
Combined Stability: Protecting against
Combined Attacks

Dilara Toprakhisar1[0000−0003−4551−6775], Svetla Nikova1[0000−0003−3133−9261],
and Ventzislav Nikov2

1 COSIC, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be
2 NXP Semiconductors, Leuven, Belgium

venci.nikov@gmail.com

Abstract. Physical attacks pose serious challenges to the secure im-
plementation of cryptographic algorithms. While side-channel analysis
(SCA) has received significant attention, leading to well-established coun-
termeasures, fault attacks and especially their combination with SCA
(i.e., combined attacks) remain less researched. Addressing such com-
bined attacks often requires a careful integration of masking and redun-
dancy techniques to resist the reciprocal effects of faults and probes.
Recent research on combined security has gained momentum, with most
approaches relying on composable security notions involving error cor-
rection, typically applied after each nonlinear operation. While effective,
this approach introduces an area and performance overhead, along with
additional security challenges posed by the correction circuits themselves.

In this work, we take a different direction, following the concept of stabil-
ity introduced in StaTI (CHES 2024), which ensures fault propagation to
protect against ineffective faults. We extend this concept to combined se-
curity by proposing a new composable security notion, combined stability,
which integrates an extended stability notion, diffused stability, with ar-
bitrarily composable glitch-extended probing security notions. Notably,
this framework requires only a single error detection at the end of the
computation, avoiding costly intermediate error checks and corrections.
To demonstrate practicality, we describe a combined secure AES S-box
hardware implementation. Our results show that this approach, achiev-
ing combined security with competitive implementation costs, offers a
promising alternative to error-correction-based schemes.

1 Introduction

While cryptographic algorithms are carefully designed to resist mathematical
cryptanalysis, their hardware implementations deployed in physical devices often
remain vulnerable to attacks exploiting or manipulating physical characteristics
of the implementations. These physical attacks fall into three categories: (i) pas-
sive attacks, which observe the physical behavior of the device (e.g., power con-
sumption [KJJ99], timing [Koc96], and electromagnetic emanation [GMO01]),

(ii) active attacks, which deliberately disrupt the computation through physi-
cal manipulations (e.g., clock/voltage glitching [AK97], electromagnetic interfer-
ence [DDRT12], and laser injections [Hab65]), and (iii) combined attacks, which
leverage passive and active attack techniques simultaneously.

A widely studied form of passive attacks is side-channel analysis (SCA),
where an adversary can exploit the observable leakage arising from the phys-
ical characteristics of the implementations. To counter such passive attacks,
algorithm-level countermeasures based on formal security models are employed.
Among the most established countermeasures against SCA is masking [CJRR99,
ISW03,RBN+15,GMK16], which splits the secret data into a number of statisti-
cally independent shares. This ensures that observing a leakage from all-but-one
share remains independent of the secret data. The theoretical basis for many
masking schemes is rooted in the probing model by Ishai et al. [ISW03] which
allows an adversary to observe up to a limited number of internal values in the
circuit. Since evaluating large circuits under the probing model is computation-
ally expensive, the research has focused on composable security notions (e.g.,
SNI [BBD+16], PINI [CS20a]). These notions establish security properties for
smaller circuit components, ensuring that when these components are composed
into a larger circuit, the security properties are inherited.

While SCA passively exploits the observable leakage, fault attacks take an
active approach by intentionally disrupting the computations through physical
fault injection mechanisms. The reaction of the device to this disruption is then
exploited to extract secret information. Since the foundational work of Boneh
et al. [BDL97] that introduces fault attacks on RSA, the field has evolved con-
siderably. To counteract fault attacks, redundancy-based techniques have been
widely adopted that detect or correct faults through redundant computations.
These detection techniques either discard or randomize the output upon fault
detection to prevent exploitation. While SCA has seen the development of sev-
eral composable security notions, fault attacks have proven more challenging in
this regard and remain largely limited to the notion of stability [DOT24,DOT25]
to protect against ineffective faults.

