm Sample(1λ, x, y) that
samples from the conditional distribution {k ← Gen(1λ) | h(k, x) = y}.

Peikert and Shiehian [64] provided a construction of somewhere statistically
correlation intractable hash functions for efficiently searchable relations. Their
construction is based on the GSW fully homomorphic encryption scheme [32]
and relies on LWE with a polynomial approximation factor.

2.5 Group Signature

We use the syntax and security definitions of group signatures of [5]. A group
signature scheme GS = (KeyGen, Sign,Verify,Open) consists of a tuple of four
PPT algorithms:

– KeyGen(1λ, 1N) takes 1λ and 1N as inputs, where λ ∈ N is the security
parameter, and N ∈ N is the maximum number of group members. It returns
a tuple (gpk, gmsk, gsk) where gpk is the group public key, gmsk is the group
manager secret key, and gsk is an N -vector of secret keys, in which the
component gpk[j] is the signing key of the j-th user, for j ∈ [N].

– Sign(gpk, gsk[j],M) takes the group public key gpk, a signing key gsk[j] and
a message M ∈ {0, 1}∗ as inputs. It outputd is a signature Σ ∈ {0, 1}∗ on
M under gpk.

– Verify(gpk,M,Σ) is deterministic and takes the group public key gpk, a mes-
sage M and a signature Σ. It outputs either 0 (reject) or 1 (accept).

– Open(gpk, gmsk,M,Σ) is deterministic and takes as inputs the group public
key gpk, the group manager secret key gmsk, a message M and a valid group
signature Σ w.r.t. gpk. It returns an index j ∈ [N] or a special symbol ⊥
indicating failure.

Correctness states that for all (λ,N), all (gpk, gmsk, gsk)← KeyGen(1λ, 1N),
all indexes j ∈ [N] and messages M ∈ {0, 1}∗:

Verify(gpk,M, Sign(gpk, gsk[j],M)) = 1;

Open(gpk, gmsk,M,Sign(gpk, gsk[j],M)) = j,

with probability negligibly close to 1 over the random coins of KeyGen and Sign.

The security requirement of group signatures is discussed in Appendix A.1.

15

3 A Trapdoor Σ-Protocol for Linear Relation and
Dual-Regev Ciphertexts

3.1 Overview

As a building block of the group signature scheme in Section 4, we construct an
NIZK proving statement (R, t, c1, c2) ∈ Zn×l

q × Zn
q × Zm+l

q × Zm+l
q such that

t = R · x mod q, (3)

∀i ∈ [2] : ci =

(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · x

)
mod q, (4)

where x ∈ Zl; r1, r2 ∈ Zn
q ; e1, e2 ∈ Zm+l satisfying ∥x∥2 ≤ B; ∥e1∥2 , ∥e2∥2 ≤

Be. Equivalently, the NIZK proves the existence of a short witness x satisfying
a linear relation R · x = t mod q, and that two dual-Regev ciphertexts c1, c2
encrypt x.

We start with constructing a trapdoor Σ-protocol proving (3) and (4), then
convert it into an NIZK via the compiler of [45]. As (3) and (4) are linear
relations with some norm constraints over the witnesses, it suffices to apply
Lyubashevsky’s Σ-protocol [53,54]. In this Σ-protocol, the prover produces a
response (zx, zr1 , ze1

, zr2 , ze2
) satisfying

a+ c · t = R · zx mod q,

∀i ∈ [2] : vi + c · ci =
(
U⊤i
V⊤i

)
· zri + zei

+

(
0m

⌊q/2K⌋ · zx

)
mod q;

where c is a verifier’s challenge and (a,v1,v2) is the prover’s first message. Thus,
assuming there is a trapdoor for randomness recovery in dual-Regev encryption
scheme and that the parameters are set appropriately, then given a “ciphertext”
vi+ c · c mod q, we can recover the pair of encryption randomness and plaintext
(zx, zri , zei

) to decide if it is a valid response or not. This serves as the key idea
for designing the bad challenge finding algorithm.

We remark that in the proposed Σ-protocol, the matrix R is allowed to be a
part of prover’s statement, where the dual-Regev public keys {(Ui,Vi)}i∈[2] are
part of the language reference string and are generated along with the CRS.

3.2 Description of the Protocol

We give the details of the trapdoor Σ-protocol proving (3) and (4) as follows:

– Genpar(1
λ) on input a security parameter λ ∈ N, choose large prime modulus

q ∈ poly(λ), dimensions n = O(λ),m = 2n⌈log q⌉ + Ω(λ) and l = poly(λ).
Output par = {q, n,m, l}.

– GenL(par, infoL) takes as input public parameters par, a language-dependent
information infoL specifying a norm bound B > 0. The algorithm performs
the below steps:

16

1. For i ∈ {1, 2}; sample Ui ← U(Zn×m
q), Si ← {0, 1}m×(m+l) and let

Vi = Ui ·Si mod q ∈ Zn×(m+l)
q . The pair (Ui,Vi) defines the public-key

of dual-Regev encryption scheme and the matrix Si defines the corre-
sponding decryption key;

2. Choose a distribution χ over Z for sampling encryption randomness. We
require that there is a bound Be = poly(λ) such that for e ← χm+l, we
have that ∥e∥2 ≤ Be except with probability negl(λ);

3. Choose a positive integer C = poly(λ) defining the challenge space C =
{0, 1, . . . , C} and chooses a Gaussian width α > 0 and a small parameter
γ ≥ 1 such that

α = C ·
√
B2 + 2B2

e · γ (5)

and set M = exp(12/γ2 + 1/(2γ2)). The parameter M dictates the re-
jection rate of the protocol.

4. Choose an integer K = poly(λ) that satisfies

α
√
l < K/2, α

√
m+ l < q/4K. (6)

and

α
√
m+ l ·

√
m− n⌈log q⌉ < q/2

√
5. (7)

Let
crsL =

(
{(Ui,Vi)}i∈{1,2}, B, χ,Be, C, α,K

)
,

and output crs = (par, crsL). The string crsL defines the language L =
(Lzk,Lsnd), where

Lzk = {(R, t, c1, c2) ∈ Zn×l
q × Zn

q × Zm+l
q × Zm+l

q :

∃(x, r1, e1, r2, e2) ∈ Zl × Zn
q × Zm+l × Zn

q × Zm+l s.t.

(t = R · x mod q) ∧
(
∀i ∈ [2] : ci =

(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · x

)
mod q

)
∧∥x∥2 ≤ B ∧ ∥e1∥2 ≤ Be ∧ ∥e2∥2 ≤ Be},

(8)

and

Lsnd = {(R, t, c1, c2) ∈ Zn×l
q × Zn

q × Zm+l
q × Zm+l

q :

∃(c,x, r1, e1, r2, e2) ∈ [C]× Zl × Zn
q × Zm+l × Zn

q × Zm+l s.t.

(c · t = R · x mod q) ∧
(
∀i ∈ [2] : c · ci =

(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · x

)
mod q

)

∧∥x∥2 ≤ 2α
√
l ∧ ∥e1∥2 ≤ 2α

√
m+ l ∧ ∥e2∥2 ≤ 2α

√
m+ l},

(9)

17

– TrapGen(par,L) is identical to GenL, the difference is that it samples the
matrix Ui ∈ Zn×m

q along with a G-trapdoor Ti ∈ {0, 1}m×n⌈log q⌉, by using
the algorithm TrapGen of Lemma 2.3. It sets the trapdoor τ = (T1,T2). We
remark that for i ∈ {1, 2}, we have ∥Ti∥2 ≤

√
m− n⌈log q⌉ = O(

√
n log q).

– P(crs, (R, t, c1, c2), (x, r1, e1, r2, e2)) and V(crs, (R, t, c1, c2)) take as com-
mon input a CRS crs = (par, crsL), a statement (R, t, c2, c2) ∈ Zn×l

q × Zn
q ×

Zm+l
q ×Zm+l

q . The prover P takes as private input a witness (x, r1, e1, r2, e2) ∈
Zl × Zn

q × Zm+l × Zn
q × Zm+l and interacts with verifier V as depicted in

Figure 1.

P(crsL, (R, t, c1, c2), (x, r1, e1, r2, e2)) V(crsL, (R, t, c1, c2))

ux ← Dl
α;ue1 ← Dm+l

α ;ue2 ← Dm+l
α

ur1 ← U(Zn
q);ur2 ← U(Zn

q)

a := R · ux mod q

∀i ∈ [2],vi :=

(
U⊤i
V⊤i

)
uri + uei +

(
0m

⌊q/2K⌋ux

)
mod q

c ← U(C)

zx := ux + c · x
∀i ∈ [2], zei := uei + c · ei
∀i ∈ [2], zri := uri + c · ri mod q

z = (zx, ze1 , ze2)

With prob. 1−min

(
D2m+3l

α (z)

M · D2m+3l
α,c·(s,e1,e2)

(z), 1

)
:

z := ⊥

Accept iff:

1. z ̸= ⊥

2. ∥zx∥2 ≤ α
√
l, ∥ze1∥2 ≤ α

√
m+ l, ∥ze2∥2 ≤ α

√
m+ l

3. a+ c · t = R · zx mod q

4. ∀i ∈ [2] : vi + c · ci =
(
U⊤i
V⊤i

)
zri + zei +

(
0m

⌊q/2K⌋zx

)
mod q.

(a,v1,v2)

c

(z, zr1 , zr2)

Fig. 1. Σ-protocol proving L

– BadChallenge(τ, crs, (R, t, c1, c2), (a,v1,v2)) takes as input a trapdoor τ =

(T1,T2) ∈
(
{0, 1}m×n⌈log q⌉)2, a crs = (par, crsL), a statement (R, t, c1, c2) ∈

Zn×l
q ×Zn

q ×Zm+l
q ×Zm+l

q and a first-move message (a,v1,v2) ∈ Zn
q ×Zm+l

q ×
Zm+l
q . Then for i ∈ {1, 2}, the algorithm does the following

18

1. For each ci ∈ C = {0, 1, . . . , C}, compute vi+c·ci mod q =
(
u
(1)
i ,u

(2)
i

)
∈

Zm
q × Zl

q. Then decide if there exist zri ∈ Zn
q and z

(1)
ei ∈ Zm such that

u
(1)
i = U⊤i · zri + z(1)ei

mod q, (10)

and
∥∥∥z(1)ei

∥∥∥
2
≤ α
√
m+ l. This is done using algorithm Invert of Lemma 2.4.

Note that, as ∥Ti∥2 ≤
√

m− n⌈log q⌉ and α
√
m+ l ·

√
m− n⌈log q⌉ <

q/2
√
5 (7), algorithm Invert correctly recovers zri and z

(1)
ei if they exist.

2. For each tuple (ci, zri , z
(1)
ei) found in the above step, test if there exist

z
(2)
ei ∈ Zl and z

(i)
x ∈ Zl such that

u
(2)
i −V⊤i · zri mod q = ⌊q/2K⌋ · z(i)x + z(2)ei

, (11)

and that
∥∥∥z(i)x

∥∥∥
2
≤ α
√
l,
∥∥∥z(2)ei

∥∥∥
2
≤ α
√
m+ l. From (6), we have α

√
l <

K/2 and α
√
m+ l < q/4K. Therefore the pair (z

(1)
x , z

(2)
ei) is unique if it

exists, and can be recovered by using Euclidean algorithm.

3. For each tuple (ci, zri , z
(1)
ei , z

(2)
ei , z

(i)
x) found, parse zei

=
(
z
(1)
ei , z

(2)
ei

)
∈

Zm+l. Decide if ∥zei∥2 ≤ α ·
√
m+ l and if

a+ c · t = R · z(i)x mod q. (12)

Let Ci be the set of all candidates (ci, zri , z
(1)
ei , z

(2)
ei , z

(i)
x) found after the

three steps above.
Finally, the algorithm decides if there exist (c1, zr1 , z

(1)
e1 , z

(2)
ei , z

(1)
x) ∈ C1 and

(c2, zr2 , z
(1)
e2 , z

(2)
e2 , z

(2)
x) ∈ C2 such that c1 = c2 and z

(1)
x = z

(2)
x . Return ⊥ if

they do not exist, otherwise return c = c1 = c2.

