
Quasi-perfect (de)compression of elliptic curve
points in the highly 2-adic scenario

Dimitri Koshelev1⋆

University of Lleida, Department of Mathematics, Catalonia, Spain
dimitri.koshelev@gmail.com

Abstract. This short note is devoted to a significant enhancement of [8]
by resolving satisfactorily the problem formulated at the end of that ar-
ticle. More precisely, a new laconic, secure, and efficient (de)compression
method is provided for points of any elliptic curve over any highly 2-adic
finite field of large characteristic. Such fields are ubiquitous in modern
elliptic curve cryptography, whereas they severely slow down the conven-
tional x-coordinate (de)compression technique. In comparison with the
main method from the cited work, the new one requires neither compli-
cated mathematical formulas nor conditions on the curve. Thereby, the
current work is universal and much more implementation-friendly, which
justifies its existence, despite the absence of interesting mathematics be-
hind it.

Keywords: (D)DoS attacks · elliptic curve cryptography · highly 2-adic
finite fields · Müller’s square-root algorithm · point (de)compression

1 Main

With the reader permission, the full introduction on (de)compression of elliptic
curve points (in the highly 2-adic setting) is omitted to avoid repetitions with
the fresh comprehensive article [8]. All the necessary details on the topic can be
found in that article and especially in its introduction. Nevertheless, let’s survey
very briefly the state of affaires.

As usual, we are given an elliptic curve E : y2 = f(x) := x3 + ax + b over
a finite field Fq of large characteristic. In the past, ECC (elliptic curve cryptog-
raphy) used to be mostly employed when the 2-adicity ν := ν2(q − 1) is small
or even ν ⩽ 2. Therefore, the classical x-coordinate (de)compression method
[4, Appendix D.2.1] was an ideal solution for compact point representation. In-
deed, the follow-up decompression stage extracts y =

√
f(x) ∈ Fq, which is

readily done by Tonelli–Shanks’ algorithm [12] or just by one exponentiation
in Fq. However, the base fields for many modern elliptic curves (see, e.g., [1])
are often highly 2-adic (i.e., ν ≫ 2) owing to advanced zk-SNARK (zero knowl-
edge succinct non-interactive argument of knowledge) applications. As is known,
Tonelli–Shanks’ algorithm becomes very slow over such fields, since it requires
O(ℓ+ ν2) multiplications in Fq, where ℓ := ⌈log2(q)⌉.
⋆ https://www.linkedin.com/in/dimitri-koshelev

https://www.linkedin.com/in/dimitri-koshelev

2 D. Koshelev

Alternatively, there is Müller’s algorithm [11] (look also at [9]) whose cost is
close to that of a general field exponentiation (notably for the large ν), namely
≈ 2ℓ − ν multiplications in Fq. Unfortunately, this algorithm does not function
in constant time, which implies that in some rare situations it “freezes” for a
quite long time. In a nutshell, [8, Section 3.1] explains how to leverage the given
effect to mount a (D)DoS (distributed denial-of-service) attack on a decompressor
based on the naive usage of Müller’s algorithm. By the way, on the Internet page
[10] there is a short discussion about the analogous issue in the hash-to-curve
setting, although it can be seemingly fixed by means of a resilient hash function.
In addition, [8, Section 3.2] proposes an efficient countermeasure (following a
similar idea as in [7]), namely novel (de)compression for which Müller’s algorithm
turns out to be completely deterministic. Nonetheless, the invented technique is
not universal: It is relevant if and only if the order of the group E(Fq) is even.
Thus, a lot of useful prime-order curves (including NIST P-224 [4, Section 3.2.1.2]
and MNT 2-cycles [5]) remain uncovered.

Recall that Müller’s algorithm of finding
√
f(x) needs an additional value u ∈

F∗
q such that g(x, u) := u2 − f(x) is a quadratic non-residue in Fq. Searching for
such umakes the execution variable-time and so long-time for a “poisoned” value
of x. In order to treat this trouble, it is reasonable to iterate u prior to sending x.
Fortunately, the non-constant-time behavior of a compressor does not pose any
threat. In other words, it is impossible to prepare a (D)DoS attack as earlier,
since the compression stage (unlike the decompression one) is independent of
any data received from a public channel. In particular, a generator for the next
values of u must not be cryptographically strong (as one of the solutions from
[8, Table 1]). Thereby, there is no additional risk of relying mistakenly on a
predictable generator. In fact, one can simply increment u := u + 1, starting
with a certain fixed value u0 ∈ F∗

q , as it is frequently done for hashing to elliptic
curves without secret inputs [3, Section 3.2] or for generating a transparent point
basis [2, Section 5.1], [6] with a view towards multi-scalar multiplication.