Combined attacks, which jointly leverage the capabilities of SCA and fault
attacks, have gained increasing attention in recent years. Practical results (e.g.,
[SBJ+21]) have demonstrated that relying on the naive combination of masking
and redundancy is insufficient to protect against combined attacks. Compared to
SCA and fault attacks, the attack surface grows even further, making a security
analysis of a cryptographic implementation infeasible in practice. As a result, also
in the field of combined attacks, the research community has shifted its focus
towards composable security notions. Dhooghe and Nikova [DN20b] proposed
the first composable security notions for combined attacks. However, their first
composable combined secure multiplication gadget relies on intermediate abort
mechanisms, making it impractical for hardware implementations. Furthermore,
their second proposal was later shown to be flawed by Richter-Brockmann et
al. [RFSG22]. Feldtkeller et al. [FRSG22] introduced the notion of Combined-
Isolating Non-Interference (CINI) along with several combined secure multipli-

2

cation gadgets. However, these gadgets were subsequently demonstrated to be
insecure by Feldtkeller et al. [FGM+23]. The authors then proposed the refur-
bished versions of the CINI gadgets. Lastly, Feldtkeller et al. [FRSG24] show how
to transform TI-like constructions to protect against combined attacks. A crucial
observation is that all these countermeasures, which have not been shown to be
insecure, or impractical to be implemented in hardware, rely on error correc-
tion. However, the naive implementation of majority voting, commonly adopted
as an error correction mechanism, has been shown to be flawed for higher-order
faults [FGM+23]. As a result, designing a combined secure correction mechanism
based on majority voting would entail significantly higher implementation costs.
This motivates a reconsideration of error detection as a viable alternative. In this
work, we challenge the prevailing belief that error detection is ineffective against
combined attacks, a view largely because it was assumed to require intermediate
error checks and, thus, abort mechanisms, which are considered impractical in
hardware, and that the abort signal inherently leaks information.

Contributions. In this work, we propose a composable combined security notion,
combined stability. Combined stability extends arbitrarily composable glitch-
extended probing security notions by incorporating a new property, which we
define as diffused stability. Diffused stability advances the notion of stability in-
troduced in StaTI [DOT24] by enforcing the fault propagation at the level of
individual output shares, such that any fault-induced deviation from a correct
codeword is input-independent. The notion of combined stability, being com-
posable, enables the construction of small secure circuits that can be composed
into larger designs while preserving the combined security guarantees. Moreover,
it eliminates the need for complex abort mechanisms in hardware implementa-
tions, requiring only a single error detection mechanism at the end of the whole
computation. This makes combined stability the first notion to achieve combined
security without relying on intermediate error detection or correction circuits.

We present a generic transformation for constructing combined stable circuits
secure against side channel attacks (SCA), fault attacks, and their combination.
We demonstrate this transformation to second-order masking of AND gate over
three shares based on Consolidating Masking Schemes [RBN+15], by integrating
our diffused stable gadgets implementing addition and multiplication over F2n .
The resulting gadget implementing shared multiplication achieves second-order
side channel security, first-order fault security, and protection against single-
probe single-fault combined attacks.

This gadget is then used to implement a combined secure AES S-box in
hardware. Its implementation cost is compared to the state-of-the-art combined
countermeasures. Our results show that our approach proves itself competitive
with existing schemes, which typically provide single-probe single-fault combined
secure implementations due to the impractical overhead of higher-order fault
secure error correction mechanisms. By avoiding intermediate error checks and
requiring a single error check, our construction achieves a low overhead factor
compared to the implementations that protect only against SCA.

3

2 Preliminaries

In this section, we introduce the probing, fault and the combined adversary mod-
els with their corresponding security models. We then introduce Boolean masking
and redundancy as countermeasures against probing and fault adversaries, re-
spectively. Additionally, we introduce the StaTI countermeasure [DOT24], from
which we adopt the stability notion. Finally, we provide a brief overview of re-
lated work.

