
Computationally-Sound Symbolic Cryptography in Lean

STEFAN DZIEMBOWSKI∗, University of Warsaw, Poland and IDEAS Institute, Poland

GRZEGORZ FABIAŃSKI∗, University of Warsaw, Poland

DANIELE MICCIANCIO†, University of California San Diego, USA

RAFAŁ STEFAŃSKI∗, University of Warsaw, Poland

We present a formally-verified (in Lean 4) framework for translating symbolic cryptographic proofs into the

computationally-sound ones. Symbolic cryptography is a well-established field that allows reasoning about

cryptographic protocols in an abstract way and is relatively easy to verify using proof assistants. Unfortunately,

it often lacks a connection to the computational aspects of real-world cryptography. Computationally-sound

cryptography, on the other hand, captures this connection much better, but it is often more complex, less

accessible, and much harder to verify formally. Several works in the past have provided a bridge between the

two, but, to our knowledge, none of them have been implemented in a proof assistant.

We close this gap by formalizing the translation from symbolic to computationally-sound cryptography

in Lean 4. Our framework is based on the work of Micciancio (Eurocrypt, 2010) and Li and Micciancio

(CSF, 2018), which builds on the idea of using co-induction (instead of induction) for reasoning about an

adversary’s knowledge in a symbolic setting. Our work encompasses (1) the formalization of the symbolic

cryptography framework, (2) the formalization of the computationally sound cryptography framework, and

(3) the formalization of the translation between the two. We also provide (4) an extended example of circuit

garbling, which is a well-known cryptographic protocol frequently used in secure multi-party computation.

We believe that our work will serve as a foundation for future research in the area of formal verification of

cryptographic protocols, as it enables reasoning about cryptographic protocols more abstractly while still

providing a formally verified connection to the computational aspects of real-world cryptography.

1 INTRODUCTION
Indistinguishability [21, 22] is a core concept in cryptography, capturing the fact that many impor-

tant cryptographic primitives (e.g., symmetric and public-key encryption, commitment schemes,

zero-knowledge proof systems) should conceal all partial information about their input. In a nut-

shell, indistinguishability asserts that two objects (such as probability distributions over bitstrings)

cannot be told apart with non-negligible probabilistic advantage by any adversary with bounded

computational power. Traditionally, such adversaries are modeled as probabilistic polynomial-time

(PPT) interactive Turing machines, and the “non-negligible advantage” is defined as a function that

decreases faster than any polynomial in the size of the input. Unfortunately, formalized reason-

ing using proof assistants is notoriously difficult in these settings. For this reason, even several

specialized proof assistants targeted at security protocols (like Proverif [14] and Tamarin [30])

adopt an idealized model of cryptography, and analyze security in a symbolic execution model

that abstracts away the computational and probabilistic details of concrete implementations. Un-

fortunately, this provides limited security guarantees, which hold only against adversaries that

respect the symbolic abstraction. In practice, security should hold when applications are run in

the presence of adversaries (even those not known at protocol design time) that deliberately try

to subvert the system, and are not bound by the rules of the symbolic execution model. So, while

symbolic analysis can be helpful to check correctness properties, and detect certain types of attacks,

it falls short of providing the security guarantees expected by cryptographers.

∗
Supported (in part) by the European Research Council (ERC) under the European Union’s Horizon 2020 innovation program

(grant PROCONTRA-885666)

†
Supported in part by NSF Award 2411704.

1

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

Other formal analysis tools (like EasyCrypt [8, 9] and CryptoVerif [13]) bridge this gap by directly

expressing computational security definitions, cryptographic assumptions, and security reduc-

tions, in the style of traditional “paper-and-pencil” proofs employed in theoretical cryptography

papers, but within a formal, machine-checked environment. A clear advantage of this method is

its generality and flexibility. Supporting the definition of fairly general security assumptions and

properties, these frameworks allow for the expression and analysis of a wide range of cryptographic

applications. However, while the use of a formal framework and mechanized proof verification

provides high security assurance, the process of analyzing the security of a protocol remains

relatively complex, even harder than manual security proofs.

A third approach, and the focus of this paper, is based on computationally sound symbolic
analysis, and tries to offer the best of both worlds: simple symbolic proofs, while at the same

time offering strong security guarantees against computational adversaries. The approach was

pioneered by Abadi and Rogaway [1], who described a simple language of symbolic cryptographic

expressions with the remarkable property that when two expressions are symbolically equivalent,

their computational interpretations (obtained by implementing and evaluating the expressions using

standard algorithms for encryption and other cryptographic primitives) are indistinguishable by any

computationally bounded algorithm. Since then, the viability of the approach has been investigated

in a number of follow-up papers, including extensions with other cryptographic primitives [31],

and various applications to key distribution protocols [32, 33, 35], access control of XML databases

[2], password guessing attacks [10], and even the construction of Garbled Circuits [27], a general
technique for secure two party computation [29, 42]. However, the approach so far has received

considerably less attention than general-purpose symbolic and computational security analysis

tools, especially when it comes to formalized and automated reasoning.

1.1 Our Contribution
In this paper, we use general-purpose theorem provers (specifically, the Lean 4 proof assistant [16])

to formalize computationally sound symbolic security proofs of complex protocols, demonstrating

that these tools are a perfect fit for the task
1
. The use of general-purpose theorem provers has

multiple advantages over specialized proof assistants. Firstly, the general-purpose provers enable

the use of a rich set of mathematical libraries that are growing at a rapid pace due to the large

community of users. Additionally, they may be easier to use for cryptographers without a strong

background in formal verification, as multiple tutorials and resources for learning are available.

Finally, their popularity means that they are better suited for future enhancements by machine-

learning tools (e.g., [41]) whose quality depends on the size of the training sets. In fact, already in

our work, we have used the GitHub Copilot tool
2
to assist us in writing types and definitions. (It

was much less helpful for writing the proofs).

Our approach is based on the framework proposed in [27] and involves formalizing the following

key elements of this work:

(1) the symbolic cryptography language of [27, 31], including the definitions of cryptographic

expressions and symbolic indistinguishability.

(2) the definition of computational indistinguishability of distributions
3
, and

1
Our code can be found at https://github.com/ravst/SymbolicCryptographyLean.

2
See https://github.com/features/copilot.

3
Since Lean currently misses a library for reasoning about the running time of algorithms, we use an axiomatic approach to

model polynomial time. Up to our knowledge, this is handled similarly in several other tools popular tools, such, as, e.g,

Easycrypt, which simply assumes that every code written by the user works in polynomial time.

2

https://github.com/ravst/SymbolicCryptographyLean

Computationally-Sound Symbolic Cryptography in Lean

(3) the proof of the soundness theorem of [27], which states that symbolic indistinguishability

(defined in point (1) above) implies computational indistinguishability (see point (2)) for

cryptographic expressions, as long as the underlying cryptographic primitives are secure.

We exemplify the approach by applying it to the analysis of Garbled Circuits. (The problem was

previously considered in [27], but without formalizing the proofs in a proof assistant.) Circuit

garbling [29, 42] is a method to securely perform an arbitrary two-party computation of a boolean

circuit, with part of the input belonging to one party and part to the other, without revealing any

information about one party’s input to the other party (besides what is implied by the result of

the computation). Formally this is defined in terms of indistinguishability between the actual and

simulated execution of the protocol – see Section 3. In this context, our contribution is as follows:

(4) we formalize a proof of security of the garbled circuits in the symbolic model. Thanks to the

use of symbolic indistinguishability, which abstracts away from the computational details

of cryptographic security primitives and proofs, this proof is very intuitive.

The statements proven in points (3) and (4) allow us to formally conclude that the garbled circuits

are secure against any computationally bounded adversary (assuming security of the underlying

primitives).

1.2 Related Work
As mentioned above, the most closely related work is [27], which introduced the approach that we

formalize in Lean in this paper. That work, in turn, builds on Micciancio [31], who proposed using

co-induction to translate symbolic indistinguishability into computational indistinguishability. The

authors of [27] partially automated their security proof: for any given circuit𝐶 , they could mechan-

ically verify that the output of the garbling procedure Garble(𝐶) is symbolically indistinguishable

from the output of the simulator Sim(𝑦), given only 𝑦 = 𝐶 (𝑥). This establishes security for that

specific circuit𝐶 , and they used it to perform random testing on a circuit-by-circuit basis. However,

their approach stopped short of a formal proof covering all possible circuits. Instead, they provided

a pen-and-paper argument (by structural induction on circuits), leaving the formal verification of

this general result as an explicit open problem. This problem is solved in this work.

Formalizing cryptographic protocols and security proofs has been an active area of research for

many years, with several different approaches and tools being proposed, see, e.g., [8, 9, 13, 14, 30].

We have already provided a comparison between these works and ours. Additionally, there have

been recent works that formalized cryptographic protocols and security proofs in Lean. In particular,

[40] formalized the framework for reasoning about and manipulating oracle access (which we

utilize in our work), the so-called forking lemma, and the Fiat-Shamir transform. Another example

is [7], which formalized the soundness of SNARKs [12] in Lean. Finally, [15] formalized differential

privacy in Lean. Secure multiparty computation protocols and the Garbled Circuits were formalized

in Easycrypt [3–5, 17, 23]. None of these works, however, took our approach of first formalizing

symbolic security and then translating it into computational security.

2 SYMBOLIC CRYPTOGRAPHY
As highlighted above, indistinguishability is a cryptographic notion that expresses the inability of

an adversary with bounded computational power to distinguish two objects (such as probability

distributions over bitstrings) with non-negligible probabilistic advantage. These adversaries are

typically modeled as probabilistic polynomial-time (PPT) interactive Turing machines. However,

reasoning about such adversaries using proof assistants like Lean is notoriously difficult. Fortunately,

a symbolic approach to indistinguishability already exists and offers a compelling alternative. This

3

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

approach abstracts away computational complexity, making it significantly more amenable to

formal verification and better aligned with the goals of formal methods.

At the core of the symbolic approach are the cryptographic expressions, which are formal terms

representing cryptographic operations such as encryption. On one hand, these expressions have

a concrete computational semantics, allowing each expression to be compiled into a probability

distribution over bitstrings that can be sampled and transmitted over a network. On the other hand,

cryptographic expressions admit a notion of symbolic indistinguishability — a formal relation that

does not rely on probabilistic polynomial-time adversaries. This relation is supported by a sound-
ness theorem, which states that symbolically indistinguishable expressions yield computationally

indistinguishable distributions, allowing one to prove indistinguishability properties in a purely

symbolic manner.

In this section, we present the definition of cryptographic expressions, their computational

semantics, and their symbolic indistinguishability relation. All of those definitions are taken

from [27] and formalized in Lean.

2.1 Cryptographic Expressions
Cryptographic expressions is formal language of terms representing some common cryptographic

constructions. Before presenting the formal definition, let us go trough a few examples:

(1) Key variables. The term VarK i represent a variable storing a cryptographic key, where

𝑖 ∈ N is the variable’s identifier (or name). Intuitively, each such key variable represents a

uniformly random key – see Subsection 2.2 for more details.

(2) Bit constants. Term Bit 0 and Bit 1 represent bit constants 0 and 1, respectively
(3) Encryption. The constructor Enc represents encrypted values. For example Enc (VarK 0)

(Bit 1) represents the bit 1 encrypted with a random key.