Proposition 3.1. The protocol in Fig. 1 is a trapdoor Σ-protocol for the lan-
guage L = (Lzk,Lsnd) specified by (8) and (9).

Proof. We show that the conditions in Definition 2.4 are satisfied.

CRS indistinguishability. The distribution of (U1,U2) output by TrapGen is
at a distance at most 2−Ω(λ) to uniform (Lemma 2.3). It follows that the CRS
distributions of TrapGen and GenL are statistically indistinguishable.

Completeness. From Lemma 2.6, the probability that z ̸= ⊥ is at least (1 −
2−100)/M . Moreover, as (zx, ze1

, ze2
) follows a distribution statistically close

to D3m+2l
α ; we have that ∥zx∥2 ≤ α

√
l and ∥ze1

∥2 , ∥ze2
∥2 ≤ α

√
m+ l with

overwhelming probability (Lemma 2.1). Finally, as zx = ux+c·x, zei
= uei

+c·ei
and zri = uri + c · ri mod q, we can verify that

a+ c · t = R · zx mod q,

∀i ∈ [2] : vi + c · ci =
(
U⊤i
V⊤i

)
· zri + zei +

(
0m

⌊q/2K⌋ · zx

)
mod q.

19

Special soundness. It suffices to prove that for a statement (R, t, c1, c2) ∈ Zn×l
q ×

Zn
q×(Zm+l

q)2 and a first-move message (a,v1,v2) ∈ Zn
q×(Zm+l

q)2, if there are two
distinct challenges c, c′ ∈ C = {0, 1, . . . , C} with corresponding valid responses

(zx, ze1
, zr1 , ze2

, zr2) ∈ Zl × Zm+l × Zn
q × Zm+l × Zn

q

(z′x, z
′
e1
, z′r1 , z

′
e2
, z′r2) ∈ Zl × Zm+l × Zn

q × Zm+l × Zn
q ;

then (R, t, c1, c2) ∈ Lsnd (as specified by (9)). Note that we have

a+ c · t = R · zx mod q (13)

∀i ∈ [2] : vi + c · ci =
(
U⊤i
V⊤i

)
· zri + zei

+

(
0m

⌊q/2K⌋ · zx

)
mod q; (14)

and

a+ c′ · t = R · z′x mod q, (15)

∀i ∈ [2] : vi + c′ · ci =
(
U⊤i
V⊤i

)
· z′ri + z′ei

+

(
0m

⌊q/2K⌋ · z′x

)
mod q. (16)

Let c = c − c′, s = zs − z′s; and for i ∈ [2] let ei = zei
− z′ei

and ri = zri −
z′ri mod q. It follows that ∥s∥ ≤ 2α

√
l, ∥ei∥ ≤ 2α

√
m+ l and c ∈ [−C,C]\{0}.

By subtracting (13) and (15), and subtracting (14) and (16), we obtain

c · t = R · s mod q, (17)

∀i ∈ [2] : c · ci =
(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · s

)
mod q. (18)

Therefore, (17) and (18) imply that (R, t, c1, c2) ∈ Lsnd. In other words, if
(R, t, c1, c2) ̸∈ Lsnd, for any first-move message (a,v1,v2) there is at most one
challenge admitting a valid response.

Correctness of BadChallenge. For a statement (R, t, c1, c2) ̸∈ Lsnd and a first-
move message (a,v1,v2) ∈ Zn

q × (Zm+l
q)2, there can be at most one challenge c

admitting a response (zx, ze1
, zr1 , ze2

, zr2) satisfying

a+ c · t = R · zx mod q, (19)

∀i ∈ [2] : vi + c · ci =
(
U⊤i
V⊤i

)
· zri + zei

+

(
0m

⌊q/2K⌋ · zx

)
; (20)

where ∥zx∥2 ≤ α ·
√
l and ∥zei

∥2 ≤ α ·
√
m+ l. Note that, if there is a tuple

(c, (zri , z
(1)
ei , z

(2)
ei)i∈[2], zx) surviving all the steps of BadChallenge, then it satisfies

the equations (10), (11) and (12). These equations imply
(
c, ((zri , zei)i∈[2], zx)

)
is

a pair of challenge and response satisfying (19) and (20), where zei = (z
(1)
ei , z

(2)
ei).

Therefore, running BadChallenge on (R, t, c1, c2) ̸∈ Lsnd and any first-move mes-
sage (a,v1,v2) ∈ Zn

q×(Zm+l
q)2 should return the unique bad challenge if it exists.

20

Furthermore, the steps of BadChallenge runs in polynomial time and correctness
then follows.

Special zero-knowledge. We construct a simulator that takes as input crs, a state-
ment (R, t, c1, c2) ∈ Zn×l

q ×Zn
q × (Zm+l

q)2, a challenge c ∈ C = {0, 1, . . . , C} and
returns a pair ((a,v1,v2), (z, zr1 , zr2)) of prover’s initial message and response.
The simulator proceeds in the following steps:

1. Sample z← D2m+3l
α , zr1 ← U(Zn

q), zr2 ← U(Zn
q);

2. Parse z = (zx, ze1 , ze2) ∈ Zl × (Zm+l)2 and compute

a = R · zx − c · t mod q ∈ Zn
q

∀i ∈ [2] : vi =

(
U⊤i
V⊤i

)
· zri + zei

+

(
0m

⌈q/K⌋ · zx

)
− c · ci mod q ∈ Zm+l

q .

3. Output ((a,v1,v2), (z, zr1 , zr2)).

In a real execution of the protocol, the distribution of z is within statistical
distance 2−100/M from D2m+3l

α (Lemma 2.6). Moreover, the response zri =
ur + c · r mod q is distributed uniformly over Zn

q since the mask vector uri

is uniform. Since (a,v1,v2) is uniquely determined from the challenge c and
response (z, zr1 , zr2), the distribution of ((a,v1,v2), (z, zr1 , zr2)) output by the
simulator is statistically close to a non-aborting transcript from a real protocol
execution with c. ⊓⊔

We remark that the Σ-protocol of Fig. 1 admits a non-negligible complete-
ness error and is not fully compatible with Definition 2.4. Nevertheless, in the
resulting NIZK from Fiat-Shamir transformation, a prover can simply restart
any aborting instance during parallel execution.

4 A Group Signature Scheme with CCA-Full Anonymity

4.1 The Underlying NIZK Argument System

We presented an NIZK argument system serving as a building block in our group
signature scheme with CCA-anonymity. Looking ahead, in the scheme presented
in Section 4.2, signers need to prove in zero-knowledge statements defined by
the following language

Lcca
zk = {(b,d, t, c1, c2) ∈ Zn

q × Zn
q × Zn

q × Z2m+k+ℓ
q × Z2m+k+ℓ

q :

∃(s, id, τid, {(ri, ei)}i∈{1,2}) ∈ Zm × [N]× [qtag]×
(
Zn
q × Z2m+k+ℓ

)2
s.t.

t = A · s+ id · b+ τid · d mod q

∧ ∀i ∈ [2] : ci =

(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · (s, bin(id), bin(τid))

)
mod q

∧ ∥s∥2 ≤ Bs ∧ ∥e1∥2 ≤ Be ∧ ∥e2∥2 ≤ Be},

where:

21

– The matrices A ∈ Zn×m
q ; U1,U2 ∈ Zn×m

q ; V1,V2 ∈ Zm×(m+k+ℓ)
q are parts

of group public-key; here (U1,V1) and (U2,V2) are public keys of dual-
Regev encryption;

– b,d, t ∈ Zn
q are vectors that can be computed from a user’s signature;

– The positive integer N = 2k − 1 denotes the maximum size of the group;
– The integer id ∈ [N] is a user’s unique identifier and bin(id) ∈ {0, 1}k is the

corresponding binary representation.
– The positive integer qtag < q/2 specifies the tag space in JRS signature [36].

We require that qtag = 2ℓ − 1;
– The integer τid ∈ [qtag] is the tag in the JRS signature and bin(τid) ∈ {0, 1}ℓ

is its binary representation.

In essence, the relation Lcca
zk captures the well-formedness of a signature, which

requires:

– User id has a short vector s and a tag τid satisfying a linear equation t =
A · s+ id · b+ τid · d mod q;

– Two dual-Regev ciphertexts c1, c2 encrypt a same plaintext (s, bin(id), bin(τid)),
with respective randomnesses (r1, e1) and (r2, e2)

We construct a trapdoor Σ-protocol proving Lcca
zk from the blueprint provided in

Section 3.2. Such a Σ-protocol is obtained by rewriting the constraints defining
Lcca
zk as

t = (A | F | H) · (s, bin(id), bin(τid)) mod q,

∀i ∈ [2] : ci =

(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · (s, bin(id), bin(τid))

)
mod q

(21)

where F =
(
b | 2 · b | · · · | 2k−1 · b

)
∈ Zn×k

q and H =
(
d | 2 · d | · · · | 2ℓ−1 · d

)
∈

Zn×ℓ
q . The prover then proves the existence of s ∈ Zm; bin(id) ∈ {0, 1}k; bin(τid) ∈
{0, 1}ℓ; r1, r2 ∈ Zn

q and e1, e2 ∈ Z2m+k+ℓ satisfying (21), using the trapdoor
Σ-protocol in Section 3.2. Finally, we convert the Σ-protocol to a one-time
simulation sound NIZK by the compiler of [45].

Proposition 4.1. Let λ be a security parameter; q ∈ poly(λ) be a large prime
modulus; n = O(λ); m = 2n⌈log q⌉ + Ω(λ); A ∈ Zn×m

q ; N = 2k − 1 and

qtag = 2ℓ−1 be positive integers, and Bs > 0 be a norm bound. Then there exists
a one-time simulation-sound NIZK argument system for the language Lcca =
(Lcca

zk ,Lcca
snd) defined as follows:

Lcca
zk = {(b,d, t, c1, c2) ∈ Zn

q × Zn
q × Zn

q × Z2m+k+ℓ
q × Z2m+k+ℓ

q :

∃(s, id, τid, {(ri, ei)}i∈{1,2}) ∈ Zm × [N]× [qtag]×
(
Zn
q × Z2m+k+ℓ

)2
s.t.

t = A · s+ id · b+ τid · d mod q

∧ ∀i ∈ [2] : ci =

(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · (s, bin(id), bin(τid))

)
mod q

∧ ∥s∥2 ≤ Bs ∧ ∥e1∥2 ≤ Be ∧ ∥e2∥2 ≤ Be},
(22)

22

and

Lcca
snd = {(b,d, t, c1, c2) ∈ Zn

q × Zn
q × Zn

q × Z2m+k+ℓ
q × Z2m+k+ℓ

q :

∃(c, (s, sid, sτid), id, τ id, {(ri, ei)}i∈{1,2}) ∈ [C]× Zm+k+ℓ × Z2 ×
(
Zq × Z2m+k+ℓ

)2
s.t.

c · t = A · s+ id · b+ τ id · d mod q

∧ ∀i ∈ [2] : c · ci =
(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · (s, sid, sτid)

)
mod q

∧ ∥(s, sid, sτid)∥2 ≤ 2α
√
m+ k + ℓ

∧ ∥e1∥2 ≤ 2α
√
2m+ k + ℓ ∧ ∥e2∥2 ≤ 2α

√
2m+ k + ℓ

∧ id =
(
1 | 2 | · · · | 2k−1

)
· sid ∧ τ id =

(
1 | 2 | · · · | 2ℓ−1

)
· sτid},

(23)

where for i ∈ {1, 2}, (Ui,Vi) ∈ Zn×m
q × Zn×(2m+k+ℓ)

q defines a public key of
dual-Regev encryption scheme. The parameters Be, C, α,K satisfy

α = C ·
√

2B2
e +B2

s + k + ℓ · O(1),

and

α
√
m+ k + ℓ < K/2; α

√
2m+ k + ℓ < q/4K;

α
√
2m+ k + ℓ ·

√
m− n⌈log q⌉ < q/2

√
5.