Hereafter, u = u0 + i for i ∈ N<2m := [0, 2m) ∩ N, where m ∈ N is an
auxiliary parameter. According to [11, Theorem 3.5], the probability of being
a (non-)square for g(x, u) amounts to ≈ 1/2 for the random u and for any x
such that f(x) ̸= 0. Hence, the new compression fails with probability ≈ 1/22

m

for the general x. At the same time, it is necessary to transmit/store not only
this coordinate but also the index i, not to mention one bit for the sign ± of the
coordinate y. To sum up, L := ℓ+m+1 bits are required for compressing a point
from E(Fq) \E[2]. We thus get a kind of trade-off. It is satisfactory in the sense
that m is relatively negligible compared to ℓ of cryptographic size, i.e., ℓ ≈ L.
For instance, already for m = 7, we achieve the standard 128-bit security level,
that is, the probability of solving the discrete logarithm problem on E is not
less. On the other hand, the most popular types of computer networks/memory
operate with bytes rather than bits. So, the case m + 1 = 8 ideally fits them
whenever 8 | ℓ, which is usually true in practice (e.g., for NIST P-224). In this
respect, ℓ + 1 bits do not constitute a more optimal representation than L bits
at least if we are not talking about point packets.

Quasi-perfect (de)compression of elliptic curve points 3

The compression and decompression under consideration are formalized in
Algorithms 1, 2, respectively. As is customary, sign : F∗

q → F2 is an arbitrary

cheap function such that sign(y) ̸= sign(−y). Besides,
(·
q

)
stands for the Leg-

endre symbol in Fq and M(x, u) does for Müller’s algorithm of extracting the

square root of f(x) with the help of u such that
(g(x,u)

q

)
= −1. The bit com-

plexity of determining the Legendre symbol is known to be only (sub-)quadratic
in ℓ due to the (binary) Euclidean algorithm [13, Section 12.3]. Consequently,
the compressor succeeds in finding promptly the desired u with overwhelming
probability (unless the parameter m ≈ 0). To be more precise, the given entity
computes on average two

(·
q

)
as the total overhead, while the decompressor calls

one M(·, ·) apart from exactly two
(·
q

)
. Finally, the maximum four 2-torsion Fq-

points on E can be separately processed by adding to L one more bit1. We do
not elaborate on this, since small-order points do not occur in ECC protocols
by trivial security reasons.

Algorithm 1: New point compression

Data: A point (x, y) ∈ E(Fq) \ E[2];
Result: The triple com(x, y) ∈ Fq × N<2m × F2;
begin

f := y2;
u := u0;
for i := 0 to 2m − 1 do

g := u2 − f ;
if

(
g
q

)
∈ {−1, 0} then

β := sign(y);
return (x, i, β).

end
u := u+ 1;

end
return fail.

end

Acknowledgements. This research is a result of the strategic project “Ad-
vances in post-quantum cryptography applied to the development of a coupon
system” (C039/24), resulting from an agreement between the Spanish National
Cybersecurity Institute (INCIBE) and University of Lleida. This initiative is
carried out in the scope of the funds from the Recovery, Transformation and
Resilience Plan, funded by the European Union (Next Generation). The pa-
per is also part of the R&D+i project PID2021-124613OB-I00 funded by MI-
CIU/AEI/10.13039/501100011033 and FEDER, EU.

1 In reality, L bits are sufficient, because L > ℓ or, equivalently, 2L ≫ #E(Fq) and
thereby the points of E(Fq)[2] can be easily codified by any quartet (duet or one) of
the unoccupied L-bit strings.