(4) Pairs. The terms can be paired using the constructor ((_, _)). For example, the expression

((VarK 0, Enc (VarK 0) (Bit 1))) represents a pair of a random key and the bit 1 encrypted
with that key.

(5) Reusing Keys. The keys can be reused. For example the expression ((Enc (VarK 0) (Bit

1), Enc (VarK 0) (Bit 0))) represents a pair of two ciphertexts encrypted with the same

random key.

(6) Bit Variables. The term VarB i represents a bit variable, where 𝑖 ∈ N is the variable’s name.

Similarly to key variables, each bit variable represents a random bit.

(7) Conditional Swap. The expression Perm B X1 X2 represents ((X1, X2)) or ((X2, X1)) depend-
ing on the value the bit B.

(8) Negation. The bits can be negated using the constructor Neg. For example, the expression

((Neg (VarB 0), VarB 0)) represents a pair of two bits, where the first one is the negation

of the second one.

(9) Empty expression. Finally, Eps denotes the empty expression. It does not carry any

information, but can be useful as a placeholder (especially in the formalized setting).

Formally the expressions are defined by the following grammar:

Expr ::= Bit {0, 1} | VarB N | VarK N | ((Expr, Expr)) | Perm Expr Expr Expr | Neg Expr | Eps

Additionally each expression has a shape that serves as the expression’s type. Here are the

possible shapes:

(1) Bit. The shape of Bit b, VarB k and Neg B is called BitS – it represents a single bit. (Here 𝐵

denotes an expression of shape BitS.)

(2) Key. The shape of VarK k is KeyS – it represents a single key.

4

Computationally-Sound Symbolic Cryptography in Lean

1 inductive Shape : Type
2 | BitS : Shape -- The shape of a single bit. Denoted as B.
3 | KeyS : Shape -- The shape of a key. Denoted as K.
4 | PairS : Shape → Shape → Shape -- The shape of a pair.
5 | EncS : Shape → Shape -- The shape of an encrypted value of a given shape.
6 | EmptyS : Shape -- The empty shape, used to represent an empty expression.
7

8 inductive BitExpr : Type
9 | Bit : Bool → BitExpr -- A constant bit value.
10 | VarB : Nat → BitExpr -- A bit variable identified by a natural number.
11 | Not : BitExpr → BitExpr -- Negation of a bit expression.
12

13 inductive Expression : Shape → Type
14 | BitE : BitExpr → Expression B -- Bit expression.
15 | VarK : Nat → Expression K -- Key variable identified by a natural number.
16 | Pair : Expression s1 → Expression s2 → Expression (PairS s1 s2)
17 -- ^Pair of expressions. Denoted as ((s1, s2)).
18 | Perm : Expression B → Expression s → Expression s → (PairS s s)
19 --^ Conditional swap.
20 | Enc : Expression K → Expression s → Expression (EncS s)
21 --^ Encrypt a value with a given key.
22 | Hidden : Expression K → Expression (EncS s)
23 --^ A hole, that represents a value encrypted with a key unaccessible to the adversary.
24 | Eps : Expression EmptyS -- Empty expression

Fig. 1. Definition of shapes and cryptographic expressions. (See also: Expression/Defs.lean.)

(3) Enc. If K is an expression of shape KeyS and X and expression of some shape s, then the

shape of Enc K X is EncS s – it represents an encrypted value of shape s.

(4) Pair. If X and Y expressions of shapes s1 and s2, then the shape of ((X, Y)) is PairS s1 s2
– it represents a pair of expressions of given shapes. Similarly, if X and Y are expressions

of the same shape s, and B is an expression of shape BitS, then the shape of Perm B X Y is

PairS s s.

(5) Eps. The shape of Eps is EpsS – it represents an empty expression.

The formalization of the cryptographic expressions is presented in Figure 1 using the syntax
4
of

Lean 4. This syntax is similar to that of several classic proof assistants, such as Coq, and functional

programming languages like Haskell [24] and OCaml [26]. For more on Lean 4, see, e.g., [16] or

tutorials available online
5
. The definition is split into three parts. First, we define Shape, then we

define BitExpr, which are expressions representing single bits, and finally we define Expression s,

which is the type of all expressions of an arbitrary shape s.

2.2 Computational Semantics
In this section, we equip the cryptographic expressions with a computational semantics. This serves

two purposes: The first one is to clarify the intuitive meaning of cryptographic expressions, and

the second one is to set out the foundation for the soundness theorem presented in Section 4.

4
Sometimes the syntax was slightly simplified for clarity, e.g., by removing implicit arguments, namespaces, and some type

annotations. For full definitions, please refer to the provided codebase.

5
See https://lean-lang.org.

5

https://lean-lang.org

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

1 structure encryptionFunctions (𝜅 : N) where
2 encLength : N -> N
3 encrypt : (key : BitVector 𝜅) -> (msg : BitVector n) -> PMF (BitVector (encLength n))
4 decrypt : (key : BitVector 𝜅) -> (msg : BitVector (encLength n)) -> BitVector n

Fig. 2. Definition of the encryption scheme. (Expression/ComputationalSemantics/encryption-
IndCpa.lean)

To evaluate a cryptographic expression, we need to select an encryption protocol which is

modelled formally in Figure 2. In the listing 𝜅 denotes the length of the cryptographic keys (i.e.

the security parameter). BitVector n denotes a bit vector of a given length, and PMF X denotes a

distribution (given by a probability mass function) over X, so a function of type X → PMF Y can be

seen as a probabilistic function from X to Y. In particular encrypt is a probabilistic function that

takes a key of length 𝜅 a message of an arbitrary length n, and returns a ciphertext length of length

encLength n, where encLength is a parameter of the encryption scheme that ensures that the length

of the ciphertext does not depend on the content of the message, but only on its length. Figure 2

also defines the decryption function, but it will not be used in the computational semantics.

Once we have fixed the encryption scheme, and we are given the variable valuations (i.e.,

functions kVars : N → BitVector k and bVars : N → Bool), we can define the computational

semantics of cryptographic expressions as in Figure 3. In this listing, notation let x ← X denotes

sampling 𝑥 from a distribution 𝑋 (more precisely, it is a monadic bind operation on the type PMF).

We compute the final probability distribution by independently sampling the value of each variable

uniformly from Bool or BitVector 𝜅 and then evaluating the expression, as defined in Figure 4.

Here Fin k denotes the finite set of {0, . . . , 𝑘 − 1}. Let us finish this section with a few examples

of cryptographic expressions and their computational semantics:

(1) The expression ((Bit 0, Bit 1)) results in the bitstring 01, with probability 1.

(2) The expression ((VarB 0, VarB 1)) results in the uniform distribution over the bitstrings 00,
01, 10, and 11, each with probability 1/4. This is because the two elements of the pair are

independent random bits.

(3) The expression ((VarB 0, VarB 0)) results in the uniform distribution over the bitstrings 00
and 11, each with probability 1/2. This is because both the first and the second coordinate

of the pair are the same random value.

(4) The expression Perm (VarB 0) (Bit 1) (Bit 0) results in the uniform distribution over

the bitstrings 10 and 01, each with probability 1/2. This is because 0 and 1 are swapped

according to the random value of VarB 0.

2.3 Symbolic Indistinguishability
The final piece of the puzzle is the symbolic indistinguishability relation. On one hand, it is a formal

way of capturing the intuitive notion of indistinguishability of cryptographic expressions. On

the other hand, it can be seen as a sufficient condition for the computational indistinguishability

of the resulting probability distributions (provided that the encryption scheme used to evaluate

the expressions is secure). In this part of the paper, we will focus on the intuitive meaning of the

symbolic indistinguishability relation, and we will focus on its formal guarantees in Section 4.

2.3.1 Examples. Before presenting the formal definition of symbolic indistinguishability (in Section

2.3.2), we begin with a few illustrative examples. Consider first the following pair of expressions:

Enc (VarK 0) (Bit 0) and Enc (VarK 0) (Bit 1)

6

Computationally-Sound Symbolic Cryptography in Lean

1 def evalExpr (enc : encryptionFunctions 𝜅) (kVars : N → BitVector 𝜅)
2 (bVars : N → Bool) (e : Expression s) : PMF (BitVector (shapeLength 𝜅 enc s)) :=
3 match e with
4 | Expression.Enc (Expression.VarK k) e => do
5 -- Encrypt e using k
6 let e' ← evalExpr enc kVars bVars e
7 let key := kVars k
8 enc.encrypt key e'
9 | Expression.Pair e1 e2 => do
10 -- Concatenate e1 and e2
11 let e1' ← evalExpr enc kVars bVars e1
12 let e2' ← evalExpr enc kVars bVars e2
13 return (List.Vector.append e1' e2')
14 | Expression.BitE b => do
15 -- Lift a bit to a vector
16 let b' := evalBitExpr bVars b
17 return (List.Vector.cons b' List.Vector.nil)
18 | Expression.VarK k => do
19 -- Read the value of a key variable
20 return (kVars k)
21 | Expression.Perm (Expression.BitE b) e1 e2 => do
22 -- Conditional swap:
23 -- Return (e1, e2) if b is equal to 1 or (e2, e1) otherwise
24 let b' := evalBitExpr bVars b
25 let e1' ← evalExpr enc kVars bVars e1
26 let e2' ← evalExpr enc kVars bVars e2
27 if b' then return (List.Vector.append e2' e1')
28 else return (List.Vector.append e1' e2')
29 | Expression.Eps =>
30 -- Empty bitstring
31 return (List.Vector.nil)
32 | Expression.Hidden (Expression.VarK k) => do
33 -- Encode an arbitrary vector (e.g. only ones) using the key k.
34 -- The idea is that since k is unknown to the adversary,
35 -- it does not matter what is encrypted
36 let key := kVars k
37 enc.encrypt key ones

Fig. 3. Definition of computational semantics, given the encryption scheme and variable valuations.
(Expression/ComputationalSemantics/Def.lean.)

1 def exprToDistr (enc : encryptionFunctions 𝜅) (e : Expression s) : PMF (BitVector
(shapeLength 𝜅 enc s)) := do

2 let v := getMaxVar e + 1
3 let bvars ← uniformOfFintype (Fin v -> Bool)
4 let kvars ← uniformOfFintype (Fin v -> BitVector 𝜅)
5 evalExpr enc (extendFin ones kvars) (extendFin false bvars) e

Fig. 4. Full definition of the computational semantics of cryptographic expressions with random variable
valuations.

7

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

Those two expressions should be indistinguishable, because the ciphertexts encrypted with a

random key should not leak any information about the plaintext. Next, let us consider a similar

situation, but this time the encryption key is published:

((VarK 0, Enc (VarK 0) (Bit 0))) and ((VarK 0, Enc (VarK 0) (Bit 1)))
Those two expressions should count as distinguishable, because the adversary can decrypt the

second coordinate using the key from the first coordinate, and check if it is 0 or 1. As a side note,
observe that the two examples show that indistinguishability is not a congruence – even if an

expression𝑌 is symbolically indistinguishable from𝑌 ′, it does not mean that ((X, Y)) is symbolically

indistinguishable from ((X, Y')).
The encryption can be chained. For example, the following pair of expressions is distinguishable:

((VarK 0, ((Enc (VarK 0) (VarK 1), Enc (VarK 1) (Bit 0))))) and

((VarK 0, ((Enc (VarK 0) (VarK 1), Enc (VarK 1) (Bit 1)))))
But if we remove the first coordinate from each of the expressions, they become indistinguishable.