Proof. We shows that a trapdoor Σ-protocol for Lcca exists, an NIZK argument
system is then obtained by applying the compiler of [45].

We apply the trapdoor Σ-protocol in Section 3.2. Namely, we execute the
algorithm GenL on input public parameters par = {q, n,m, l = m+k+ ℓ}. Next,
let the language-specific information infoL be the matrix A and the ℓ2-norm
bound B =

√
B2

s + k + ℓ, we run algorithm GenL to obtain

crsLcca =
(
A, {(Ui,Vi)}i∈[2], B, χ,Be, C, α,K

)
.

Note that conditions (5) and (6) impose the following constraints:

α = C ·
√

2B2
e +B2

s + k + ℓ · O(1),

and

α
√
m+ k + ℓ < K, α ·

√
2m+ k + ℓ < q/4K,

and

α
√
2m+ k + ℓ ·

√
m− n⌈log q⌉ < q/2

√
5.

The string crsLcca fully determines the language Lcca = (Lcca
zk ,Lcca

snd). To prove a
statement (b,d, t, c1, c2) ∈ Lcca

zk , we rewrite the equation

t = A · s+ id · b+ τid · d mod q,

23

as t = R · (s, bin(id), bin(τid))) mod q where

R =
(
A |

(
b | 2 · b | · · · | 2k−1 · b

)
|
(
d | 2 · d | · · · | 2ℓ−1 · d

))
|∈ Zn×(m+k+ℓ)

q .

Then run the prover of the Σ-protocol in Section 3.2 with the transformed
statement (R, t, c1, c2) and witnesses x = (s, bin(id), bin(τid)) ∈ Zm+k+ℓ; e1, e2 ∈
Z2m+k+ℓ and r1, r2 ∈ Zn

q satisfying (21).
From the definition of Lsnd in (9), soundness is guaranteed for statement

(b,d, t, c1, c2) satisfying

c · t = R · x mod q,

∀i ∈ [2] : c · ci =
(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · x

)
mod q.

where c ∈ [C], ∥x∥2 ≤ 2α
√
m+ k + ℓ and ∥e1∥2 , ∥e2∥2 ≤ 2α

√
2m+ k + ℓ and

R =
(
A |

(
b | 2 · b | · · · | 2k−1 · b

)
|
(
d | 2 · d | · · · | 2ℓ−1 · d

))
∈ Zn×(m+k+ℓ)

q .

By parsing x = (s, sid, sτid) ∈ Zm × Zk × Zℓ and rewriting two equations above,
we obtain

c · t = A · s+ id · b+ τ id · d mod q,

∀i ∈ [2] : c · ci =
(
U⊤i
V⊤i

)
· ri + ei +

(
0m

⌊q/2K⌋ · (s, sid, sτid)

)
mod q,

where id = (1 | 2 | · · · | 2k−1) · sid and τ id = (1 | 2 | · · · | 2ℓ−1) · sτid . This shows
that (b,d, t, c1, c2) ∈ Lcca

snd as defined in (23). ⊓⊔

We remark that the above NIZK argument system only guarantees that c ·c1
and c · c2 are well-formed dual-Regev ciphertexts for some small scalar c. This
serves as an important technical point for arguing traceability, as the reduction
needs to decrypt the multiple c · c1 to extract an SIS solution. Additionally, as
an adversary against CCA-full anonymity can open signatures of its choice, the
parameters must be set so that the technique of switching decryption key [60]
does not lead to inconsistency in the output of opening oracle.

4.2 The Construction

Let λ be the security parameter and let n = O(λ) be a lattice dimension. The
scheme works with group size N = 2k − 1 ∈ poly(λ) and depends on parameters
and distributions described below:

– A sufficiently large prime modulus q ∈ poly(λ), we require that N < q/2;
– A dimension m = 2n⌈log q⌉+Ω(λ);
– A small Gaussian width σ = O(

√
n log q), this parameter dictates the length

of user’s secret key;
– A Gaussian width σsign > O(1) · σ

√
m;

24

– A norm bound Bs = σsign ·
√
3m;

– A positive integer qtag = poly(λ) specifying the tag space in JRS signature
scheme [36]. We require that qtag = 2ℓ−1 for some ℓ ∈ Z and that qtag < q/2;

– A integer ℓm = poly(λ) specifying the maximum bit-length of messages;
– A distribution χ over Z, we require that there exists Be = poly(λ) such that

elements sampled from χ2m+k+ℓ have ℓ2-norm bounded by Be with over-
whelming probability. The distribution χ is used for sampling randomness
in dual-Regev encryption;

– A positive integer C = poly(λ) defining the challenge space of the trapdoor
Σ-protocol presented in Section 3.2;

– A width α > 0, defining the distribution of responses in the trapdoor Σ-
protocol presented in Section 3.2;

– An integer K = poly(λ) that defines the plaintext space of the dual-Regev
encryption scheme;

– An integer κ = Θ(λ/ log(λ)), which is the number of repetitions of the
trapdoor Σ-protocol.

We remark that χ,C, α and κ are chosen by setting up the common reference
string of the NIZK argument system for the language Lcca. By Proposition 4.1,
these parameters should satisfy:

α = C ·
√
2B2

e +B2
s + k + ℓ · O(1) = C ·

√
2B2

e + 3σ2
signm+ k + ℓ · O(1), (24)

and

α
√
m+ k + ℓ < K/2; α ·

√
2m+ k + ℓ < q/4K,

α ·
√
2m+ k + ℓ ·

√
m− n⌈log q⌉ < q/2

√
5.

For traceability proof we require stricter conditions

2α
√
m+ k + ℓ < K/2; 2α ·

√
m+ k + ℓ ·

√
2m+ k + ℓ < q/4K,

α ·
√
2m+ k + ℓ ·

√
m− n⌈log q⌉ < q/2

√
5.

(25)

For the correctness of opening algorithm and for anonymity proof we require
that

C · (2α
√
m+ k + ℓ+ α) < K/2, C · 2α

√
m+ k + ℓ

√
2m+ k + ℓ < q/8KC.

(26)

The parameters of the NIZK argument system are set up so that (24), (25)
and (26) are met. We remark that, (26) implies the first two constraints of (25).

We describe the algorithms underlying our CCA-secure group signature:

– KeyGen(1λ, 1N): Given a security parameter λ and the desired number of
group members N = 2k − 1 ∈ poly(λ), which defines the identity space
ID = [N], the algorithm chooses parameters and does the following:
1. Sample u← U(Zn

q),A← U(Zn×m
q),T← U({0, 1}m×m),C← U

(
Zn×m
q

)
.

Let B = −AT mod q ∈ Zn×m
q ;

25

2. Choose a positive integer ℓm = poly(λ) specifying the message space
{0, 1}ℓm , then sample a matrix D← U(Zn×ℓm

q);
3. For each user id ∈ [N], generate signing key for id by forming the matrix

Aid = (A|id ·Gn,m −B) ∈ Zn×2m
q

and sampling a matrix Rid ∈ Zm×m so that Aid ·Rid = C mod q and the
columns of Rid are independently distributed as DΛ⊥

q (Aid),σ. This is done
by running algorithm SampleD of Lemma 2.4 with T as a G-trapdoor of
Aid. Then set gsk[id] = Rid.

We remark that (Aid |Gn,m −C) admits

(
Rid

Im

)
as a G-trapdoor.

4. Generate a common reference string crs of the simulation-sound NIZK
argument system of [45] (see Appendix B.3)as follows:
• Run algorithm GenL of the trapdoor Σ-protocol in Section 3.2; using
public parameters (q, n,m, l = m+k+ℓ) and language-specific norm

bound B =
√

B2
s + k + ℓ =

√
3σ2

signm+ k + ℓ. Let

crsL =
(
{U,V}i∈{1,2}, B, χ,Be, C, α,K

)
be the output and let S1,S2 ∈ {0, 1}m×(m+k+ℓ) be the two dual-
Regev decryption keys generated during the execution of GenL. Set
gmsk = S1;

• Choose a strongly unforgeable one-time signature scheme Πots =
(G,S,V) with verification keys of length ℓ0 ∈ poly(λ);

• Choose a RBM-lossy encryption scheme

RLPKE = (Param,KeyGen, LKeyGen,Enc,Dec,Open, LOpen),

for relation RBM : K × T → {0, 1}) defined by an admissible hash
function AHF : {0, 1}ℓ0 → {0, 1}L′

. We assume that the space Zn
q ×

(Z2m+k+ℓ
q)2 of first-move messages in the trapdoor Σ-protocol of

Section 3.2 can be embedded to the message space of the RBM-lossy
encryption scheme.
The algorithm then generates public parameters Γ ← Param(1λ),
chooses a random initialization value K ← K and generate lossy
keys (pk, sk, tk)← LKeyGen(Γ,K).

• Generate a key k ← Gen(1λ) of a somewhere CI hash function family.
• Choose a number of parallel repetitions κ = Θ(λ/ log(λ)).

Let

gpk = (u,B,C,D,A, {Ui,Vi}i∈{1,2}, B, χ,Be, C, α,K︸ ︷︷ ︸
crsLcca

, pk,AHF,Πots, k, κ

︸ ︷︷ ︸
crs

).

The algorithm outputs (gpk, gmsk, {gsk[id]}id∈[N]).

26

– Sign(gpk, gsk[id],m): A user id initializes a private state τid ← 0. To sign a
messagem ∈ {0, 1}ℓm , the user retrieves gsk[id] = Rid and does the following:
1. Check if τid < qtag, return ⊥ if it is not the case;
2. Set τid ← τid + 1, then create a JRS signature with tag τid. This is done

by sampling a vector x from the distribution D3m
σsign

conditioned on

(Aid | τid ·G−C) · x = u+D ·m mod q.

The vector x is sampled by executing algorithm SampleD of Lemma 2.4,
using the G-trapdoor of (Aid |G−C);

3. Parse x = (s, s1, s2) ∈ Zm×Zm×Zm. For i ∈ {1, 2}, encrypt the message
(s, bin(id), bin(τid))) ∈ Zm × {0, 1}k × {0, 1}ℓ under dual-Regev encryp-
tion scheme by sampling ri ← U(Zn

q), ei ← χ2m+k+ℓ and outputting a
ciphertext

ci =

(
U⊤

V⊤

)
·ri+ei+

(
0m

⌊q/2K⌋ · (s, bin(id), bin(τid))

)
mod q ∈ Z2m+k+ℓ

q .

4. Compute t = u + D ·m + B · s1 + C · s2 ∈ Zn
q , b = Gn×m · s1 mod q

and d = Gn×m · s2 mod q. Then generate an NIZK argument π for the
statement (b,d, t, c1, c2) that satisfies

t = A · s+ id · b+ τid · d mod q;

c1 =

(
U⊤1
V⊤1

)
· r1 + e1 +

(
0m

⌊q/2K⌋ · (s, bin(id), bin(τid))

)
mod q,

c2 =

(
U⊤1
V⊤1

)
· r2 + e2 +

(
0m

⌊q/2K⌋ · (s, bin(id), bin(τid))

)
mod q

(27)

using witness (s, id, τid, r1, e1, r2, e2).
Output the final signature

Σ = (s1, s2, c1, c2, π) . (28)

– Verify(gpk,m, Σ): parse the signature Σ as in (28). Compute t = u + D ·
m + B · s1 + C · s2 mod q ∈ Zn

q , b = Gn×m · s1 mod q ∈ Zn
q and d =

Gn×m · s2 mod q ∈ Zn
q . Output 1 if and only if the following conditions are

satisfied:
• ∥(s1, s2)∥2 ≤ σsign

√
2m;

• π is a valid NIZK argument for statement (b,d, t, c1, c2) of language
Lcca (defined in Proposition 4.1).