4 D. Koshelev

Algorithm 2: New point decompression

Data: A triple (x, i, β) ∈ Fq × N<2m × F2;
Result: The point (x, y) ∈ E(Fq) \ E[2] such that com(x, y) = (x, i, β);
begin

f := x3 + ax+ b;
u := u0 + i;
g := u2 − f ;
if

(
f
q

)
∈ {−1, 0} or

(
g
q

)
= 1 then

return fail.
end
if g = 0 then

y := u;
else

y := M(x, u);
end
if sign(y) ̸= β then

y := −y;
end
return (x, y).

end

References

1. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Designs, Codes and Cryptography 91(11), 3333–3378 (2023), https://
doi.org/10.1007/s10623-022-01135-y

2. Baylina, J., Bellés, M.: 4-bit window Pedersen hash on the Baby Jubjub ellip-
tic curve (2019), https://iden3-docs.readthedocs.io/en/latest/_downloads/
4b929e0f96aef77b75bb5cfc0f832151/Pedersen-Hash.pdf

3. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pair-
ing. Journal of Cryptology 17(4), 297–319 (2004), https://doi.org/10.1007/

s00145-004-0314-9

4. Chen, L., Moody, D., Regenscheid, A., Robinson, A., Randall, K.: Recommen-
dations for discrete logarithm-based cryptography: Elliptic curve domain pa-
rameters (NIST Special Publication 800-186) (2023), https://csrc.nist.gov/

publications/detail/sp/800-186/final

5. Guillevic, A.: Pairing-friendly curves (2021), https://members.loria.fr/

AGuillevic/pairing-friendly-curves

6. Koshelev, D.: Generation of two “independent” points on an elliptic curve of j-
invariant ̸= 0, 1728 (2023), https://eprint.iacr.org/2023/785

7. Koshelev, D.: Hashing to elliptic curves through Cipolla–Lehmer–Müller’s square
root algorithm. Journal of Cryptology 37(2), article 11 (2024), https://doi.org/
10.1007/s00145-024-09490-w

8. Koshelev, D.: Point (de)compression for elliptic curves over highly 2-adic finite
fields. Advances in Mathematics of Communications 19(5), 1539–1559 (2025),
https://doi.org/10.3934/amc.2025008

9. Lambert, R.J.: Method to calculate square roots for elliptic curve cryptography
(2013), https://patents.google.com/patent/US9148282B2/en, United States
patent No. 9148282B2

https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/s10623-022-01135-y
https://iden3-docs.readthedocs.io/en/latest/_downloads/4b929e0f96aef77b75bb5cfc0f832151/Pedersen-Hash.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/4b929e0f96aef77b75bb5cfc0f832151/Pedersen-Hash.pdf
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://csrc.nist.gov/publications/detail/sp/800-186/final
https://csrc.nist.gov/publications/detail/sp/800-186/final
https://members.loria.fr/AGuillevic/pairing-friendly-curves
https://members.loria.fr/AGuillevic/pairing-friendly-curves
https://eprint.iacr.org/2023/785
https://doi.org/10.1007/s00145-024-09490-w
https://doi.org/10.1007/s00145-024-09490-w
https://doi.org/10.3934/amc.2025008
https://patents.google.com/patent/US9148282B2/en

Quasi-perfect (de)compression of elliptic curve points 5

10. Liang, C.C.: Non-constant time hash to point attack vector (2020), https://

github.com/thehubbleproject/hubble-contracts/issues/171

11. Müller, S.: On the computation of square roots in finite fields. Designs, Codes
and Cryptography 31(3), 301–312 (2004), https://doi.org/10.1023/B:DESI.

0000015890.44831.e2

12. Shanks, D.: Five number-theoretic algorithms. In: Thomas, R.S.D., Williams, H.C.
(eds.) Proceedings of the Second Manitoba Conference on Numerical Mathematics.
Congressus Numerantium, vol. 7, pp. 51–70. Utilitas Mathematica Publishing Inc.,
Winnipeg (1973)

13. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge University Press, Cambridge, 2 edn. (2008), https://doi.org/10.1017/
CBO9780511814549

https://github.com/thehubbleproject/hubble-contracts/issues/171
https://github.com/thehubbleproject/hubble-contracts/issues/171
https://doi.org/10.1023/B:DESI.0000015890.44831.e2
https://doi.org/10.1023/B:DESI.0000015890.44831.e2
https://doi.org/10.1017/CBO9780511814549
https://doi.org/10.1017/CBO9780511814549

	Quasi-perfect (de)compression of elliptic curve points in the highly 2-adic scenario