As our next example, consider the following pair of expressions:

((Enc (VarK 0) (Bit 0), Enc (VarK 0) (Bit 1))) and

((Enc (VarK 0) (Bit 0), Enc (VarK 0) (Bit 0)))
Those two expressions should be indistinguishable. This is possible because our encryption function

is probabilistic, so even though the first and second coordinates of the second expression are the

same, they might (and probably will) result in different ciphertexts.

Let us now focus on a slightly counterintuitive aspect of encryption security: As it turns out, the

usual notion of encryption security (i.e. the IND-CPA definition, see Section 4.1) does not protect

the security of messages encrypted cyclically. For example, we should assume that encrypting a

key with itself (i.e. Enc (VarK 0) (VarK 0)) leaks all information about the key, so the following

two expressions should be distinguishable:

((Enc (VarK 0) (VarK 0), Enc (VarK 0) (Bit 0))) and

((Enc (VarK 0) (VarK 0), Enc (VarK 0) (Bit 1)))
The cycle might be more complex than just encrypting a key with itself. Another example is:

((Enc (VarK 0) (VarK 1), Enc (VarK 1) (VarK 0)))
And we should assume that this expression leaks the keys VarK 0 and VarK 1.

Finally, let us discuss a few examples that have to do with bits and the conditional swap operations.

First, we consider the following pair:

VarB 0 and Neg (VarB 0)

Those two expressions are indistinguishable, because both of them result in the uniform distribution

over 0 and 1. Next, consider the following pair:

Perm (VarB 0) (Bit 0) (Bit 1) and Perm (VarB 0) (Bit 1) (Bit 0)

Those two expressions are also indistinguishable, because they both result in the uniform distribu-

tion over the bitstrings 01 and 10 (each with probability 1/2). If we publish the value of VarB 0 in

the first coordinate, we get the following pair:

((VarB 0, Perm (VarB 0) (Bit 0) (Bit 1))) and ((VarB 0, Perm (VarB 0) (Bit 1) (Bit 0)))
Those two expressions are not indistinguishable, because the adversary can use the first coordinate

to reverse the conditional swap of the second coordinate and check if it is 01 or 10.

2.3.2 Definition. We are now ready to present the formal definition of symbolic indistinguishability.

It consists of three parts:

8

Computationally-Sound Symbolic Cryptography in Lean

1 def hideEncrypted (keys : Finset (Expression KeyS)) (e : Expression s) : Expression s
:=

2 match e with
3 | Pair e1 e2 => Pair (hideEncrypted keys e1) (hideEncrypted keys e2)
4 | Perm b e1 e2 => Perm b (hideEncrypted keys e1) (hideEncrypted keys e2)
5 | Enc k e =>
6 if k ∈ keys
7 then Enc k (hideEncrypted keys e)
8 else Hidden k
9 | e => e -- In all other cases, we leave the expression as is.
10

11 def extractKeys (e : Expression s) : Finset (Expression KeyS) :=
12 match e with
13 | VarK e => {VarK e}
14 | Expression.Pair p1 p2 => (extractKeys p1) ∪ (extractKeys p2)
15 | Expression.Perm _ p1 p2 => (extractKeys p1) ∪ (extractKeys p2)
16 | Expression.Enc _ e => (extractKeys e) -- We omit the key used for encryption
17 | _ => ∅ -- In all other cases, we return the empty set.
18

19 def keyRecovery (e : Expression s) (S : Finset (Expression KeyS)) : Finset (Expression
KeyS) :=

20 extractKeys (hideEncrypted S e)
21

22 def adversaryKeys (e : Expression s) : Finset (Expression KeyS) :=
23 -- `greatestFixpoint f X Y Z` returns the greatest fixpoint of `f`,
24 -- the other arguments are only needed to prove termination, and do not influence

the output.
25 greatestFixpoint (keyRecovery e) (reductionToOracle e) (keyRecoveryMonotone e)

(keyRecoveryContained e)
26

27 def adversaryView (e : Expression s) : Expression s :=
28 hideEncrypted (adversaryKeys e) e

Fig. 5. Definition of adversaryView. (Expression/SymbolicIndistinguishability.lean.)

(1) adversaryView function, which hides all parts of the expressions that are not accessible to

the adversary, i.e. are encrypted with a key that is not known to the adversary.

(2) applyVarRenaming function, which allows us to rename both key and bit variables in the

expressions.

(3) normalizeExpr function, which performs all possible simplifications of the bit expressions.

Adversary View. As shown in the examples, to hide the inaccessible parts of the expressions,

adversaryView (defined in Figure 5) needs to handle chained and circular encryption. For this reason,

adversaryView is defined in terms of the greatest fixpoint of an auxiliary keyRecovery function (i.e.,

the F𝑒 operator from [27]), which in turn is a composition of hideEncrypted and extractKeys. The

function hideEncrypted (analog of the function p from [27]) inputs an expression 𝑒 and a set of

keys 𝐾 and hides all occurrences of Enc k e where 𝑘 is not in 𝐾 . The second function extractKeys

extracts all the keys that appear in the body of an expression (either as plaintext or encrypted).

Importantly extractKeys does not extract keys that are only used to encrypt data and do not appear

anywhere else in the expression. For example:

9

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

⸨k1 , Enc k1 k2 , Enc k2 0, Enc k3 k4 , Enc k4 1, Enc k5 ⸨k5 , 0⸩ ⸩

{k1 , k2 , k4 , k5 }

{k1 , k2 , k5 }

⸨k1 , Enc k1 k2 , Enc k2 0, Enc k3 k4 , Enc k4 1, Enc k5 ⸨k5 , 0⸩ ⸩ k3

⸨k1 , Enc k1 k2 , Enc k2 0, Enc k3 k4 , Enc k 4 1, Enc k5 ⸨k5 , 0⸩ ⸩ k3 k4

{k1 , k2 }

{k1 }

⸨k1 , Enc k1 k2 , Enc2k2 0, Enc k3 k4 , Enc k4 1, Enc k5 ⸨k5 , 0⸩ ⸩ k3k2k1 k4 k5

⸨k1 , Enc k1 k2 , Enc k2 0, Enc k3 k4 , Enc k4 1, Enc k5 ⸨k5 , 0⸩ ⸩ k3k2 k4 k5

⸨k1 , Enc k1 k2 , Enc k2 0, Enc k3 k4 , Enc k4 1, Enc k5 ⸨k5 , 0⸩ ⸩ k3 k4 k5

Greatest Fixpoint
Greatest Fixpoint

Lowest Fixpoint

Fig. 6. Illustration of the greatest and least fixpoints of keyRecovery. Arrows denote the application of
hideEncrypted and extractKeys. 𝑘𝑖 denotes VarK i and 𝑘𝑖 denotes Hidden(VarK i).

extractKeys (Enc (VarK 0) (VarK 1)) = {VarK 1}

The VarK 0 is not extracted because it is only used to encrypt other data. On the other hand, VarK 1

is extracted because, although encrypted, it actually appears in the expression. It is not hard to see

(and to prove in Lean) that keyRecovery is a monotone function, so we can define extractKeys as

its greatest fixpoint. Then, to compute the adversaryView of an expression, we use hideEncrypted

with adversaryKeys. Finally, let us observe that using the greatest fixpoint allows the adversary to

access the cyclically encrypted keys (see Figure 6), which, as briefly discussed in the examples, is

the desired behaviour.

Variable Renaming. A variable renaming consists of two parts: a key variable renaming and a bit

variable renaming. Key renaming is relatively straightforward: valid key renaming is a bijection

that maps each key variable to another key variable. It is modeled as a function of type N→ N,
and it is applied to an expression by applying it pointwise to every key variable. See Figure 7.

BitRenaming is slightly more complex — it is a function that maps each bit variable to either

another bit variable or its negation. (The ability to negate is essential because we want VarB 0

and Neg (VarB 0) to be indistinguishable.) A bit renaming is valid if, when cast to a function of

type N → N, it becomes a bijection. Similar to key renaming, a bit renaming is applied to an

10

Computationally-Sound Symbolic Cryptography in Lean

1 def KeyRenaming : Type := N → N
2

3 def validKeyRenaming (r : KeyRenaming) : Prop := Function.Bijective r
4

5 def applyKeyRenaming (r : KeyRenaming) (e : Expression s) : Expression s :=
6 match e with
7 | VarK n => VarK (r n) -- Rename `n` to `r n`.
8 | Pair e1 e2 => Pair (applyKeyRenaming r e1) (applyKeyRenaming r e2)
9 | Perm b e1 e2 => Perm b (applyKeyRenaming r e1) (applyKeyRenaming r e2)
10 | Enc e1 e2 => Enc (applyKeyRenaming r e1) (applyKeyRenaming r e2)
11 | e => e

Fig. 7. Definition of key renaming. (Expression/SymbolicIndistinguishability.lean.)

expression pointwise to every bit variable. (We omit the formal definition here; it can be found in

file Expression/SymbolicSemantics.lean.)
Finally, a varRenaming is a pair consisting of a key renaming and a bit renaming. It is valid if both

of its components are valid, and it is applied to an expression by independently applying the key

and bit renamings.

Normalize. The function normalizeExpr simplifies expressions by applying the following rules

(see Figure 8):

(1) Neg (Bit 0) simplifies to Bit 1, and Neg (Bit 1) simplifies to Bit 0.

(2) Neg (Neg X) simplifies to X.

(3) Perm (VarB 0) X Y simplifies to ((Y, X)), and Perm (VarB 1) X Y simplifies to ((X, Y)).
(4) Perm (Neg B) X Y simplifies to Perm B Y X.

Symbolic Indistinguishability. Finally, we combine the three parts to define the symbolic indistin-

guishability relation, by saying that two expressions e1 and e2 are symbolically indistinguishable, if

we can rename the variables in e1, in such a way that the two expressions are equal after normalizing

and applying the adversary’s view (see Figure 9).

3 EXTENDED EXAMPLE – CIRCUIT GARBLING
In this section, we present a use case for our framework: an implementation of circuit garbling in

Lean, together with a formal proof of symbolic security. This example serves two primary purposes.

First, it demonstrates the usefulness of the symbolic framework for formalizing cryptographic

properties in Lean. Second, it provides a concrete symbolic proof that can serve as a starting point

for further projects.

The structure of this section is as follows. In Section 3.1, we provide background on circuit

garbling and multi-party computation, explaining their importance for cryptographic protocols. In

Section 3.2, we present our modeling of the circuit garbling protocol and formally state its security

property in the symbolic framework. Finally, in Section 3.3, we introduce a proof technique for

reasoning about symbolic cryptography, which we developed during the formalization effort.