– Open(gpk, gmsk,m, Σ): return ⊥ if Verify(gpk,m, Σ) ̸= 1. Otherwise, parse
Σ as in (28) and compute t = u + D · m + B · s1 + C · s2 ∈ Zn

q , b =
Gn×m · s1 mod q ∈ Zn

q and d = Gn×m · s2 mod q ∈ Zn
q . Then for each

c ∈ [C], use gmsk = S1 ∈ {0, 1}m×(m+k+ℓ) to perform the below steps:
(I) Compute v =

(
−S⊤1 | Im+k+ℓ

)
· (c · c1) mod q ∈ Zm+k+ℓ. Then write

v = ⌊q/2K⌋·p+y, where p ∈ Zm+k+ℓ and y ∈ Zm+k satisfy ∥p∥2 ≤ K/2
and ∥y∥2 ≤ q/(8KC). The pair (p,y) is unique and can be recovered
from Euclidean algorithm.

27

(II) Parse p = (p1,p2,p3) ∈ Zm × Zk × Zℓ. If ∥p1∥ > σsign

√
3m, or p2 ̸∈

{0, 1}k, or p3 ̸∈ {0, 1}ℓ, restart from (I) with the next c. Otherwise,
continue.

(III) Let id and τid be the integers admitting p2 and p3 their respective binary
representation. If id = 0 or τid = 0, restart from (I) with the next c.
Otherwise, check if

A · p1 + id · b+ τid · d
?
= c · t,

If the check succeeds, return id. Else, restart from (I) with the next c.

In case the above steps do not output a valid id with any c ∈ [C], return ⊥.

4.3 Security Analysis

Theorem 4.1. The above group signature scheme is correct assuming that the
NIZK argument system are correct.

Proof. For an honestly generated signature Σ = (s1, s2, c1, c2, π) on message
m ∈ {0, 1}ℓm , Verify outputs 1 except with a negligible probability. This follows
from:

– the tail bounds of discrete Gaussian (Lemma 2.1) that (s1, s2) satisfies except
for a probability at most 2−Ω(λ);

– the correctness of the underlying NIZK system, as the statement (b,d, t, c1, c2)
satisfies (27) and thus is a statement of Lcpa

zk (22).

For the correctness of Open, observe that

c1 =

(
U⊤1
V⊤1

)
· r1 + e1 +

(
0m

⌊q/2K⌋ · (s, bin(id), bin(τid))

)
mod q,

where ∥e1∥2 ≤ Be and ∥(s, bin(id), bin(τid))∥2 ≤
√
3σ2

signm+ k + ℓ < K/2 due to

the constraints of (24) and (26). We then have(
−S⊤1 | Im+k+ℓ

)
· c = ⌊q/2K⌋ · (s, bin(id), bin(τid)) +

(
−S⊤1 | Im+k+ℓ

)
· e1 mod q.

From (24) and (26), we can bound the error term∥∥(−S)⊤1 | Im+k+ℓ

)
· e1
∥∥
2
≤
∥∥(−S⊤1 | Im+k+ℓ

)∥∥
2
· ∥e1∥2

≤
√
m+ k + ℓ ·Be < q/8KC,

which in turn implies that with c = 1, step (II) of Open correctly recovers
(s, bin(id), bin(τid)). Thus Open outputs the signer’s identity from any honestly-
generated signature. ⊓⊔

For the anonymity proof, we need the following intermediate result.

28

Proposition 4.2. Let Σ = (s1, s2, c1, c2, π) be a signature on m ∈ {0, 1}ℓm ,
t = u + D · m + B · s1 + C · s2 mod q ∈ Zn

q , b = Gn×m · s1 mod q ∈ Zn
q

and d = Gn×m · s2 mod q ∈ Zn
q . Assuming that the statement (b,d, t, c1, c2) ∈

Lcca
snd (defined in Proposition 4.1). Then the output of Open on (m, Σ) remains

unchanged if we execute Step (I) with the dual-Regev decryption key S2 and the
ciphertext c2.

Before proving Proposition 4.2, observe that if (b,d, t, c1, c2) ∈ Lcca
snd, then from

the definition of Lcca
snd in Proposition 4.1, there exists (c, (s, sid, sτid), id, τ id, r, e)

such that

c · t = A · s+ id · b+ τ id · d mod q,

c · c1 =

(
U⊤1
V⊤1

)
· r1 + e1 +

(
0m

⌊q/2K⌋ · (s, sid, sτid)

)
mod q,

c · c2 =

(
U⊤2
V⊤2

)
· r2 + e2 +

(
0m

⌊q/2K⌋ · (s, sid, sτid)

)
mod q,

id =
(
1 | 2 | · · · | 2k−1

)
· sid,

τ id =
(
1 | 2 | · · · | 2ℓ−1

)
· sτid ,

where c ∈ [C], ∥(s, sid, sτid)∥2 ≤ 2α
√
m+ k + ℓ, ∥e1∥2 ≤ 2α

√
2m+ k + ℓ and

∥e2∥2 ≤ 2α
√
2m+ k + ℓ. Since U1 · S1 = V1 mod q and U2 · S2 = V2 mod q, it

follows that

c · t = A · s+ id · b+ τ id · d mod q, (29)(
−S⊤1 | Im+k+ℓ

)
(c · c1) = ⌊q/2K⌋(s, sid, sτid) +

(
−S⊤1 | Im+k+ℓ

)
e1 mod q, (30)(

−S⊤2 | Im+k+ℓ

)
(c · c2) = ⌊q/2K⌋(s, sid, sτid) +

(
−S⊤2 | Im+k+ℓ

)
e2 mod q. (31)

Proof. We prove by contradiction. For i ∈ {1, 2}, let Open(Si, ci) be the output
of Open when Step (I) is executed with (Si, ci) on input a message-signature
pair (m, Σ). Assuming that the statement (b,d, t, c1, c2) reconstructed from Σ
is a statement of Lcca

snd but Open(S1, c1) ̸= Open(S2, c2). We consider two cases:

Case 1. Open(S1, c1) = id1 ̸= Open(S2, c2) = id2. Let (c, (s, sid, sτid), id, τ id, r, e)
be the witness that (b,d, t, c1, c2) ∈ Lcca

snd. Then we have that

c ∈ [C], ∥(s, sid, sτid)∥2 ≤ 2α
√
m+ k + ℓ,

∥e1∥2 ≤ 2α
√
2m+ k + ℓ, ∥e2∥2 ≤ 2α

√
2m+ k + ℓ,

and the witness satisfy the equations given by (29), (30), (31).

From (30), let k1 =
(
−S⊤1 | Im+k+ℓ

)
e1, then we have

∥k1∥2 ≤
∥∥(−S⊤1 | Im+k+ℓ

)∥∥
2
· ∥e1∥2 ≤

√
m+ k + ℓ · 2α

√
2m+ k + ℓ,

and (
−S⊤1 | Im+k+ℓ

)
(c · c1) = ⌊q/2K⌋(s, sid, sτid) + k1 mod q. (32)

29

Since Open(S1, c1) = id1, then backtracking the steps of Open, we can find
c1 ∈ [C], τid1 ∈ [qtag], sid1 ∈ Zm and y1 ∈ Zm+k+ℓ satisfying ∥sid1∥2 ≤ σsign

√
3m,

∥y1∥2 ≤ q/8KC and that(
−S⊤1 | Im+k+ℓ

)
(c1 · c1) = ⌊q/2K⌋(sid1 , bin(id1), bin(τid1)) + y1 mod q. (33)

(32) and (33) then imply

⌊q/2K⌋ · (c1(s, sid, sτid)− c(sid1 , bin(id1), bin(τid1)) = c1k1 − cy1 mod q. (34)

Note that from the constraints of (24), (25) and (26), we have

∥c1k1 − cy1∥2 ≤ C
(√

m+ k + ℓ · 2α
√
2m+ k + ℓ+ q/8KC

)
< q/4K,

and

∥(c1(s, sid, sτid)− c(sid1 , bin(id1), bin(τid1))∥2
≤C · (2α

√
m+ k + ℓ+

√
3σ2

signm+ k + ℓ) < C · (2α
√
m+ k + ℓ+ α) < K/2.

Therefore equation (34) holds over Z, which then implies

c1 · (s, sid, sτid) = c · (sid1 , bin(id1), bin(τid1)),

and in particular c1 · sid = c · bin(id1).
Using a similar argument, if Open(S2, c2) = id2 then there exists c2 ∈ [C]

such that c2 · sid = c · bin(id2). By assumption, we have that bin(id1) ̸= bin(id2)
and thus there exists an index j ∈ [k] such that bin(id1)[j] ̸= bin(id2)[j]. W.l.o.g
assume that bin(id1)[j] = 0, then the equality c1 · sid = c · bin(id1) implies that
sid[j] = 0. On the other hand, as bin(id2)[j] = 1, the equality c2 · sid = c · bin(id2)
implies that sid[j] ̸= 0 which is a contradiction!

Case 2. Open(S1, c1) = id1 and Open(S2, c2) = ⊥. The case that Open(S1, c1) =
⊥ and Open(S2, c2) = id2 is treated similarly.

Using a similar argument in Case 1, if Open(S1, c1) = id1 then by backtrack-
ing the steps of Open, we can find c1 ∈ [C], τid1 ∈ [qtag], sid1 ∈ Zm satisfying
∥sid1∥2 ≤ σsign

√
3m and

c1 · (s, sid, sτid) = c · (sid1 , bin(id1), bin(τid1)).

The above implies (s, sid, sτid) = c/c1 · (sid1 , bin(id1), bin(τid1)) mod q. Plugging
this into (31), we obtain(
−S⊤2 | Im+k+ℓ

)
(c1c2) = ⌊q/2K⌋(sid1 , bin(id1), bin(τid1))+c1

(
−S⊤2 | Im+k+ℓ

)
e2 mod q.

From (26), we have the following bound∥∥c1 (−S⊤2 | Im+k+ℓ

)
e2
∥∥
2
≤ C ·

√
m+ k + ℓ · 2α

√
2m+ k + ℓ < q/8KC.

This shows that if Open uses S2 to decrypt c1 · c2 in Step (I), then it should
return id1. This contradicts the assumption that Open(S2, c2) = ⊥. ⊓⊔

The full proofs of anonymity and traceability are given in Appendix C.

30

References

1. Michel Abdalla and Bogdan Warinschi. On the minimal assumptions of group
signature schemes. In ICICS 2004, volume 3269 of LNCS, pages 1–13. Springer,
2004.

2. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In Gary L. Miller, editor, STOC 1996, pages 99–108. ACM, 1996.

3. Wojciech Banaszczyk. New bounds in some transference theorems in the geometry
of numbers. Mathematische Annalen, 296:625–635, 1993.

4. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-
signatures and noninteractive anonymous credentials. In TCC 2008, volume 4948
of LNCS, pages 356–374. Springer, 2008.

5. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In EUROCRYPT 2003, volume 2656 of LNCS, pages
614–629. Springer, 2003.

6. Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pin-
tore. Group signatures and more from isogenies and lattices: Generic, simple, and
efficient. In EUROCRYPT 2022, volume 13276 of LNCS, pages 95–126. Springer,
2022.

7. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryp-
tion without random oracles. In EUROCRYPT 2004, volume 3027 of LNCS, pages
223–238. Springer, 2004.

8. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

9. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
In CCS 2004, pages 168–177. ACM, 2004.

10. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessandro
Sorniotti. A framework for practical anonymous credentials from lattices. In
CRYPTO 2023, volume 14082 of LNCS, pages 384–417. Springer, 2023.

11. Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner. Efficient
post-quantum snarks for RSIS and RLWE and their applications to privacy. In
PQCrypto 2020, volume 12100 of LNCS, pages 247–267. Springer, 2020.

12. Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In
EUROCRYPT 2011, volume 6632 of LNCS, pages 89–108. Springer, 2011.

13. Pedro Branco, Arka Rai Choudhuri, Nico Döttling, Abhishek Jain, Giulio Mala-
volta, and Akshayaram Srinivasan. Black-box non-interactive zero knowledge from
vector trapdoor hash. In EUROCRYPT 2025, volume 15604 of LNCS, pages 64–92.
Springer, 2025.

14. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In ACM CCS 2004, pages 132–145. ACM, 2004.

15. Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new the-
oretical aspects. In SCN 2004, volume 3352 of LNCS, pages 120–133. Springer,
2004.

16. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In
EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer, 2005.

17. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In EUROCRYPT
2001, volume 2045 of LNCS, pages 93–118. Springer, 2001.

31

18. Jan Camenisch, Gregory Neven, and Markus Rückert. Fully anonymous attribute
tokens from lattices. In SCN 2012, volume 7485 of LNCS, pages 57–75. Springer,
2012.

19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In
STOC 2019, pages 1082–1090. ACM, 2019.

20. Ran Canetti, Alex Lombardi, and Daniel Wichs. Non-interactive zero knowledge
and correlation intractability from circular-secure FHE. IACR Cryptol. ePrint
Arch., page 1248, 2018.

21. David Cash, Dennis Hofheinz, and Eike Kiltz. How to delegate a lattice basis.
IACR Cryptol. ePrint Arch., 2009.

22. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT 2010, volume 6110 of LNCS, pages
523–552. Springer, 2010.

23. David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT 1991,
volume 547 of LNCS, pages 257–265. Springer, 1991.

24. Michele Ciampi, Roberto Parisella, and Daniele Venturi. On adaptive security of
delayed-input sigma protocols and fiat-shamir nizks. In SCN 2020, volume 12238
of LNCS, pages 670–690. Springer, 2020.

25. Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge
from homomorphic encryption. In TCC 2006, volume 3876 of LNCS, pages 41–59.
Springer, 2006.

26. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group
signatures and zero-knowledge proofs of automorphism stability. In CCS 2018,
pages 574–591. ACM, 2018.

27. Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the stan-
dard model. In CRYPTO 2014, volume 8616, pages 335–352. Springer, 2014.

28. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In FOCS 1990,
pages 308–317. IEEE Computer Society, 1990.

29. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In CRYPTO ’86, volume 263 of LNCS, pages
186–194. Springer, 1986.

30. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC 2009,
pages 169–178. ACM, 2009.

31. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC 2008, pages 197–206. ACM,
2008.

32. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO 2013, volume 8042 of LNCS, pages 75–92. Springer, 2013.

33. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Robustness of the learning with errors assumption. In ICS 2010, pages 230–240,
2010.

34. S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature
scheme from lattice assumptions. In ASIACRYPT 2010, volume 6477 of LNCS,
pages 395–412. Springer, 2010.

35. Tibor Jager. Verifiable random functions from weaker assumptions. In TCC 2015,
volume 9015 of LNCS, pages 121–143. Springer, 2015.

32

36. Corentin Jeudy, Adeline Roux-Langlois, and Olivier Sanders. Lattice signature
with efficient protocols, application to anonymous credentials. In CRYPTO 2023,
volume 14082 of LNCS, pages 351–383. Springer, 2023.

37. Shuichi Katsumata and Shota Yamada. Group signatures without NIZK: from
lattices in the standard model. In EUROCRYPT 2019, volume 11478 of LNCS,
pages 312–344. Springer, 2019.

38. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure iden-
tification schemes based on the worst-case hardness of lattice problems. In ASI-
ACRYPT 2008, volume 5350 of LNCS, pages 372–389. Springer, 2008.

39. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Group encryption. In Kaoru
Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 181–199.
Springer, 2007.

40. Sam Kim and David J. Wu. Multi-theorem preprocessing nizks from lattices. In
CRYPTO 2018, volume 10992 of LNCS, pages 733–765. Springer, 2018.

41. Fabien Laguillaumie, Adeline Langlois, Benôıt Libert, and Damien Stehlé. Lattice-
based group signatures with logarithmic signature size. In ASIACRYPT 2013,
volume 8270 of LNCS, pages 41–61. Springer, 2013.

42. Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based
group signature scheme with verifier-local revocation. In PKC 2014, volume 8383
of LNCS, pages 345–361. Springer, 2014.

43. Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang.
Signature schemes with efficient protocols and dynamic group signatures from lat-
tice assumptions. In ASIACRYPT 2016, volume 10032 of LNCS, pages 373–403,
2016.

44. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge argu-
ments for lattice-based accumulators: Logarithmic-size ring signatures and group
signatures without trapdoors. In EUROCRYPT 2016, volume 9666 of LNCS, pages
1–31. Springer, 2016.

45. Benôıt Libert, Khoa Nguyen, Alain Passelègue, and Radu Titiu. Simulation-sound
arguments for LWE and applications to KDM-CCA2 security. In ASIACRYPT
2020, volume 12491 of LNCS, pages 128–158. Springer, 2020.

46. Benôıt Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. Bifurcated sig-
natures: Folding the accountability vs. anonymity dilemma into a single private
signing scheme. In EUROCRYPT 2021, volume 12698 of LNCS, pages 521–552.
Springer, 2021.

47. Benôıt Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. One-shot fiat-
shamir-based NIZK arguments of composite residuosity and logarithmic-size ring
signatures in the standard model. In EUROCRYPT 2022, volume 13276 of LNCS,
pages 488–519. Springer, 2022.

48. Benôıt Libert, Thomas Peters, and Moti Yung. Group signatures with almost-for-
free revocation. In CRYPTO 2012, volume 7417 of LNCS, pages 571–589. Springer,
2012.

49. Benôıt Libert, Thomas Peters, and Moti Yung. Scalable group signatures with
revocation. In EUROCRYPT 2012, volume 7237 of LNCS, pages 609–627. Springer,
2012.

50. San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lattices:
Simpler, tighter, shorter, ring-based. In PKC 2015, volume 9020 of LNCS, pages
427–449. Springer, 2015.

51. San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based group
signatures: Achieving full dynamicity with ease. In ACNS 2017, volume 10355 of
LNCS, pages 293–312. Springer, 2017.

33

52. San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Constant-size group
signatures from lattices. In PKC 2018, volume 10770 of LNCS, pages 58–88.
Springer, 2018.

53. Vadim Lyubashevsky. Lattice-based identification schemes secure under active
attacks. In PKC 2008, volume 4939 of LNCS, pages 162–179. Springer, 2008.

54. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT
2012, volume 7237 of LNCS, pages 738–755. Springer, 2012.

55. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-based
zero-knowledge proofs and applications: Shorter, simpler, and more general. In
CRYPTO 2022, volume 13508 of LNCS, pages 71–101. Springer, 2022.

56. Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plançon, and Gregor Seiler.
Shorter lattice-based group signatures via ”almost free” encryption and other opti-
mizations. In ASIACRYPT 2021, volume 13093 of LNCS, pages 218–248. Springer,
2021.

57. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, 2010.

58. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signa-
tures. In CT-RSA 2011, volume 6558 of LNCS, pages 376–392. Springer, 2011.

59. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718.
Springer, 2012.

60. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In STOC 1990, pages 427–437. ACM, 1990.

61. Khoa Nguyen, Fuchun Guo, Willy Susilo, and Guomin Yang. Multimodal private
signatures. In CRYPTO 2022, volume 13508 of LNCS, pages 792–822. Springer,
2022.

62. Khoa Nguyen, Partha Sarathi Roy, Willy Susilo, and Yanhong Xu. Bicameral and
auditably private signatures. In ASIACRYPT 2023, volume 14439 of LNCS, pages
313–347. Springer, 2023.

63. Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient group
signatures from lattices. In PKC 2015, volume 9020 of LNCS, pages 401–426.
Springer, 2015.

64. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from
(plain) learning with errors. In CRYPTO 2019, volume 11692 of LNCS, pages
89–114. Springer, 2019.

65. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC 2005, pages 84–93. ACM, 2005.

66. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS ’99, pages 543–553. IEEE Computer Society, 1999.

67. Brent Waters. A new approach for non-interactive zero-knowledge from learning
with errors. In STOC 2024, pages 399–410. ACM, 2024.

68. Brent Waters, Hoeteck Wee, and David J. Wu. New techniques for preimage
sampling: Improved nizks and more from LWE. In EUROCRYPT 2025, volume
15604 of LNCS, pages 3–33. Springer, 2025.

69. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William
Whyte. Efficient lattice-based zero-knowledge arguments with standard soundness:
Construction and applications. In CRYPTO 2019, volume 11692 of LNCS, pages
147–175. Springer, 2019.

34

A Cryptographic Primitives

A.1 Security Requirement of Group Signatures

Security of a group signature scheme is formalized via the notions of traceability
and anonymity. Traceability ensures that all signatures, even those created by
a coalition of users and the group manager, pooling their secret keys together,
can be traced to a member of the forging coalition. The adversary is modeled
as a PPT algorithm A in the experiment described in Figure 2. Adversary A is
allowed to see the secret signing key as well as the signature of any user of its
choice. The advantage of A against traceability of GS is defined as

AdvtraceGS,A(λ,N) = Pr[Exptrace
GS,A(λ,N) = 1].

Definition A.1 (Full traceability [5]). A group signature scheme GS is said
to be fully traceable if for all polynomial N(·) and all PPT adversaries A, its
advantage AdvtraceGS,A(λ,N) is negligible in the security parameter λ.

1 (gpk, gmsk, gsk)← Keygen(1λ, 1N)
2 st← (gmsk, gpk)
3 CU← ∅ ; K ← ε ; Cont← 1
4 while (Cont = 1) do
5 (Cont, st, j)← ASign(gsk[·],·)(st,K)
6 if (Cont = 1) then
7 CU← CU ∪ {j}; K ← gsk[j]

8 (M∗, Σ∗)← ASign(gsk[·],·)(st,K)
9 if Verify(gpk,M∗, Σ∗) = 0 then

10 return 0

11 if Open(gmsk,M∗, Σ∗) =⊥ then
12 return 1

13 if ∃j∗ ∈ {0, 1, . . . , N − 1} : (Open(gmsk,M∗, Σ∗) = j∗) ∧ (j∗ /∈
CU) ∧ ((j∗,M∗) not queried to Sign) then

14 return 1

15 else
16 return 0

Fig. 2. Experiment Exptrace
GS,A(λ,N) against traceability of GS

Anonymity requires that an adversary who does not know the group manager
secret key cannot recognize the identity of a user given its signature and its secret

35

signing key. More formally, the adversary is involved in the experiment depicted
in Figure 3. The advantage of such an adversary A against a scheme GS with N
members is defined as

AdvanonGS,A(λ,N) = |Pr[Expanon−1
GS,A (λ,N) = 1]− Pr[Expanon−0

GS,A (λ,N) = 1]|.

Definition A.2 (CPA/CCA-full anonymity [5,8]). A group signature GS is
said to be CPA-fully (resp. CCA-fully) anonymous if for all polynomial N(·) and
all PPT adversaries A (resp. PPT adversaries A with access to an opening oracle
except for the challenge signature), its advantage AdvanonGS,A(λ,N) is negligible in
the security parameter λ.