This work formalizes the results presented in [27], but modifies the proof to make it more suitable

for proof assistants. This formalization effort led to two notable side results. First, we discovered

that the use of pseudo-random generators (as employed in [27]) was unnecessary. We were able

to simplify the construction to rely solely on encryption. This not only improves efficiency but

11

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

1 def normalizeB (p : BitExpr) : BitExpr :=
2 match p with
3 | Not (Not e) => normalizeB e
4 | Not (Bit b) => Bit (not b)
5 | e => e
6

7 def normalizeExpr {s : Shape} (p : Expression s) : Expression s :=
8 match p with
9 | BitE p => BitE (normalizeB p)
10 | Perm (BitE b) p1 p2 =>
11 let b' := normalizeB b
12 let p1' := normalizeExpr p1
13 let p2' := normalizeExpr p2
14 match b' with
15 | Bit b'' =>
16 if b''
17 then Pair p2' p1'
18 else Pair p1' p2'
19 | Not b'' =>
20 Perm (BitE b'') p2' p1'
21 | VarB k => Perm (BitE (VarB k)) p1' p2'
22 | Pair p1 p2 => Pair (normalizeExpr p1) (normalizeExpr p2)
23 | Enc k e => Enc k (normalizeExpr e)
24 | p => p

Fig. 8. Definition of normalization. (Expression/SymbolicIndistinguishability.lean.)

1 def symIndistinguishable (e1 e2 : Expression s) : Prop :=
2 ∃ (r : varRenaming), validVarRenaming r ∧
3 normalizeExpr (applyVarRenaming r (adversaryView e1)) = normalizeExpr

(adversaryView e2)

Fig. 9. Definition of symbolic indistinguishability. (Expression/SymbolicIndistinguishability.lean.)

also simplifies the formalization effort. The second side result is the pseudo-fixpoint reasoning

technique, which provides a structured approach to symbolic proofs of cryptographic security.

3.1 Multi-Party Computation and Circuit Garbling
Multi-party computations (MPCs) [20, 42] (see, also [18]) is a family of cryptographic protocols that

allow multiple parties to jointly evaluate a function without revealing their inputs to each other. In

this paper, we are interested in the two-party version of this notion. Specifically, consider a scenario

in which two parties, Alice and Bob, wish to evaluate a publicly-know logical circuit where some

input wires belong to Alice and others to Bob. The MPC protocol enables them to perform this

evaluation without revealing anything more about their inputs than what can be inferred from the

circuit’s output. Two important properties of an MPC protocol are security and correctness. An

MPC protocol is secure if it guarantees the privacy of the inputs, and correct if it ensures that the

parties always reach the correct output. See [18] for a more detailed discussion of MPC, including

the formal definitions of security and correctness.

12

Computationally-Sound Symbolic Cryptography in Lean

One of the techniques for achieving secure multi-party computation is through Yao’s circuit

garbling [42]. The core of a garbling protocol (see also [27, Definition 5]) is a probabilistic function:

Garble(circuit, input) = (gCircuit, gInput)
Here, circuit is a representation of a logical circuit (for a formal definition, see, e.g, [27, Definition 4]),

and input is a bit vector representing the inputs to the circuit (the Garble procedure does not

distinguish between input wires belonging to Alice or Bob). The output is a pair gCircuit and gInput,
both encoded as bit vectors. The idea is that gCircuit and gInput should obscure the original circuit

and input, in a way that allows for circuit evaluation (“correctness”) while revealing nothing about

the original input beyond what can be inferred from the output (“security”).

Formally, the security of the garbling protocol is defined in terms of indistinguishability. In order

for a garbling protocol to be secure (see also [27, Definition 6]), there must exist a function Simulate:

Simulate(circuit, output) = (sCircuit, sInput)
Such that for every circuit 𝐶 and input 𝑥 , the following distributions are indistinguishable:

Garble(𝐶, 𝑥) and Simulate(𝐶,𝐶 (𝑥))
Indeed, if it is possible to simulate the output of Garble(𝐶, 𝑥) without knowing the input 𝑥 , then it

is impossible to learn anything more about 𝑥 from Garble(𝐶, 𝑥) than what can already be inferred

from 𝐶 (𝑥).
For the correctness of the garbling protocol (see also [27, Definition 6]), we require that there

exists an explicit and efficient function Evaluate:

Evaluate(gCircuit, gInput) = output

such that for every circuit 𝐶 and input 𝑥 , we have:

Evaluate(Garble(𝐶, 𝑥)) = 𝐶 (𝑥)
In order for a garbling protocol to be usable in a two-party computation setting, it needs to be a

projective scheme. To explain what this means, let us first define the function

proj :

(
𝑇 2

)𝑛 × {0, 1}𝑛 → 𝑇𝑛,

which takes a list of pairs and a selector string (both of length 𝑛) and selects one element from each

pair according to the corresponding bit in the selector string. We say that a garbling function is a

projective scheme if it can be expressed as:

Garble(circuit, input) = (gCircuit, proj(gInputPairs, input)),
where gCircuit and gInputPairs are produced by a function that does not depend on the input:

preGarble(circuit) = (gCircuit, gInputPairs)
A secure projective garbling protocol can be used to implement a two-party computation protocol

— see [11, Figure 3] or [11, Section 7.1]. For the sake of completeness, and to justify the notion

of projective schemes, let us briefly sketch one way to achieve this. The construction requires a

cryptographic primitive known as oblivious transfer [19, 38] (see [18]). Oblivious transfer works as
follows: Alice has two values 𝑣0 and 𝑣1, and Bob has a bit 𝑏 ∈ {0, 1}. With the oblivious transfer

protocol, Bob learns 𝑣𝑏 without learning the other value 𝑣¬𝑏 , while Alice does not learn 𝑏. See [34].
Since its introduction in the 1980s, oblivious transfer has been used as a building block for many

cryptographic protocols. Several efficient implementations of oblivious transfer exist, based on

multiple plausible assumptions, such as the quadratic residuosity [19, 38], decisional Diffie-Hellman
[34], or learning with errors [36]. Using the oblivious transfer primitive, we can implement the

two-party version of the garbling protocol as follows:

13

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

(1) Alice runs the preGarble function on 𝐶 , obtaining gCircuit and gInputPairs.
(2) Alice sends gCircuit to Bob.

(3) For each bit in her input, Alice sends the corresponding value from gInputPairs to Bob.

(4) For each bit in his input, Bob uses oblivious transfer to receive from Alice the corresponding

value from gInputPairs.
(5) Bob now has gCircuit and gInput, so he can evaluate the circuit and send the output to Alice.

Let us finish this section by noting that garbling circuits is an important and active area of research.

We refer the reader to [11] for a survey of protocols and applications. One particularly active

line of work focuses on optimizing the garbling protocol to make it more efficient, e.g., the free
XOR [25] and the row-reduction [37] techniques. Interestingly, the original paper on circuit garbling

by Yao [42] did not provide a formal proof of security, and it took over two decades before a

(pen-and-paper) proof of security was provided by Lindell and Pinkas [29] and by Bellare et al. [11].

This may serve as an illustration of the complexity of the problem, and the need for formalizing

security proofs in a proof assistant.

3.2 Security Proof of Circuit Garbling
In this section, we explain how modelled the circuit garbling protocol in Lean, and how we

formalized its symbolic security statement. However, since our implementation is based on the

implementation provided by [27] (with the pseudo-random generator removed), we will not repeat

it here. Similarly, since [27] already provides a pen-and-paper proof of symbolic security, we will

not present our formalization of the proof here either. Instead, we focus on presenting its statement

in Lean. For further reading, we refer the reader to [27] or to our implementation.

We implemented preGarble in Lean and used it to define Garble, as required by the definition of

a projective scheme. Importantly, Garble does not produce a distribution over bit vectors directly.

Instead, it returns a cryptographic expression, which can later be compiled into a distribution using

the computational semantics introduced in the previous section. (Since cryptographic expressions

do not support lists, we represent lists using nested tuples instead.) We also implemented the

function SimulateG, which simulates the output of Garble given only the circuit and its output;

this function also returns a cryptographic expression. Finally, we proved that for every circuit

𝐶 and input 𝑥 , the expressions Garble C x and SimulateG C (evalCircuit C x) are symbolically

indistinguishable. See Figure 10 for the definition of Garble (in terms of preGarble), the types of

preGarble and SimulateG, and the statement of the symbolic indistinguishability property.

3.3 Proof Technique for Working with Fixpoints
Let us start by briefly outlining our proof technique for establishing symbolic indistinguishability of

garbled circuits. Let 𝑔 be the expression produced by Garble and 𝑠 the one produced by SimulateG.

We begin the proof by giving explicit definitions for adversaryKeys g and adversaryKeys s. (This

is the most difficult step, as it involves reasoning about fixpoints.) The remaining steps are rel-

atively straightforward: we use the definitions of adversaryKeys to compute explicit formulas

for adversaryView of 𝑔 and 𝑠 , and then provide a variable renaming 𝑟 such that applying 𝑟 to

adversaryView g, followed by normalization, yields adversaryView s. The main technical challenge

is reasoning about the adversaryKeys function, which is defined via a fixpoint computation.

In the remainder of this section, we explain our general technique for reasoning about fix-

points. To illustrate it, consider an expression e = ((e1, e2)). The core difficulty lies in the fact

that adversaryKeys is not compositional: computing it separately for e1, e2, and e3 tells us lit-

tle about adversaryKeys e. For example, suppose e1 is the key variable 𝑘1, and e2 = Enc k1 k2.

14

Computationally-Sound Symbolic Cryptography in Lean

1 def preGarble (c : Circuit inputBundle outputBundle) :=
2 (garbledCircuitType c) × (projectionLabelType inputBundle) := [. . .]
3

4 def Garble (c : Circuit inputBundle outputBundle) (input : bundleBool inputBundle)
5 : Expression (Shape.PairS (garbledCircuitShape c) (garbledInputShape inputBundle)) :=
6 let (garbledCircuit, inputPairs) := preGarble c
7 garbleOutputToExpr (garbledCircuit, makeProjection inputPairs input)
8 -- `garbleOutputToExpr` recursively transforms Lean-pairs (x, y) to Expression-pairs

((x, y))
9

10 def SimulateG (c : Circuit inputBundle outputBundle) (output : bundleBool outputBundle)
11 : Expression (Shape.PairS (garbledCircuitShape c) (garbledInputShape inputBundle)) :=
12 [. . .]
13

14 lemma garblingSecureSymbolic :
15 ∀ (c : Circuit inputBundle outputBundle) (input : bundleBool inputBundle),
16 symIndistinguishable (Garble c input) (SimulateG c (evalCircuit c input))

Fig. 10. Types of the garble function. (Garbling/GarbleDef.lean)

Then adversaryKeys e1 = {k1} and adversaryKeys e2 = ∅, but adversaryKeys e = {k1, k2}, with

𝑘2 appearing seemingly from nowhere.

However, in practice, expressions like those produced by Garble, SimulateG, and most reasonable

protocols are highly structured. This allows us to use a powerful fixpoint reasoning technique.

First, those experrsions do not contain cyclic encryptions, so we can prove that keyRecovery has a

unique fixpoint, and not worry about adversaryKeys being the greatest one.

Another key property of 𝑔 and 𝑠 is that they are usually non-overlapping: if ((e1, e2)) is a
subexpression of 𝑔 or 𝑠 , then the sets of keys written in e1 and e2 (i.e. the ones returned by

extractKeys) are disjoint — although e2 may still use keys from e1 for encryption. To take advantage

of this, we introduce the following notion: a set of keys 𝐾 is a pseudo-fixpoint with respect to𝑈 on 𝑒
if

(keyRecovery e K) ∩ U = K ∩ U

That is, the keys in 𝐾 agree with the result of keyRecovery on the subset𝑈 .

We use this definition as follows. To prove that a set 𝑋 is a fixpoint of keyRecovery on ((e1, e2)),
it suffices to show that 𝑋 is a pseudo-fixpoint on e1 with respect to extractKeys e1, and on e2
with respect to extractKeys e2. Of course, this only works when ((e1, e2)) satisfies the sortedness
condition above. Interestingly, this technique turned out to be powerful enough to reason about

adversaryKeys for 𝑔 and 𝑠 , significantly simplifying the symbolic indistinguishability proof.

4 COMPUTATIONAL INDISTINGUISHABILITY
In this section, we revisit the notion of indistinguishability from the standard computational

perspective. We begin by discussing the texbook IND-CPA (indistinguishability under chosen-

plaintext attack) definition of encryption security and how we formalize it in Lean. Next, we

formally state and prove the computational soundness theorem, which establishes a connection

between symbolic and computational indistinguishability. This theorem enables us to lift symbolic

indistinguishability results to the computational setting; in particular, it allows us to derive the

computational security of garbled circuits from their symbolic proof.

15

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

1 def encryptionScheme : Type := (𝜅 : N) -> encryptionFunctions 𝜅

2

3 -- We lift `exprToDistr` to work with `encryptionScheme` and produce a family of
distributions

4 def exprToFamDistr (enc : encryptionScheme) (e : Expression s) :=
5 fun 𝜅 => exprToDistr (enc 𝜅) e

Fig. 11. Definition of an encryption scheme. (Expression/ComputationalSemantics/encryption-
IndCpa.lean)

4.1 Indistinguishability-Based Security of Encryption Schemes
The standard notion of encryption security is called IND-CPA, which stands for indistinguishability
under chosen-plaintext attack. This definition captures the idea that an adversary should not learn

anything about the plaintext, even when the same encryption key is used to encrypt multiple

messages chosen by the adversary. IND-CPA security can be formalized in various equivalent ways;

here, we follow the definition given in [27, Definition 2], which defines it in terms of two oracles,

O𝐿 and O𝑅 . Both oracles are initialized with a randomly chosen key k, and respond to queries of

the following form:

Input: A pair of messages of the same length (𝑚𝐿,𝑚𝑅)
Output of O𝐿: 𝑚𝐿 encrypted with k
Output of O𝑅 : 𝑚𝑅 encrypted with k

We say that an encryption scheme is IND-CPA secure if no probabilistic polynomial-time (PPT)

adversary can distinguish between the two oracles with non-negligible probability. However, the

definitions of polynomial time and negligible probability both require a parameter that measures

the complexity of the oracles. This parameter is known as the security parameter6 𝜅, which in our

case is equal to the length of the encryption key. For this reason, we define an encryption scheme

as a family of encryption functions indexed by the security parameter 𝜅 (see Figure 11). Based

on such an encryption scheme, we construct the families of oracles O𝜅
𝐿
and O𝜅

𝑅
, and say that the

encryption scheme is IND-CPA secure if no PPT adversary can distinguish the outputs of the two

oracles with non-negligible probability, both with respect to 𝜅 . (A probability is called negligible if
it decreases faster than the inverse of any polynomial in 𝜅.)

4.1.1 Oracles in Lean – VCVio. To talk about oracles and oracle computations in Lean, we use the

VCVio library
7
[40]. In our formalization, O𝐿 and O𝑅 are implemented as VCVio oracles, and the

adversary is modeled as an oracle computation that interacts with them. Let us now briefly discuss

how VCVio defines the two notions. The interface between oracles and oracle computations is

defined by the oracle’s specification, OracleSpec I. It is parameterized by a type I, which represents

the set of query labels that can be asked to the oracle. For each 𝑖 ∈ 𝐼 , the specification assigns a

pair of types:

(Input type of the query 𝑖, Output type of the query 𝑖)
As an example, let us discuss the specification of the oracles O𝐿 and O𝑅 . (Observe that since the
two oracles answer the same type of query, they must share the same specification.) Although they

intuitively implement only one type of query, for technical reasons, it is convenient to take 𝐼 = N
and define a separate query for each possible message length. The 𝑛-th query then inputs a pair of

6
In the literature, the security parameter is often denoted by 𝜆. However, since in Lean 𝜆 is a reserved keyword, we denote

it by 𝜅 instead.

7
See: github.com/dtumad/VCV-io.

16

https://github.com/dtumad/VCV-io

Computationally-Sound Symbolic Cryptography in Lean

messages of length 𝑛 and returns a ciphertext of length encLength n. The specification is formally

defined as oracleSpecIndCpa in Figure 14.

An oracle is defined as an implementation of the oracle specification and has the type QueryImpl

(spec : OracleSpec I) M, which, to every 𝑖 ∈ 𝐼 , associates a function of type:

In 𝑖 → 𝑀 (Out 𝑖)

where In 𝑖 and Out 𝑖 are the input and output types of the query 𝑖 , as specified by spec. (For example,

in the case of the oracles O𝐿 and O𝑅 , In 𝑛 is BitVector n × BitVector n, and Out 𝑛 is BitVector

(encLength n).) Observe that the output type of the oracle query is modified by a functor𝑀 — this

should be a monad that represents the computational effects used by the oracle, such as state or

nondeterminism. In our case, we always use M x = PMF (Option x), which models probabilistic

computations that may fail. (This monad is also commonly written as (OptionT PMF) x.) We use

the PMF monad to model the probabilistic nature of encryption schemes, while the Option monad is

required by VCVio, which assumes that oracle computations can fail. (However, the use of Option

is purely technical: we will only consider oracles that never fail, i.e., return none with probability

zero.)

Finally, an oracle computation that interacts with an oracle and returns a value of type X is repre-

sented by the type OracleComp (spec : OracleSpec I) X. It can be seen as an abstract computation

that is designed to work with any oracle implementing the specification spec (formally, it is defined

as a free monad, see e.g. [39, Section 6]). It comes equipped with a function simulateQ that, given

an actual oracle implementation impl : QueryImpl spec M, performs the computation and returns

a value of type M X.

4.1.2 Oracles’ indistinguishability in Lean. We are now going to define computational indistin-

guishability for families of seeded oracles — a notion we will use to formalize IND-CPA security

of encryption schemes. A family of seeded oracles (formally defined in Figure 12) consists of one

oracle for each security parameter 𝜅, and each oracle is initialized with a random value drawn

from a specified distribution. For example, the oracles O𝐿 and O𝑅 are initialized with a uniformly

random encryption key.

An adversary that interacts with a family of seeded oracles is represented as a family of oracle
computations (formalized as famOracleComp in Figure 12). Such a family consists of one oracle

computation for each value of the security parameter 𝜅. Since we want the adversary to be a

probabilistic computation, it is, in addition to its input oracle, also given access to a randomness

oracle, which generates random values from specified distributions.

An important property of families of seeded oracles and families of oracle computations is that

they can be plugged together using simulateQ, producing a family of distributions over output

values (parametrized by 𝜅). This plugging function is formalized as compToDistrGen in Figure 12.

We say that two families of seeded oracles are computationally indistinguishable if no probabilistic
polynomial-time distinguisher can tell them apart with non-negligible probability. A distinguisher

is a special kind of family of oracle computations that returns a Boolean for all values of the

security parameter 𝜅 (i.e., famOracleComp Spec (fun _ => Bool)). Formalizing the definition of

negligibility is straightforward (see negl in Figure 13). The most challenging part is defining

which families of oracle computations run in polynomial time — we postpone this discussion to

Section 4.2.2. For now, the definition of indistinguishability simply takes a predicate (IsPolyTime

: PolyFamOracleCompPred) as a parameter. See Figure 13 for the formal definition.

With the notion of indistinguishability of families of seeded oracles in place, we can now formally

define the IND-CPA security of an encryption scheme by directly formalizing the definition given

in Section 4.1. See Figure 14.

17

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

1 -- A family of seeded oracles is parametrized by a family of specifications.
2 structure famSeededOracle (Spec : N -> OracleSpec I) where
3 Seed : (𝜅 : N) -> Type -- The type of the seed
4 seedDistr : (𝜅 : N) -> OptionT PMF (Domain 𝜅) Seed -- The distribution of the seed
5 queryImpl : (𝜅 : N) -> Seed 𝜅 -> QueryImpl (Spec 𝜅) (OptionT PMF) -- Implementation

of the queries
6

7 -- A family of oracle computations is also parametrized by a family of specifications.
8 -- The function `withRandomI` adds randomness queries to the specification
9 def famOracleComp (Spec : N -> OracleSpec I) (Output : N -> Type) :=
10 (𝜅 : N) -> OracleComp (withRandomI Spec 𝜅) (Output 𝜅)
11

12 -- A function that runs a given `famOracleComp` on a given `famSeededOracle`.
13 -- The function `addRandom` provides the implementations of the randomness queries
14 -- introduced by `withRandomI`.
15 def compToDistrGen (oracle : famSeededOracle Spec) (comp : famOracleComp Spec Output)

(𝜅 : N)
16 : (OptionT PMF (Output 𝜅)) := do
17 let seed ← oracle.seedDistr 𝜅

18 OracleComp.simulateQ (addRandom (oracle.queryImpl 𝜅 seed)) (comp 𝜅)

Fig. 12. Definition of a family of seeded oracles. (ComputationalIndistinguishability/Def.lean)

4.2 Computational Soundness Theorem
Having formalized the IND-CPA security assumption for the encryption scheme, we are now ready

to formalize the computational soundness theorem, which states that symbolic indistinguisha-

bility implies computational indistinguishability (as long as the encryption scheme used in the

computational semantics is IND-CPA secure). In this subsection, we will: (a) formalize symbolic

indistinguishability for families of distributions; (b) discuss our axiomatic approach for handling

polynomial-time computations; (c) state the computational soundness theorem; and (d) explain our

approach to proving it.

4.2.1 Computational Indistinguishability of Distributions. The computational soundness theorem

is stated in terms of the indistinguishability of families of distributions, rather than of families

of seeded oracles. Because of this, we begin by formalizing this notion of indistinguishability.

Although it is quite similar — and simpler — than the definition of oracle indistinguishability, both

notions will play a role in our axiomatic approach to polynomial-time computations.

A family of distributions is a function (𝜅 : N) → PMF (Option (Domain 𝜅)), where Domain is

a family of types. The adversary is modeled as a family of simple computations, consisting of

functions Domain 𝜅 → PMF (Output 𝜅) for each 𝜅 . To apply a family of computations 𝑓 to a family

of distributions 𝑑 , we sample a value 𝑥 from 𝑑𝜅 for each 𝜅, and compute 𝑓𝜅 (𝑥). See Figure 15.
Instead of introducing a new abstract predicate for polynomial-time families of simple computa-

tions, we reuse the one defined for families of oracle computations. To do this, we observe that

every family of simple computations 𝑓𝜅 can be lifted to a family of oracle computations that queries

a single oracle for a value of type Domain 𝜅, applies 𝑓𝜅 to this value, and then uses the randomness

oracle to sample from the resulting distribution. Thanks to this lift, we can apply any abstract

predicate p : PolyFamCompPred defined for families of oracle computations to families of simple

computations. See Figure 16 for details.