1 (gpk, gmsk, gsk)← Keygen(1λ, 1N)
2 (st, j0, j1,M)← A(gpk, gsk)
3 Σ∗ ← Sign(gpk, gsk[jb],M)

4 b′ ← A(st, Σ∗)

5 b′ ← AOpen(·)(st, Σ∗)

6 return b′

Fig. 3. Experiment Expanon−b
GS,A (λ,N) defining CPA-full anonymity (resp. CCA-full

anonymity) of GS, excluding the solid box (resp. dashed box)

In CPA-full anonymity, the adversary is not allowed to query an opening oracle.
This relaxed model is precisely the one considered in [34], and was firstly intro-
duced in [8]. In constrast, CCA-full anonymity [5] allows the adversary access
to an opening oracle that can be called on any signature except the challenge
signature Σ∗.

A.2 Non-interactive Zero Knowledge Argument Systems

We recall the formalization of NIZK systems following [45].

Definition A.3. Let R = (Rzk,Rsnd) be a pair of NP-relation such that Rzk ⊆
Rsnd, the associated language be L = (Lzk,Lsnd). An NIZK argument system
for R is a tuple NIZK = (Setup,Prove,Verify, Sim) of PPT algorithms, defined
as follows.

Setup(1λ, infoL) taking as input λ, a language-specific information infoL, outputs
a common reference string crs = (par, crsL) and a simulation trapdoor τsim.
Here, crsL is a language reference string giving the full description of L.

Prove(crs, x, w)→ π taking as inputs crs, a statement x and a witness w, outputs
a proof/argument π.

36

Verify(crs, x, π)→ {0, 1} is deterministic, taking as inputs crs, a statement x and
a proof π, outputs either 1 or 0.

Sim(crs, τsim, x)→ {π⋆,⊥} taking as inputs crs, a simulation trapdoor τsim and
statement x, outputs a simulated argument π⋆ or symbol ⊥ indicating failure.

We require the following:

Perfect completeness. For any (x,w) ∈ Rzk, it holds that

Pr

[
Verify(crs, x, π) = 1

∣∣∣∣∣ crs← Setup(λ, infoL),

π ← Prove(crs, x, w)

]
= 1,

Soundness. For every PPT adversary A and for all x ̸∈ Lsnd, it holds that

Pr

[
Verify(crs, x, π) = 1

∣∣∣∣∣ crs← Setup(λ, infoL),

π ← A(crs, x)

]
= negl(λ).

Statistical zero-knowledge. For any (crs, τsim)← Setup(λ, infoL), and for
all (x,w) ∈ Rzk, the distributions

{π ← Prove(crs, x, w)},

and

{π ← Sim(crs, τsim, x)},

are statistically indistinguishable.

One-time simulation soundness [66] requires that a bounded adversary cannot
produce a valid proof for a false statement, even after having seen a simulated
proof of a statement of its choice.

Simulation Soundness. [66] For every PPT adversary A and all x⋆ ̸∈ Lsnd,

Pr

Verify(crs, x⋆, π⋆) = 1

∧ (x⋆, π⋆) ̸= (x, π)

∣∣∣∣∣∣∣∣∣
(crs, τsim)← Setup(λ,L),

(x, st)← A(crs, x⋆),

π ← Sim(crs, τsim, x),

π⋆ ← A(crs, st, π)

 = negl(λ).

B Simulation Sound NIZK Argument

We recall the simulation-sound NIZK argument system of [45]. The construction
relies on the notions of admissible hash functions and R-lossy encryption with
efficient opening, and generically builds a simulation-sound argument system
from any trapdoor Σ-protocol.

37

B.1 Admissible Hash Functions

Admissible hash functions [7] functions as a combinatorial tool for partitioning-
based security proofs.

Definition B.1 ([7]). Let ℓ0(λ), L(λ) ∈ N be functions of a security parameter
λ ∈ N. Let AHF : {0, 1}ℓ0 → {0, 1}L be an efficiently computable function. For
every K ∈ {0, 1,⊥}L, let the partitioning function FADH(K, ·) : {0, 1}ℓ0 → {0, 1}
such that

FADH(K,X) :=

{
0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is an admissible hash function if there exists an effi-
cient algorithm AdmSmp(1λ, Q, δ) that takes as inputs Q ∈ poly(λ) and a non-
negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q), X⋆ ∈ {0, 1}ℓ0 such that for X⋆ /∈ {X(1), . . . , X(Q)}, we have

Pr
K

[
FADH(K,X(1)) = · · · = FADH(K,X(Q)) = 1 ∧ FADH(K,X⋆) = 0

]
≥ δ(Q(λ)).

Theorem B.1 ([35, Theorem 1]). Let (Cℓ0)ℓ0∈N be a family of codes Cℓ0 :
{0, 1}ℓ0 → {0, 1}L with minimal distance c · L for some constant c ∈ (0, 1/2).
Then, (Cℓ0)ℓ0∈N is a family of admissible hash functions. Moreover, algorithm
AdmSmp(1λ, Q, δ) outputs a key K ∈ {0, 1,⊥}L for which η = O(log λ) compo-
nents are not ⊥ and δ(Q(λ)) is a non-negligible function of λ.

B.2 R-Lossy Encryption with Efficient Opening

Definition B.2 ([45]). Let R ⊆ Kλ × Tλ be an efficiently computable binary
relation. An R-lossy PKE scheme with efficient opening is a 7-tuple of PPT
algorithms (Param,KeyGen, LKeyGen,Enc,Dec,Open, LOpen) such that:

– Parameter generation: On input a security parameter λ, Param(1λ) out-
puts public parameters Γ .

– Key generation: For an initialization value K ∈ Kλ and public parameters
Γ , algorithm KeyGen(Γ,K) outputs an injective public key pkinj ∈ PK, a
decryption key skinj ∈ SK and a trapdoor key tk ∈ T K. The public key
specifies a ciphertext space CtSp and a randomness space RLPKE.

– Lossy key generation: Given an initialization value K ∈ Kλ and public
parameters Γ , the lossy key generation algorithm LKeygen(Γ,K) outputs a
lossy public key pklossy ∈ PK, a lossy secret key sklossy ∈ SK and a trapdoor
key tk ∈ T K.

– Decryption under injective tags: For any initialization value K ∈ K,
any tag t ∈ T such that (K, t) ∈ R, and any message Msg ∈ MsgSp, we have

Pr[∃r ∈ RLPKE : Dec(sk, t,Encrypt(pk, t,Msg; r)) ̸= Msg] < ν(λ),

for some negligible function ν(λ), where (pk, sk, tk) ← KeyGen(Γ,K) and
the probability is taken over the randomness of KeyGen.

38

– Indistinguishability: Algorithms LKeyGen and KeyGen satisfy the follow-
ing:
(i) For any K ∈ Kλ, the distributions Dinj = {(pk, tk) | (pk, sk, tk) ←

KeyGen(Γ,K)} and Dloss = {(pk, tk) | (pk, sk, tk) ← LKeyGen(Γ,K)}
are computationally indistinguishable.

(ii) For any distinct initialization values K,K ′ ∈ Kλ, the two distribu-
tions {pk | (pk, sk, tk) ← LKeyGen(Γ,K)} and {pk | (pk, sk, tk) ←
LKeyGen(Γ,K ′)} are statistically indistinguishable. We require them to
be 2−Ω(λ)-close in terms of statistical distance.

– Lossiness: For any initialization value K ∈ Kλ and tag t ∈ Tλ such that
(K, t) ̸∈ R, any (pk, sk, tk)← KeyGen(Γ,K), and any Msg0,Msg1 ∈ MsgSp,
the following distributions are statistically close:

{C | C ← Enc(pk, t,Msg0)} ≈s {C | C ← Enc(pk, t,Msg1)}.

For any (pk, sk, tk) ← LKeyGen(Γ,K), the above holds for any tag t (and
not only those for which (K, t) ̸∈ R).

– Efficient opening under lossy tags: Let DR denote the distribution, de-
fined over the randomness space RLPKE, from which the random coins used
by Enc are sampled. For any message Msg ∈ MsgSp and ciphertext C, let
DPK,Msg,C,t denote the probability distribution on RLPKE with support

SPK,Msg,C,t = {r ∈ RLPKE | Enc(pk, t,Msg, r) = C},

and such that, for each r ∈ SPK,Msg,C,t, we have

DPK,Msg,C,t(r) = Pr
r′←DR

[r′ = r | Enc(pk, t,Msg, r′) = C].

There exists a PPT algorithm Open such that, for any K ∈ Kλ, any keys
(pk, sk, tk)← KeyGen(Γ,K) and (pk, sk, tk)← LKeyGen(Γ,K), any random
coins r ← DR, any tag t ∈ Tλ such that (K, t) ̸∈ R, and any messages
Msg0,Msg1 ∈ MsgSp, takes as inputs pk,C = Enc(pk, t,Msg0, r), t and tk,
and outputs a sample r from a distribution statistically close to DPK,Msg1,C,t.

– Efficient opening under lossy keys: There exists a PPT sampling algo-
rithm LOpen such that, for any K ∈ Kλ, any keys (pk, sk, tk)← LKeyGen(Γ,K),
any random coins r ← DR, any tag t ∈ Tλ, and any distinct messages
Msg0,Msg1 ∈ MsgSp, takes as inputs C = Enc(pk, t,Msg0, r), t and sk.
It outputs a sample r from a distribution statistically close to DPK,Msg1,C,t.

Like [12], [45] considers R-lossy PKE schemes for the bit-matching relation,
which evaluates to 1 if it agrees with K in all positions where the latter is not
⊥.

Definition B.3. Let K = {0, 1,⊥}L and T = {0, 1}L, for some L ∈ poly(λ).
The bit-matching relation RBM : K × T → {0, 1} is defined as RBM(K, t) = 1 if

and only if K = K1 . . .KL and t = t1 . . . tL satisfy
∧L

i=1(Ki =⊥) ∨ (Ki = ti).

We refer to [45] for a lattice-based construction of RBM-lossy PKE. The
proposed encryption scheme is a variant of the primal-Regev encryption scheme
[65] suggested in [31].

39

B.3 Construction of One-Time Simulation-Sound NIZK

The compiler of [45] turns any trapdoorΣ-protocol into an unbounded simulation-
sound non-interactive argument. For CCA-secure group signatures, as one-time
simulation-sound is sufficient, we use the syntax of [45] but remove the labels
associating to the statements.

The construction relies on the following building blocks:

– A trapdoor Σ-protocol Π = (Genpar,GenL,TrapGenL,P,V) with challenge
space C, for a language L = (Lzk,Lsnd). We assume that the BadChallenge
algorithm underlying Π should be computable within time T ∈ poly(λ);

– A somewhere CI hash familyH = (Gen,Hash) with output length κ ∈ poly(λ)
for the class RCI of relations that are efficiently searchable within time T .
In particular, we assume that the BadChallenge function underlying Π is
computable in time T .

– A strongly unforgeable one-time signature scheme Πots = (G,S,V) with
verification keys of length ℓ0 ∈ poly(λ);

– An admissible hash function AHF : {0, 1}ℓ0 → {0, 1}L′
, for some L′ ∈ poly(λ)

such that L′ > ℓ0, which induces the relation RBM : {0, 1,⊥}L′ × {0, 1}ℓ0 →
{0, 1} of Definition B.3;

– An R-lossy public-key encryption scheme

R−LPKE = (Param,KeyGen, LKeyGen,Enc,Dec,Open, LOpen)

for the relationRBM : {0, 1,⊥}L′×{0, 1}ℓ0 → {0, 1} with public (resp. secret)
key space PK (resp. SK). We assume that the decryption algorithm Dec is
computable within time T . We denote the message (resp. ciphertext) space
by MsgSp (resp. CtSp) and the randomness space by RLPKE. Let also DRLPKE

denote the distribution from which the random coins of Enc are sampled.