18

Computationally-Sound Symbolic Cryptography in Lean

1 -- A type of predicates on `famOracleComp`.
2 -- Used to represent the polynomial-time predicate.
3 def PolyFamOracleCompPred : Type :=
4 famOracleComp Spec Output -> Prop
5

6 -- Definition of negligible probability.
7 -- `NNReal` represents non-negative real numbers.
8 def negl (f : N -> NNReal) : Prop :=
9 ∀ k, ∃ (B : R), ∀ i, (f i) * (i^k) <= B
10

11 -- Advantage is the difference between probabilities
12 -- that a distribution returns `True`. It is used to measure
13 -- how well did the adversary distinguish two oracles
14 def advantage (x y : N → PMF (Option Bool)) : N → NNReal :=
15 fun 𝜅 =>
16 -- `distance p q` is defined as | p - q |.
17 distance (getPMF (x 𝜅) (some True)) (getPMF (y 𝜅) (some True))
18

19 def CompIndistinguishabilitySeededOracle
20 (IsPolyTime : PolyFamOracleCompPred)
21 (o1 o2 : famSeededOracle Spec)
22 : Prop :=
23 -- All distinguishers . . .

24 ∀ distinguisher : famOracleComp Spec (fun _ => Bool),
25 -- . . . that run in polynomial time . . .

26 (IsPolyTime distinguisher) ->
27 -- . . . only achieve negligible advantage.
28 negl (advantage (compToDistrGen o1 distinguisher) (compToDistrGen o2

distinguisher))

Fig. 13. Definition of oracle indistinguishability. (ComputationalIndistinguishability/Def.lean)

Finally, we say that two families of distributions are indistinguishable if no polynomial-time dis-

tinguisher (modeled as a family of simple computations 𝑑𝜅 : Domain𝜅 → PMF Bool) can distinguish

them with non-negligible probability. See Figure 17.

4.2.2 Axiomatizing Polynomial Time. The notion of polynomial-time computation is central to

much of modern cryptography, but it is challenging to model in formal theorem provers such as

Lean (or Easycrypt). This is because they do not have a built-in notion of a function’s running time,

so polynomial time must be defined from scratch using Turing machines or some other equivalent

model. Dealing with probabilistic polynomial-time adversaries is particularly challenging, as they are
usually framed as probabilistic and interactive Turing machines — a fairly natural but impractical

model for formal verification. For this reason, in this work we adopt an alternative, axiomatic

approach and model it as an abstract predicate on families of oracle computations (i.e., of type

PolyFamOracleCompPred) that satisfies the following two axioms:

1. It is closed under composition. Observe that families of oracle computations (famOracleComp)

can be composed with families of simple computations (famComp), resulting in a new element of

famOracleComp. This is because, just before returning its result, a famOracleComp can apply a famComp

transformation to it. This axiom states that if both the input famOracleComp and the input famComp

19

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

1 def oracleSpecIndCpa (𝜅 : N) (enc : encryptionFunctions 𝜅) : OracleSpec N :=
2 fun n => ((BitVector n) × (BitVector n), BitVector (enc.encryptLength n))
3

4 -- A type used to index the oracles O𝑙 and O𝑟.
5 inductive Side : Type
6 | L
7 | R
8

9 def choose (s : Side) (x : X × X) : X :=
10 match s with
11 | L => x.1
12 | R => x.2
13

14 -- Implementation of an oracle query: encrypt the left or right message based on w
15 def indCpaOracleImpl (s : Side) (𝜅 : N) (enc : encryptionFunctions 𝜅) (key :

BitVector 𝜅) :
16 QueryImpl (oracleSpecIndCpa 𝜅 enc) (OptionT PMF) := {
17 impl query :=
18 -- Unpack the query . . .

19 let OracleSpec.query l ⟨msg1, msg2⟩ := query
20 -- . . . and encrypt the adequate message.
21 enc.encrypt key (choose s (msg1, msg2))
22 }
23

24 -- Pack `indCpaOracleImpl` into a `famSeededOracle`.
25 def seededIndCpaOracleImpl (s : Side) (enc : encryptionScheme) :
26 famSeededOracle (fun 𝜅 ↦→ oracleSpecIndCpa 𝜅 (enc 𝜅)) := {
27 Seed 𝜅 := BitVector 𝜅,
28 --^ Key with 𝜅 bits.
29 seedDistr 𝜅 := PMF.uniformOfFintype (BitVector 𝜅),
30 --^ Draw the key uniformly at random.
31 queryImpl 𝜅 key := indCpaOracleImpl s 𝜅 (enc 𝜅) key
32 --^ Encrypt the left or the right msg based on s.
33 }
34

35 def encryptionSchemeIndCpa (IsPolyTime : PolyFamOracleCompPred) (enc :
encryptionScheme) : Prop :=

36 CompIndistinguishabilitySeededOracle IsPolyTime (seededIndCpaOracleImpl Side.L enc)
(seededIndCpaOracleImpl Side.R enc)

Fig. 14. Definition of IND-CPA security of an encryption scheme. (Expression/Computational-
Semantics/encryptionIndCpa.lean)

run in polynomial time, then the resulting famOracleComp also runs in polynomial time. See Figure 18

for the formal statement.

2. It contains specific computations. The second axiom is more ad hoc than closure under composi-

tion: it postulates that a specific famOracleComp, called removeOneKeyReduction, which we use in the

proof, runs in polynomial time. It is defined in Figure 20, and we explain why it runs in polynomial

20

Computationally-Sound Symbolic Cryptography in Lean

1 -- We consider two kinds of families of distributions:
2

3 -- The possibly failing ones, which are more compatible with VCVIO.
4 def famDistr (Domain : N -> Type) := (𝜅 : N) -> OptionT PMF (Domain 𝜅)
5

6 -- A family of computations used to transform both `famDistr` and `famDistr`.
7 def famComp (Input : N -> Type) (Output : N -> Type) :=
8 (𝜅 : N) -> (Input 𝜅) -> (PMF (Output 𝜅))
9

10 -- A family of computation `comp` is applied to a family of distributions `input`
11 -- by drawing one value from `input` and applying `comp` to it.
12 def compToDistrSimple (input : famDistr Input) (comp : famComp Input Output) (𝜅 : N)
13 : OptionT PMF (Output 𝜅) := do
14 -- Draw a single random value from the input distribution . . .

15 let z ← input 𝜅

16 -- . . . and apply the `famComp` to the result.
17 o 𝜅 z

Fig. 15. Definition distribution indistinguishability. (ComputationalIndistinguishability/Def.lea)

1 -- Lift `famComp` to `famOracleComp`.
2 def simpleCompAsGenComp (f : famComp Input Output)
3 : famOracleComp (fun 𝜅 => simpleCompSpec (Input 𝜅)) Output :=
4 fun 𝜅 => do
5 -- Ask the oracle for the input argument `x` . . .

6 let (x : Input 𝜅) ← getInputArg Input 𝜅

7 -- . . . apply `f` to `x` ..
8 let distr := f 𝜅 x
9 -- .. and sample from the resulting distribution.
10 let ret ← sample (f 𝜅 x)
11 return ret
12

13 -- Recast `(polyTime : PolyFamOracleCompPred)` to work with define `polyTimeFamComp`.
14 def polyTimeFamComp (polyTime : PolyFamOracleCompPred) (o : famComp Input Output) :

Prop :=
15 polyTime (simpleCompAsGenComp o)

Fig. 16. Lifting the polynomial-time predicate from families of oracle computations to families of distributions.
(ComputationalIndistinguishability/Def.lea)

time on page 24. This axiom serves as a way of lifting a pen-and-paper complexity analysis into a

formal framework, while relying on the reader to verify this particular complexity claim.

4.2.3 Computational Soundness Theorem. We are now ready to state the computational sound-

ness theorem. It asserts that symbolically indistinguishable expressions yield computationally

indistinguishable distributions — provided the underlying encryption scheme is IND-CPA secure.

See Figure 19 for the formal statement in Lean. We start by unfolding the definition of symbolic

indistinguishability, obtaining that for some valid renaming r, we have:

normalizeExpr (applyVarRenaming r (adversaryView expr1)) =

21

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

1 -- Now, we can lift the notion of polynomial time of oracle computations
2 -- to `famComp`s. This is because every function of type `X -> PMF Y`
3 -- can be seen as an `OracleComp` that gets its input trough an oracle.
4 -- This lift is implemented as `simpleCompAsGenComp` omitted in this listing.
5 def polyTimeFamComp (polyTime : PolyFamOracleCompPred) (o : famComp Input Output) :

Prop :=
6 polyTime (simpleCompAsGenComp o)
7

8 -- We are now ready to define indistinguishability
9 def CompIndistinguishabilityDistr
10 (IsPolyTime : PolyFamOracleCompPred)
11 (distr1 distr2 : famDistr Domain) : Prop :=
12 -- All distinguishers. . .
13 forall distingisher : famComp Domain (fun _ => Bool),
14 -- . . . that run in polynomial time . . .

15 (polyTimeFamComp IsPolyTime distingisher) ->
16 -- . . . only achieve negligible advantages.
17 negl (advantage (compToDistrSimple distr1 distingisher) (compToDistrSimple distr2

distingisher))

Fig. 17. Definition of indistinguishability of families of distributions. (Computational-
Indistinguishability/Def.lea)

1 def composeOracleCompWithSimpleComp
2 (oracleComp : famOracleComp Spec Domain)
3 (f : famComp (Domain) Output)
4 : famOracleComp Spec Output := fun 𝜅 => do
5 let val : (Domain 𝜅) ← oracleComp 𝜅

6 let ret ← sample (f 𝜅 val)
7 return ret
8

9 -- The composition axiom about `isPolyTime`
10 def PolyTimeClosedUnderComposition (isPolyTime : PolyFamOracleCompPred) : Prop :=
11 forall I (Spec : (𝜅 : N) -> OracleSpec I) Domain Output,
12 forall (oracleComp : famOracleComp Spec Domain) (f : famComp Domain Output),
13 isPolyTime oracleComp ->
14 polyTimeFamComp isPolyTime f ->
15 isPolyTime (composeOracleCompWithSimpleComp oracleComp f)

Fig. 18. The composition axiom for polynomial time. (ComputationalIndistinguishability/Def.lean)

normalizeExpr (adversaryView expr2)

We then show that both normalizeExpr and applyVarRenaming r (for a valid r) preserve the compu-

tational semantics — that is, they do not affect the resulting distributions:

• The proof for normalizeExpr proceeds by a rather straightforward structural induction on

expressions.

• The proof for applyVarRenaming r relies on two observations: (a) variable renaming can be

simulated by permuting the corresponding values before evaluation, and (b) shuffling a

uniformly random vector of values does not alter the resulting distribution.

22

Computationally-Sound Symbolic Cryptography in Lean

1 theorem symbolicToSemanticIndistinguishability :
2 -- For every predicate `polyTime`,
3 (polyTime : PolyFamOracleCompPred)
4 -- that satisfies our axioms for polynomial computations
5 (HPolyTime : PolyTimeClosedUnderComposition IsPolyTime)
6 (Hreduction : forall enc shape (expr : Expression shape) key0, IsPolyTime

(removeOneKeyReduction enc expr key0))
7 -- For every encryption scheme,
8 (enc : encryptionScheme)
9 -- that is IND-CPA secure (with respect to `polyTime`).
10 (HEncIndCpa : encryptionSchemeIndCpa IsPolyTime enc)
11 -- For every pair of expressions,
12 (expr1 expr2 : Expression shape)
13 -- that is symbolically indistinguishable
14 (Hi : symIndistinguishable expr1 expr2) :
15 -- it is also computationally indistinguishable
16 CompIndistinguishabilityStrict IsPolyTime
17 (exprToFamDistr enc expr1) (exprToFamDistr enc expr2)

Fig. 19. The statement of the computational soundness theorem. (Expression/Computational-
Semantics/Soundness.lean).

Since computational indistinguishability is both transitive and reflexive, it remains only to show that

the distributions produced by expr and adversaryView expr are computationally indistinguishable.

In the following few paragraphs, we explain how to prove this.

We start by introducing the operation removeOneKey, which takes an expression e and a single

key k, and replaces all occurrences of Enc k X with Hidden k. Next, we observe that we can reach

adversaryView expr by repeatedly applying removeOneKey to expr, using keys that are not written

in the expression—i.e., not returned by extractKeys. (Note that as we proceed, extractKeys might

return fewer keys, making more keys available for removal.) Thanks to this observation, we can

apply transitivity once again, reducing the proof to showing that if k ∉ extractKeys expr, then the

distributions produced by expr and removeOneKey expr k are computationally indistinguishable.

In order to prove this, we make use of the following observation: Let O1 and O2 be two computa-

tionally indistinguishable families of seeded oracles, and let F be a family of oracle computations,

then the distributions D1 = compToDistrGen O1 F and D2 = compToDistrGen O2 F are also compu-

tationally indistinguishable. Indeed, if D1 and D2 were distinguishable, then the adversary could

distinguish the oracles O1 and O2 by first running F and then the simple computation that distin-

guishes D1 and D2. (Here we use the axiom that polynomial time oracle computations are closed

under compositions with polynomial time simple computations.) This observation is formalized as

lemma reduction in ComputationalIndistinguishability/Lemmas.lean.
Equipped with this observation, we can now show that expr and removeOneKey expr k are in-

distinguishable, provided that k ∉ extractKeys expr. For this, we will define a family of oracle

computations removeOneKeyReduction that, when run on the oracles O𝐿 and O𝑅 from the defini-

tion of IND-CPA security, will produce respectively expr and removeOneKey expr k. Most of the

time, removeOneKeyReduction behaves like the computational semantics (i.e. exprToDistr). However,

when it encounters an expression encrypted with the key that is being removed (i.e. Enc k X), it

does not encrypt it directly, but instead sends the following pair of messages to the oracles:

(Bit vector corresponding to X, Bit vector of 1’s)

23

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

1 -- This is the subroutine used to encrypt a message.
2 def encryptPMFOracle (enc : encryptionFunctions 𝜅) (key0 : N)
3 (kVars : (N -> BitVector 𝜅)) (key : N) (input : BitVector d) :=
4 -- Check if we encrypt with `key0` (i.e. the key that is being removed) . . .

5 if key = key0 then
6 -- . . . if so, then we query the oracle on the pair `(input, ones)`.
7 innerQuery (oracleSpecIndCpa 𝜅 enc) d (input, ones)
8 else
9 -- . . . if not, we encrypt input directly using `key`.
10 sample (enc.encrypt (kVars key) input)
11

12 -- We define the analog of `evalExpr`, but using `encryptPMFOracle` to encrypt.
13 -- Except of `Enc`, it behaves the same as `evalEnc`.
14 def reductionToOracle (enc : encryptionFunctions 𝜅) (kVars : (N -> BitVector 𝜅))
15 (bVars : N -> Bool) (e : Expression shape) (key0 : N) :=
16 match e with
17 | Enc (VarK k) e => do
18 -- Instead of directly encrypting, we call `encryptPMFOracle`.
19 let e' ← reductionToOracle enc kVars bVars e key0
20 encryptPMFOracle enc key0 kVars k e'
21 [. . .]
22 -- (Other cases are the same as in `evalExpr` except that the recursive calls
23 -- are made to `reductionToOracle` and not `evalExpr`).
24

25 -- Finally, we feed `reductionToOracle` with uniformly random variables.
26 def removeOneKeyReduction (enc : encryptionScheme) (e : Expression shape) (key0 : N) :=
27 fun 𝜅 => do
28 let l := (getMaxVar e + 1)
29 let bVars ← sample (PMF.uniformOfFintype (Fin l -> Bool))
30 let kVars ← sample (PMF.uniformOfFintype (Fin l -> BitVector 𝜅))
31 reductionToOracle (enc 𝜅) (extendFin ones kVars) (extendFin false bVars) e key0

Fig. 20. Definition of removeOneKeyReduction. (Expression/ComputationalSemantics/Soundness-
Proof/HidingOneKey.lean)

Now the left oracle O𝑙 will return the encryption of X with a uniformly random key, which corre-

sponds to the semantics of Enc k X. On the other hand, the right oracle O𝑟 will return the encryption

of a vector of ones, which corresponds to the semantics of Hidden k. Moreover, both oracles will

consistently use the same key k (chosen uniformly at random) to answer all the queries. (It is

important that k ∉ extractKeys expr, as we cannot extract k from the oracles, so we would not be

able to output it.) It follows that compToDistrGen O𝑙 removeOneKeyReduction will produce the same

distribution as expr, and compToDistrGen O𝑟 removeOneKeyReductionwill produce the same distribu-

tion as removeOneKey expr k. Since the oracles are indistinguishable (by the IND-CPA assumption),

we can conclude that expr and removeOneKey expr k result in computationally indistinguishable

distributions (as long as k ∉ extractKeys expr), thus concluding the proof of the computational

soundness theorem.

Complexity analysis of removeOneKeyReduction. Let us conclude this section by discussing

the complexity of removeOneKeyReduction, whose formal definition is given in Figure 20, to justify

the second axiom of the polynomial time predicate PolyFamOracleCompPred. (Actually, it is pretty

24

Computationally-Sound Symbolic Cryptography in Lean

intuitive that removeOneKeyReduction runs in polynomial time, but since this is the weakest link of

our proof, let us provide a formal pen-and-paper complexity analysis.)

Fix an encryption scheme enc that runs in polynomial time
8
; that is, it encrypts a message of

length n using a key of length 𝜅 in time bounded by 𝑝 (𝑛+𝜅) for some polynomial 𝑝 . Let us now show

that for every fixed expression e (and removed key key0), the computation removeOneKeyReduction

runs in time polynomial in 𝜅. We begin by noticing that removeOneKeyReduction (as defined in

Figure 20) consists of three parts:

(1) Draw at most |𝑒 | random bits. This can be done in |𝑒 | coin tosses (i.e., constant time with

respect to 𝜅).

(2) Draw at most |𝑒 | random keys. This can be done in |𝑒 | · 𝜅 coin tosses (i.e., linear time with

respect to 𝜅).

(3) Run reductionToOracle, defined in Figure 20.

The first two steps are clearly polynomial in 𝜅, so we only need to analyze the third step. Let us

start by analyzing the length of the bit vector produced by reductionToOracle.

Lemma 4.1. For a fixed expression e, the length of removeOneKeyReduction e is polynomial in 𝜅.

Proof. It is not hard to see that the length of the bit vector produced by reductionToOracle

depends only on the shape of 𝑒 (similarly to evalExpr). We prove the lemma by induction on the

shape of 𝑒:

• For the base cases 𝑠 = B and 𝑠 = K, the lengths are 1 and 𝜅 , respectively, both of which are

polynomial in 𝜅.

• For the case 𝑠 = ((𝑠1, 𝑠2)), the length of the bit vector is the sum of the lengths of the bit

vectors produced by 𝑠1 and 𝑠2. By the induction hypothesis, both are polynomial in 𝜅, so

the total is also polynomial.

• Finally, consider the case 𝑠 = EncS 𝑠 ′. Since encrypt(𝑘, 𝑛) runs in time 𝑝 (𝑛 + 𝜅), the length
of its output is also bounded by 𝑝 (𝑛 + 𝜅). Here, 𝑛 is the length of the bit vector produced by

𝑠 ′, which by the induction hypothesis is bounded by 𝑞(𝜅) for some polynomial 𝑞. It follows

that the final output length is bounded by 𝑝 (𝑞(𝜅) + 𝜅), which is polynomial in 𝜅.

□

Now, to analyze the time complexity of reductionToOracle, observe that each of its steps runs

in time bounded by 𝑝 (𝑛 + 𝜅), where 𝑛 is the length of the intermediate result — this is because

encryption is the most expensive operation (other steps run in linear time). Since the lengths of

the intermediate results are bounded by the length of the final output, we know that each step

runs in time bounded by 𝑝 (𝑞(𝜅) + 𝜅). Moreover, since there are at most |𝑒 | steps, it follows that
the total running time of reductionToOracle is bounded by |𝑒 | · 𝑝 (𝑞(𝜅) + 𝜅), which is polynomial

in 𝜅 . This concludes the proof that removeOneKeyReduction runs in polynomial time for every fixed

expression e.

Let us finish this analysis by observing that, in principle, the exponent of the running time of

removeOneKeyReduction depends on |𝑒 | (which is not a problem, since 𝑒 is fixed). However, if we

assume — as is often the case in practice — that the encryption scheme produces outputs of length

linear in 𝜅 + 𝑛, then the exponent becomes independent of |𝑒 | and equal to the degree of 𝑝 .

8
The assumption that an encryption scheme runs in polynomial time does not actually follow from IND-CPA security, but

since it is a common assumption in cryptography (exponential-time encryption schemes are not very useful), we will use it

here.

25

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

5 CONCLUSION AND FUTUREWORK
We have presented a formalization of the symbolic cryptography framework using Lean, including

a computational soundness theorem for symbolic indistinguishability. We have also demonstrated

that this framework can be used to prove fairly complex properties of cryptographic protocols,

such as the security of circuit garbling. We hope to have convinced the reader that the symbolic

framework offers a clean, intuitive, and aesthetically pleasing way to reason about cryptographic

properties. Below, we outline a few directions for further development of this framework:

1. Analysing more protocols. The most immediate next step would be to prove the security of more

cryptographic protocols using the symbolic framework. One exciting direction is to formalize the

security of optimization techniques for garbled circuits, such as free XOR [25] and row reduction [37].
However, most of these techniques would require an extended language of symbolic expressions.

2. Extending the language of cryptographic expressions. This leads to a second direction: extending
the symbolic expression language to support additional cryptographic primitives, such as pseudo-

random generators or key xor operations. A pen-and-paper version of a computationally sound

symbolic framework with pseudo-random generators already appears in [27], and it would be a

natural next step to incorporate this into our Lean formalization.