We also assume that these ingredients are compatible in the sense that P
outputs a first prover message that fits in the message space MsgSp of R-LPKE.
Our construction NIZK = (Setup,Prove,Verify, Sim) goes as follows.

– Setup(1λ, infoL): taking as inputs a security parameter λ and language-
specific information L, does the following:
1. Run Genpar(1

λ) to obtain par← Genpar(1
λ).

2. Generate a common reference string (par, crsL) for the trapdoorΣ-protocol
Π, by computing its language-dependent part as crsL ← GenL(par, infoL).

3. Choose a strongly unforgeable one-time signature schemeΠots = (G,S,V)
with verification keys of length ℓ0 ∈ poly(λ)

4. Generate public parameters Γ ← Param(1λ) for the RBM-lossy PKE
scheme where the relationRBM : K×T → {0, 1} is defined by an admissi-
ble hash function AHF : {0, 1}ℓ0 → {0, 1}L′

. Choose a random initializa-
tion value K ← K and generate lossy keys (pk, sk, tk)← LKeyGen(Γ,K).

5. Generate a key k ← Gen(1λ) for the somewhere CI hash function.
6. Choose a number of parallel repetitions κ = poly(λ).

40

Output the common reference string as

crs = ((par, crsL), pk,AHF,Π
ots, k, κ),

and simulation trapdoor τsim = sk.

– Prove(crs, x, w): To prove a statement x ∈ Lzk using a witness w ∈ Rzk(x),
generate a one-time key pair (VK, SK)← Πots.G(1λ) and do the following.

1. Compute (a = (a1, . . . ,aκ), st) via κ invocations of the prover P of Π;

2. For each i ∈ [κ], compute a′i ← Enc(pk,AHF(VK),ai; ri) using random-
ness ri ← DLPKE

R sampled from the distribution DLPKE
R over RLPKE. Define

a′ = (a′1, . . . ,a
′
κ) and r = (r1, . . . , rκ).

3. Compute Chall = Hash(k, (x,a′),VK) ∈ Cκ;
4. Compute z = (z1, . . . , zκ)← P(crs′L, x, w,a,Chall, st) via κ invocation of

prover of Π. Let z′ = (z,a, r)

5. Generate a one-time signature sig ← Πots.S(SK, x,a′, z′)) and output
the proof π = (VK,a′, z′, sig).

– Verify(crs, x, π): Given a statement x and a candidate proof π = (VK,a′, z′, sig),
return 0 if Πots.V(VK, (x,a′, z′), sig) = 0. Otherwise, proceed as follows:

1. Parse z′ as z′ = (z,a, r) = ((z1, . . . , zκ), (a1, . . . ,aκ), (r1, . . . , rκ)) and
return 0 if it does not parse properly. Return 0 if there exists i ∈ [κ]
such that a′i ̸= Enc(pk,AHF(VK),ai; ri) or ri ̸∈ RLPKE

2. Compute Chall = Hash(k, (x,a′,VK)) ∈ Cκ. Then invoke the verifier V
of Π to check if V(crs′L, x, (ai,Chall[i], zi)) = 1 for each i ∈ [1, κ]. If the
check succeeds, return 1; else return 0.

– Sim(crs, τsim, x): given a common reference string crs, a statement x and a
simulation trapdoor τsim = sk as input, the simulator does the following:

1. Generate a one-time signature key pair (VK, SK) ← G(1λ). Let 0|a| the
all-zeroes string of length |a|. Sample random coins r0 ← DLPKE

R from

the distribution DLPKE
R and compute a′ ← Enc(pk,AHF(VK),0|a

′|; r0).

2. Compute Chall = Hash(k, (x,a,VK));

3. Run the special ZK simulator (a, z) ← ZKSim(crs′L, x,Chall) of Π to
obtain a simulated transcript (a, z) of Π for the challenge Chall;

4. Using the lossy secret key sk of R-LPKE, compute random coins r ←
Open(sk,AHF(VK),a′,a) which explains a as an encryption of (x,a) un-
der the tag VK. Then set z′ = (z,a, r);

5. Compute sig← S(sk, x,a′, z′) and output π = (VK, (a′, z′), sig).

Theorem B.2 ([45]). The above NIZK system is multi-theorem zero-knowledge
and one-time simulation sound, assume that: (i) Πots is strongly unforgeable, (ii)
R-LPKE is a RBM-lossy encryption scheme, (iii) the LWE assumption holds,
(iv) the hash family H is correlation-intractable for all relations that are search-
able within time T and (v) the underlying trapdoor protocol Π is special zero-
knowledge.

41

C Deferred Security Proof

Theorem C.1. Assuming that: (i) LWEn,q,χ is hard against PPT adversaries;
(ii) the NIZK system is simulation-sound and statisically zero-knowledge, then
the above group signature scheme is CCA-fully anonymous.

Proof. We prove the result using a sequence of games. In the first game, the
challenger runs experiment Expanon−b

GS,A (n,N) for a random bit b ∈ {0, 1}. In the
last game, the challenger runs an experiment that is statistically independent
of b ∈ {0, 1}. For each i, we denote by Wi the event that the adversary out-
puts b′ = b in Game i and we define the advantage of the adversary A to be
Advi = |Pr[Wi] − 1/2|. We show that transition between games only results in
a negligible difference between advantages.

Game 0: This is the real experimentExpanon−b
GS,A (n,N) defining CCA-full anonymity

in Fig. 3, where b ∈ {0, 1} is a uniformly random bit chosen by the challenger,
w.l.o.g. we can assume that b ∈ {0, 1} is chosen at the start of the game.
The challenger generates all users’ secret keys {gsk[id] = Rid}id∈[N] and gives
{gsk[id]}id∈[N] to the adversary A. In the challenge phase, A chooses two dis-

tinct id∗0, id
∗
1 ∈ [N], a message m⋆ ∈ {0, 1}ℓm and obtains the challenge signature

Σ∗ ← Sign(gpk, gsk[id∗b],M
∗) with Σ⋆ = (s⋆1, s

⋆
2, c

⋆
1, c

⋆
2, π

⋆). If we define W0 to be
the event that the adversary outputs b′ = b in the end of the game, then

Pr[W0] = Pr[Expanon−b
GS,A (n,N) = 1]

and the adversary’s advantage is Adv0 = |Pr[W0]− 1/2|.

Game 1: In this game, we make a change of how the challenge signature is
computed. During the setup phase, the challenger retains the G-trapdoor T
associated with the matrix A ∈ Zn×m

q . From the description of Sign, to create a
signature on behalf of id⋆b , the challenger samples x← D3m

σsign
conditioned on(

A | id⋆b ·Gn,m −B | τid⋆b ·Gn,m −C
)
· x = u+D ·m⋆ mod q.

Since challenger knows a G-trapdoor of A, such a vector x can be sampled with-
out using gsk[id⋆b], with the help algorithm of SampleD as follows: first sample
(s⋆1, s

⋆
2) ← D2m

σsign
, then sample s⋆ ← Dm

σsign
conditioned on As⋆ = u + D ·m⋆ −(

id⋆b ·Gn,m −B | τid⋆b ·Gn,m −C
)
· (s⋆1, s⋆2) mod q. The challenger then performs

the remaining steps of Sign faithfully. Note that, by the correctness of SampleD
and Lemma 2.5, the distribution of (s⋆, s⋆1, s

⋆
2) is statistically close to that ob-

tained by running Sign with gsk[id⋆b]. Therefore, |Pr[W1]− Pr[W0]| ≤ 2−Ω(λ).

Game 2: This game is identical to Game 1, but with a change of how we
answer to opening queries. Instead of using S1, the challenger recalls the de-
cryption key S2 generated during the execution of KeyGen. Whenever A queries
(m, Σ = (s1, s2, c1, c2, π)) to the opening oracle, challenger runs Step (I) of Open
with S2 as gmsk and the ciphertext c2. By Proposition 4.2, this change does not

42

result in any inconsistency. Otherwise, A manages to produce a valid proof π
for a statement that is not in Lcca

snd. As such |Pr[W5] − Pr[W4]| ≤ AdvsndA,NIZK,

where AdvsndA,NIZK denotes the advantage of A against the soundness property of
the NIZK argument system.

Game 3: This game is identical to Game 2, but with a change of how the NIZK
proof π⋆ is generated. In the challenge signature Σ∗, the challenger generates
π∗ by using the NIZK simulator. The statistical zero-knowledge property of the
NIZK system implies that A’s view is not affected by this change. As a result,
|Pr[W3]− Pr[W2]| ≤ 2−Ω(λ).

Game 4: This game is identical to Game 3, but with a change of how the
ciphertext c⋆1 is computed. Instead of faithfully generating c∗1 as a dual-Regev
ciphertext encrypting (s⋆, bin(id⋆b), bin(τid⋆b)) ∈ Zm × {0, 1}k × {0, 1}ℓ, the chal-

lenger generates c⋆1 as a dual-Regev ciphertext encrypting 0m+k+ℓ. The CPA-
security of dual-Regev encryption, which relies on the hardness of LWEn,q,χ,
implies that A’s view can only be changed by a negligible quantity. In particu-
lar, |Pr[W4]− Pr[W3]| ≤ AdvLWEn,q,χ .

Game 5: This game is identical to Game 4, but with a change of how we
answer to opening queries. Instead of using the decryption key S2 as in Game
2, we revert back to using S1. Again, by Proposition 4.2, this change does not
result in any inconsistency even if the adversary A have seen one simulated proof
in the challenge signature, as described in Game 3. Otherwise, A manages to
produce a valid message-signature pair (m, Σ = (s1, s2, c1, c2, π)) such that π
is a valid NIZK argument for a statement that is not in Lcca

snd. In such a case,
A violates the simulation-soundness property of the NIZK system and we have
that |Pr[W5] − Pr[W4]| ≤ AdvssA,NIZK, where AdvssA,NIZK is the advantage of A in
breaking simulation-soundness of the employed NIZK.

Game 6: This game is identical to Game 5, but with a change of how the
ciphertext c⋆2 is computed. Instead of faithfully generating c∗2 as a dual-Regev ci-
phertext encrypting (s⋆, bin(id⋆b), bin(τid⋆b)) ∈ Zm×{0, 1}k×{0, 1}ℓ, the challenger
generates c⋆2 as a dual-Regev ciphertext encrypting 0m+k+ℓ. The CPA-security
of dual-Regev encryption, which relies on the hardness of LWEn,q,χ, implies that
A’s view can only be changed negligibly. In particular, |Pr[W6] − Pr[W5]| ≤
AdvLWEn,q,χ

.

Now, Pr[W6] = 1/2 since the challenge signature

Σ∗ = (s⋆1, s
⋆
2, c

⋆
1, c

⋆
2, π

⋆)

is generated independently of the challenger’s bit b ∈ {0, 1}. In particular, the
component (s⋆1, s

⋆
2) are distributed independently of b, the ciphertexts (c⋆1, c

⋆
2)

encrypt 0m+k+ℓ and the proof π⋆ is a simulated proof. ⊓⊔

43

Theorem C.2. The group signature scheme in Section 4.2 is fully traceable if
the employed NIZK system is sound and SISq,n,m+1,BSIS

is hard, where

BSIS =
√
m ·

(
2α
√
m+ k + ℓ+ C ·

(
2σsign

√
2m+

√
ℓm

))
+ C.

Proof. Assuming the existence of a PPT adversary A breaking traceability of the
group signature scheme. We construct a PPT algorithm B that either breaks the
soundness of the underlying NIZK system, or solves an instance of SISq,n,m+1,BSIS

.

Setup. B receives (ASIS | −uSIS)← U
(
Zn×(m+1)
q

)
as an instance of SISq,n,m+1,BSIS

.

It sets A = ASIS, u = uSIS.
To set up the matrices B and C, it guesses uniformly random for a triplet of

integers (c⋆, id
⋆
, τ⋆id) where

c⋆ ← U([C]),

id
⋆ ← U

(
[−2αN

√
k
√
m+ k + ℓ, 2αN

√
k
√
m+ k + ℓ]

)
,

τ⋆id ← U
(
[−2αqtag

√
ℓ
√
m+ k + ℓ, 2αqtag

√
ℓ
√
m+ k + ℓ]

)
,

then it samples T1 ← U({0, 1}m×m), T2 ← U({0, 1}m×m) and sets

B = (id
⋆
/c⋆) ·Gn,m −A ·T1 mod q,

C = (τ⋆id/c
⋆) ·Gn,m −A ·T2 mod q.

To set up the matrixD, algorithm B samplesT3 ← U({0, 1}m×ℓm) and computes
D = A · T3 mod q. By Lemma 2.2, the distributions of B, C and D’s are
statistically close to U(Zn×m

q).
Algorithm B faithfully generates the remaining components of gpk. Next, B

also computes signing keys {gsk[id]}id∈[N]. Observe that, we have

Aid = (A | id ·Gn,m −B) = (A | (id− id⋆/c⋆) ·G−A ·T1) .

Then for id ∈ [N] such that id ̸= id⋆/c⋆ mod q, T1 is a G-trapdoor of Aid

w.r.t. the tag id − id⋆/c⋆. In this case, B can always run algorithm SampleD of
Lemma 2.4 to compute gsk[id] = Rid of any id ∈ [N]. In the case that there exists
a (unique) id′ ∈ [N] such that id′ = id⋆/c⋆ mod q, the G-trapdoor T1 “vanishes”
and thus gsk[id′] is not available.

Finally, B givesA the input (gpk, gmsk), where gmsk = S1 ∈ {0, 1}m×(m+k+ℓ).

Queries. Assume that there is id′ ∈ [N] such that id′ = id⋆/c⋆ mod q, then
B aborts whenever A queries the secret key of user id′. When A queries the
secret key gsk[id] of any user id ̸= id′, B returns the corresponding gsk[id] = Rid

computed during setup phase.
For signing queries on user id ∈ [N] and on a message M , B handles as

follows:

44

– If id ̸= id′, B can faithfully run the real signing algorithm as the secret signing
keys {gsk[id]}id̸=id′ are available.

– If id = id′, let τid′ be the state of signer id
′ and m be the queried message. In

the second step of signing algorithm, B should sample a vector x ← D3m
σsign

,
conditioned on

(Aid′ | τid′ ·Gn,m −C) · x = u+D ·m mod q,

from the definition of C, we have that

(Aid′ | τid′ ·Gn,m −C) = (A | −B | (τid′ − τ⋆/c⋆) ·Gn,m −AT2)

Therefore B can faithfully conduct step 2 (and hence the remaining steps) of
Sign whenever τid′ ̸= τ⋆/c⋆ mod q, using the algorithm SampleD of Lemma 2.4
with T2 as a G-trapdoor. The correctness of SampleD implies that the vector
x output from the signing oracle is statistically indistinguishable from the real
one. In the case that τid′ = τ⋆/c⋆ mod q, B aborts the reduction.

Exploiting forgery. When A outputs a valid forgery

(m⋆, Σ⋆ = (s⋆1, s
⋆
2, c

⋆
1, c

⋆
2, π

⋆)) ,

B computes
t∗ = u+D ·m⋆ +B · s⋆1 +C · s⋆2 ∈ Zn

q ,

and b⋆ = G · s⋆1 mod q ∈ Zn
q , d

⋆ = G · s⋆2 mod q ∈ Zn
q . Using gmsk = S1 ∈

{0, 1}m×m, B then checks if the statement (b⋆,d⋆, t⋆, c⋆1, c
⋆
2) belongs to the lan-

guage Lcca
snd (23) as follows:

(i) For each integer c ∈ [C], determine if there exist (s, sid, sτid) ∈ Zm+k+ℓ and
e ∈ Z2m+k+ℓ satisfying(

S⊤1 | Im+k+ℓ

)
· (c · c⋆1) = ⌊q/2K⌋ · (s, sid, sτid) + y mod q,

and ∥(s, sid, sτid)∥2 ≤ 2α
√
m+ k + ℓ and ∥y∥∞ < q/4K. As 2α

√
m+ k + ℓ <

K/2 by (25), the pair (s, sid, sτid) and y can be found by performing Euclidean
algorithm on

(
S⊤1 | Im

)
· (c · c⋆1) mod q.

(ii) For each c and the corresponding(s, sid, sτid) ∈ Zm+k+ℓ found in the above
step, let id =

(
1 | 2 | · · · | 2k−1

)
·sid ∈ Z and τ id =

(
1 | 2 | · · · | 2k−1

)
·sτid ∈ Z.

Then determine if (s, id, τ id) satisfies

c · t⋆ = A · s+ id · b⋆ + τ id · d⋆ mod q.

Recall that by the definition of Lcca
snd (23), if (b⋆,d⋆, t⋆, c⋆1, c

⋆
2) ∈ Lcca

snd then there
exists (c, (s, sid, sτid), id, τ id, r1, e1) ∈ [C] × Zm+k+ℓ × Z × Z × Zn

q × Z2m+k+ℓ

satisfying

c · t⋆ = A · s+ id · b⋆ + τ id · d⋆ mod q, (35)

c · c⋆1 =

(
U⊤1
V⊤1

)
· r1 + e1 +

(
0m

⌊q/2K⌋ · (s, sid, sτid)

)
mod q, (36)

45

where id =
(
1 | 2 | · · · | 2k−1

)
· sid, τ id =

(
1 | 2 | · · · | 2ℓ−1

)
· sτid , ∥(s, sid, sτid)∥2 ≤

2α
√
m+ k + ℓ and ∥e1∥2 ≤ 2α

√
2m+ k + ℓ. From (36), and the constraints of

(25), we have(
S⊤1 | Im+k+ℓ

)
· (c · c⋆1) = ⌊q/2K⌋ · (s, sid, sτid) +

(
S⊤1 | Im

)
· e mod q,

where ∥(s, sid, sτid)∥∞ ≤ 2α
√
m+ k + ℓ < K/2 and∥∥(S⊤1 | Im+k+ℓ

)
· e1
∥∥
∞ ≤

∥∥(S⊤1 | Im+k+ℓ

)∥∥
2
· ∥e1∥2

<
√
m+ k + ℓ · 2α

√
2m+ k + ℓ < q/4K.

Therefore if (b⋆,d⋆, t⋆, c⋆1, c
⋆
2) ∈ Lcca

snd, there exists at least one tuple (c, s, sid, sτid)
passing the checks of step (i) and (ii). Otherwise, we have that (b⋆,d⋆, t⋆, c⋆1, c

⋆
2) ̸∈

Lcca
zk , implying A breaks the soundness property of the NIZK argument system.

For the tuples found after step (ii), B checks if its initial guess (c⋆, id
⋆
, τ⋆id)

appears among these tuples, i.e. there is a tuple (c, s, id, τ id) that (c, id, τ id) =

(c⋆, id
⋆
, τ⋆id). If no such tuple exists then B aborts. Recall that we have

id =
(
1 | 2 | · · · | 2k−1

)
· sid

τ id =
(
1 | 2 | · · · | 2ℓ−1

)
· sτid

and ∥sid∥2 , ∥sτid∥2 ≤ 2α
√
m+ ℓ+ k. It follows that |id| ≤ 2N

√
kα
√
m+ ℓ+ k

and |τ id| ≤ 2qtag
√
ℓα
√
m+ ℓ+ k. Therefore, the guess of B is correct with a

probability at least

1

C · (4N
√
kα
√
m+ ℓ+ k + 1) · (4qtag

√
ℓα
√
m+ ℓ+ k + 1)

,

since it is independent withA’s view. In such case, we have ∥s∥2 ≤ 2α
√
m+ k + ℓ

and from (35)

c⋆ (u+Dm⋆ +Bs⋆1 +Cs⋆2) = As+ id
⋆ ·Gs⋆1 + τ⋆id ·Gs⋆2 mod q.

Recall from the setup phase, A = ASIS, u = −uSIS, id
⋆ ·G − c⋆ · B = c⋆ ·A ·

T1 mod q, τ⋆id · G − c⋆ · C = c⋆ · AT2 mod q and D = AT3 mod q. Thus, B
outputs a non-trivial solution to the SIS instance (ASIS | −uSIS) as

((Im | T1 | T2 | T3) · (s, c⋆s⋆1, c⋆s⋆2, c⋆m⋆) | c⋆) ,

of which the ℓ2-norm can be bounded above by

√
m ·

(
2α
√
m+ k + ℓ+ C ·

(
2σsign

√
2m+

√
ℓm

))
+ C = BSIS.

Assuming algorithm A outputs a forgery with probability ε′, then conditioned
on non-aborting either B breaks the soundness property of the NIZK system or
outputs an SIS solution with probability at least

ε′ − negl(λ)

C · (4N
√
kα
√
m+ ℓ+ k + 1) · (4qtag

√
ℓα
√
m+ ℓ+ k + 1)

.

⊓⊔

46

D Efficiency Analysis

We provide an analysis of the efficiency of the group signature scheme of Sec-
tion 4.2. The parameters for evaluation include the security parameter λ and the
lattice dimension n = Ω(λ). We treat n as an independent parameter since it
specifies the dimension of the worst-case lattice problems that the construction
is based on. By replacing n with λ, we get an estimation depending only on the
security parameter.

Public key size The group public key gpk consists of several matrices in Zn×m
q

with m = O(n log q) and a matrix in Zn×ℓm
q where ℓm is the maximum bit-

length of the message. We assume that ℓm is a constant, as signers can use a
collision-resistant hash function to hash the messages before signing. Therefore,
the bit-size of gpk is of order O(n2 log3 λ).

Group signature size The size of a group signature is dominated by the size of
the underlying NIZK, which is built upon the one-time simulation-sound NIZK
system presented in Appendix B. The most-dominant part in an NIZK proof are
the encryption randomnesses of the employed lossy PKE scheme. Note that, we
use anR-lossy PKE scheme to encrypt the first-move message of the trapdoor Σ-
protocol of Section 3.2 that proves the language Lcca specified in Proposition 4.1.
In the aforementioned protocol, prover’s first messages consists of a vector of Zn

q

and two dual-Regev ciphertexts of Z2m+k+ℓ
q , where m = O(n log q) and k, ℓ are

of order O(log λ). Therefore, the employed R-lossy PKE scheme encrypts mes-
sages with a maximum bit-size of order O(n log2 λ). This requires randomness of
bit-size O(n log3 λ), following the description of the lattice-based R-lossy PKE
scheme of [45]. Since the proof is repeated κ = Θ(λ/ log λ) times, the bit-size of
the NIZK in a group signature is of order O(n log3 λ · κ) = O(nλ log2 λ).

47

	Lattice-Based Group Signatures in the Standard Model, Revisited
	Introduction
	Preliminaries
	Basic Notations
	Lattice-Based Cryptography
	Trapdoor Sigma-protocol
	Correlation Intractable Hash Functions
	Group Signature

	A Trapdoor Sigma-Protocol for Linear Relation and Dual-Regev Ciphertexts
	Overview
	Description of the Protocol

	A Group Signature Scheme with CCA-Full Anonymity
	The Underlying NIZK Argument System
	The Construction
	Security Analysis

	Cryptographic Primitives
	Security Requirement of Group Signatures
	Non-interactive Zero Knowledge Argument Systems

	Simulation Sound NIZK Argument
	Admissible Hash Functions
	R-Lossy Encryption with Efficient Opening
	Construction of One-Time Simulation-Sound NIZK

	Deferred Security Proof
	Efficiency Analysis