3. A concrete definition of polynomial time. While the axiomatic approach to formalizing polyno-

mial time is clean and simple, it places the burden on the reader to verify that the axioms (including

specific reductions) are valid. A more robust alternative would be to adopt a concrete definition of

polynomial time. The calculi proposed in [6] and [28] appear promising in this regard. However,

applying them in our framework seems very challenging and would probably outweigh its other

parts. It is, however, possible that further developments in the Lean (or other proof assistants)

ecosystem will make this easier in the future.

REFERENCES
[1] Martín Abadi and Phillip Rogaway. 2007. Reconciling Two Views of Cryptography (The Computational Soundness of

Formal Encryption). J. Cryptology 20, 3 (2007), 395.

[2] Martín Abadi and BogdanWarinschi. 2008. Security analysis of cryptographically controlled access to XML documents.

J. ACM 55, 2 (2008), 6:1–6:29. https://doi.org/10.1145/1346330.1346331

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Guillaume Davy, François Dupressoir, Benjamin Grégoire, and

Pierre-Yves Strub. 2014. Verified Implementations for Secure and Verifiable Computation. IACR Cryptol. ePrint Arch.
(2014), 456. http://eprint.iacr.org/2014/456

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte,

and Vitor Pereira. 2017. A Fast and Verified Software Stack for Secure Function Evaluation. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1989–2006.

https://doi.org/10.1145/3133956.3134017

[5] José Bacelar Almeida, Manuel Barbosa, Manuel L. Correia, Karim Eldefrawy, Stéphane Graham-Lengrand, Hugo

Pacheco, and Vitor Pereira. 2021. Machine-checked ZKP for NP relations: Formally Verified Security Proofs and

Implementations of MPC-in-the-Head. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine

Shi (Eds.). ACM, 2587–2600. https://doi.org/10.1145/3460120.3484771

[6] Robert Atkey. 2024. Polynomial Time and Dependent Types. Proc. ACM Program. Lang. 8, POPL (2024), 2288–2317.

https://doi.org/10.1145/3632918

[7] Bolton Bailey and Andrew Miller. 2024. Formalizing Soundness Proofs of Linear PCP SNARKs. In 33rd USENIX Security
Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024, Davide Balzarotti and Wenyuan Xu (Eds.).

USENIX Association. https://www.usenix.org/conference/usenixsecurity24/presentation/bailey

[8] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, and Santiago Zanella-Béguelin. 2012. Computer-

Aided Cryptographic Proofs. In Interactive Theorem Proving - Third International Conference, ITP 2012, Princeton, NJ,

26

https://doi.org/10.1145/1346330.1346331
http://eprint.iacr.org/2014/456
https://doi.org/10.1145/3133956.3134017
https://doi.org/10.1145/3460120.3484771
https://doi.org/10.1145/3632918
https://www.usenix.org/conference/usenixsecurity24/presentation/bailey

Computationally-Sound Symbolic Cryptography in Lean

USA, August 13-15, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7406), Lennart Beringer and Amy P. Felty

(Eds.). Springer, 11–27. https://doi.org/10.1007/978-3-642-32347-8_2

[9] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security

Proofs for the Working Cryptographer. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings. 71–90. https://doi.org/10.1007/978-3-642-22792-9_5

[10] Mathieu Baudet, Bogdan Warinschi, and Martín Abadi. 2010. Guessing attacks and the computational soundness of

static equivalence. Journal of Computer Security 18, 5 (2010), 909–968. https://doi.org/10.3233/JCS-2009-0386

[11] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of garbled circuits. In the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, Ting Yu, George Danezis, and

Virgil D. Gligor (Eds.). ACM, 784–796. https://doi.org/10.1145/2382196.2382279

[12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran Tromer. 2017.

The Hunting of the SNARK. J. Cryptol. 30, 4 (2017), 989–1066. https://doi.org/10.1007/S00145-016-9241-9

[13] Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover for Security Protocols. In IEEE Symposium on
Security and Privacy. Oakland, California, 140–154.

[14] Bruno Blanchet. 2013. Automatic Verification of Security Protocols in the Symbolic Model: The Verifier ProVerif. In

Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures (Lecture Notes in Computer Science,
Vol. 8604), Alessandro Aldini, Javier López, and Fabio Martinelli (Eds.). Springer, 54–87. https://doi.org/10.1007/978-3-

319-10082-1_3

[15] Markus de Medeiros, Muhammad Naveed, Tancrède Lepoint, Temesghen Kahsai, Tristan Ravitch, Stefan Zetzsche,

Anjali Joshi, Joseph Tassarotti, Aws Albarghouthi, and Jean-Baptiste Tristan. 2024. Verified Foundations for Differential

Privacy. IACR Cryptol. ePrint Arch. (2024), 2040. https://eprint.iacr.org/2024/2040

[16] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In

Automated Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-15,
2021, Proceedings (Lecture Notes in Computer Science, Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer,

625–635. https://doi.org/10.1007/978-3-030-79876-5_37

[17] Karim Eldefrawy and Vitor Pereira. 2019. A High-Assurance Evaluator for Machine-Checked Secure Multiparty

Computation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).

ACM, 851–868. https://doi.org/10.1145/3319535.3354205

[18] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Introduction to Secure Multi-Party Computa-

tion. Found. Trends Priv. Secur. 2, 2-3 (2018), 70–246. https://doi.org/10.1561/3300000019

[19] Shimon Even, Oded Goldreich, and Abraham Lempel. 1985. A Randomized Protocol for Signing Contracts. Commun.
ACM 28, 6 (1985), 637–647. https://doi.org/10.1145/3812.3818

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental Game or A Completeness Theorem

for Protocols with Honest Majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA. 218–229. https://doi.org/10.1145/28395.28420

[21] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic Encryption. J. Comput. Syst. Sci. 28, 2 (1984), 270–299.

https://doi.org/10.1016/0022-0000(84)90070-9

[22] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The Knowledge Complexity of Interactive Proof Systems.

SIAM J. Comput. 18, 1 (1989), 186–208. https://doi.org/10.1137/0218012

[23] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-Yves Strub. 2018. Computer-Aided

Proofs for Multiparty Computation with Active Security. In 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, July 9-12, 2018. IEEE Computer Society, 119–131. https://doi.org/10.1109/CSF.2018.00016

[24] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph H. Fasel, María M. Guzmán,

Kevin Hammond, John Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S. Nikhil, Will Partain, and John

Peterson. 1992. Report on the Programming Language Haskell, A Non-strict, Purely Functional Language. ACM
SIGPLAN Notices 27, 5 (1992), 1. https://doi.org/10.1145/130697.130699

[25] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit: Free XOR Gates and Applications. In

Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations (Lecture Notes in Computer Science, Vol. 5126), Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.

Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.). Springer, 486–498. https://doi.org/10.1007/978-3-540-

70583-3_40

[26] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. [n.d.]. The OCaml

system: Documentation and user’s manual. INRIA 3 ([n. d.]), 42.

[27] Baiyu Li and Daniele Micciancio. 2018. Symbolic security of garbled circuits. In 2018 IEEE 31st Computer Security
Foundations Symposium (CSF). IEEE, 147–161.

27

https://doi.org/10.1007/978-3-642-32347-8_2
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.3233/JCS-2009-0386
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/S00145-016-9241-9
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://eprint.iacr.org/2024/2040
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/3319535.3354205
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/28395.28420
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1137/0218012
https://doi.org/10.1109/CSF.2018.00016
https://doi.org/10.1145/130697.130699
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40

Stefan Dziembowski, Grzegorz Fabiański, Daniele Micciancio, and Rafał Stefański

[28] Kevin Liao, MatthewA. Hammer, and AndrewMiller. 2019. ILC: a calculus for composable, computational cryptography.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 640–654. https:

//doi.org/10.1145/3314221.3314607

[29] Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s Protocol for Two-Party Computation. J. Cryptology
22, 2 (2009), 161–188. https://doi.org/10.1007/s00145-008-9036-8

[30] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. The TAMARIN Prover for the Symbolic

Analysis of Security Protocols. In Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut

Veith (Eds.). Springer, 696–701. https://doi.org/10.1007/978-3-642-39799-8_48

[31] Daniele Micciancio. 2010. Computational Soundness, Co-induction, and Encryption Cycles. In Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings. 362–380.

[32] Daniele Micciancio and Saurabh Panjwani. 2006. Corrupting One vs. Corrupting Many: The Case of Broadcast and

Multicast Encryption. In Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice,
Italy, July 10-14, 2006, Proceedings, Part II. 70–82. https://doi.org/10.1007/11787006_7

[33] Daniele Micciancio and Saurabh Panjwani. 2008. Optimal communication complexity of generic multicast key

distribution. IEEE/ACM Trans. Netw. 16, 4 (2008), 803–813. https://doi.org/10.1145/1453698.1453703

[34] Moni Naor and Benny Pinkas. 2001. Efficient oblivious transfer protocols. In Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, S. Rao Kosaraju (Ed.). ACM/SIAM, 448–457.

http://dl.acm.org/citation.cfm?id=365411.365502

[35] Saurabh Panjwani. 2007. Tackling Adaptive Corruptions in Multicast Encryption Protocols. In Theory of Cryptography,
4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings.
21–40.

[36] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. 2008. A Framework for Efficient and Composable Oblivious

Transfer. In Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5157), David A. Wagner (Ed.). Springer,

554–571. https://doi.org/10.1007/978-3-540-85174-5_31

[37] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. 2009. Secure Two-Party Computation Is

Practical. In Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory and Application of
Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5912), Mitsuru Matsui (Ed.). Springer, 250–267. https://doi.org/10.1007/978-3-642-10366-7_15

[38] Michael O. Rabin. 2005. How To Exchange Secrets with Oblivious Transfer. IACR Cryptol. ePrint Arch. (2005), 187.
http://eprint.iacr.org/2005/187

[39] Wouter Swierstra. 2008. Data types à la carte. J. Funct. Program. 18, 4 (2008), 423–436. https://doi.org/10.1017/

S0956796808006758

[40] Devon Tuma and Nicholas Hopper. 2024. VCVio: A Formally Verified Forking Lemma and Fiat-Shamir Transform, via a

Flexible and Expressive Oracle Representation. IACR Cryptol. ePrint Arch. (2024), 1819. https://eprint.iacr.org/2024/1819
[41] Kaiyu Yang, AidanM. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J. Prenger, and An-

imashree Anandkumar. 2023. LeanDojo: Theorem Proving with Retrieval-Augmented Language Models. In Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,

and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-

Abstract-Datasets_and_Benchmarks.html

[42] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended Abstract). In 23rd Annual Symposium on
Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982. 160–164.

28

https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/11787006_7
https://doi.org/10.1145/1453698.1453703
http://dl.acm.org/citation.cfm?id=365411.365502
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-642-10366-7_15
http://eprint.iacr.org/2005/187
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://eprint.iacr.org/2024/1819
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Symbolic Cryptography
	2.1 Cryptographic Expressions
	2.2 Computational Semantics
	2.3 Symbolic Indistinguishability

	3 Extended Example – Circuit Garbling
	3.1 Multi-Party Computation and Circuit Garbling
	3.2 Security Proof of Circuit Garbling
	3.3 Proof Technique for Working with Fixpoints

	4 Computational Indistinguishability
	4.1 Indistinguishability-Based Security of Encryption Schemes
	4.2 Computational Soundness Theorem

	5 Conclusion and Future Work
	References