2.1 Adversary and Security Models

We consider an adversary with both probing and faulting capabilities in a sce-
nario where these capabilities can be combined. Similar to [ISW03], computa-
tions are represented as arithmetic circuits, with the attack surface modeled as
a directed acyclic graph (DAG), where vertices correspond to Boolean logic and
memory gates, and edges represent wires carrying elements in F2n . These circuits
also integrate randomness, with specific nodes having no input but generating
independent and uniformly distributed output elements in F2n , without affecting
the correctness of the circuit. Additionally, we consider nodes without outputs
that can be triggered at the end of the computation.

Beyond this, we work with gadgets correctly executing a function F : Fk1
q →

Fk2
q . We construct more complex circuits by composing these gadgets, while pre-

serving their individual security properties. The resulting circuit can be viewed
as a DAG, where the vertices correspond to the gadgets and the edges define
their interconnections. The input and the output of each gadget correspond to
the incoming and outgoing edges.

We now go over the probing, faulting, and combined adversary models and
the associated security models.

Wire Probing. To capture the probing capabilities of an adversary, we adopt the
d-probing model introduced by Ishai et al. [ISW03]. In this model, the adversary
can observe up to d predetermined wires within a Boolean circuit. To account
for the impact of glitches in hardware implementations, we extend the probing
model to the glitch-extended robust probing model by Faust et al. [FGP+18].
In this model, the adversary is allowed to access not only the probed wires, but
also all registered inputs leading to those probed wires.

To analyze the security in the probing model, we follow a simulation model
as introduced by Ishai et al. [ISW03]. To demonstrate security, a simulator needs
to simulate the probed wire values without any access to the secret inputs of the
circuit such as the secret key or the plaintext of a block cipher. This proof of
simulation security boils down to demonstrating that the distribution of probed
wire values remains independent of the secret input.

Gate/Register Faulting. To capture the faulting capabilities of an adversary, we
follow the same approach as in StaTI [DOT24] that allows the adversary to
alter the outputs of up to k gates or registers using reset, set or bitflip faults.

4

We assume that the injected faults are non-persistent, meaning, only effective
for the current execution. Since each wire is an output of a register or a gate,
we interpret wire faults as faults injected at the corresponding registers or gates.
This excludes the cases where an adversary cuts the wire connections and alter
the specific sets of wires.

By default, a fault refers to a single-bit fault. However, for certain word-level
operations, such as field inversion in AES, a single-bit fault can effectively be
perceived as a fault on the entire word, such as a byte in the case of AES.

For the security model, we require that the circuit is correct and private. A
circuit is correct against the gate/register faulting adversary if, for all possible
faults, it consistently gives either a correct output or an abort signal. A circuit
is private if, for every fixed injected fault, the probability of the abort signal is
independent of the secret inputs of the circuit. Similar to the probing model,
we define a simulation game in which the simulator needs to simulate the abort
signal when provided with the injected faults.

Combined Adversary. Following the notions in [DN20b], we consider a combined
adversary who has the combination of probing and gate/register faulting capa-
bilities. That is, a combined adversary can (at the same execution) probe up to
d wires and fault up to k gates or registers. Then, such an adversary is given
the glitch extended probes, the abort signal, and the output of the circuit if
the abort signal is not triggered when the circuit is concatenated with an error
detection logic. In this work, we consider a first-order probing and first-order
faulting combined adversary. That is, we specifically assume an adversary that
is capable of probing a single value and faulting a single register or a gate. For
the security model, we again consider the correctness and the privacy of the
circuit and define it as follows:

Definition 1 (Single-Probe Single-Fault Combined Security). A circuit
C is single-probe single-fault combined secure if for any set of a single probe and
a single fault on the circuit’s variables, the following holds:

(a) Correctness: The circuit either aborts or gives a correct output.
(b) Privacy: The probed variable together with the status of the abort signal does

not depend on the secrets of the circuit.

2.2 Boolean Masking and Redundancy

We use Boolean masking against probing adversaries, where each variable x ∈
F2n in the circuit is split into sx shares x̄ = (x0, x1, ..., xsx−1) such that x =∑sx−1

i=0 xi over F2n . Splitting variables enables computations to be performed
independently of the secret data. Various secure Boolean masking schemes have
been proposed in the literature [ISW03,NRR06,RBN+15,GMK16], each distin-
guished by how they approach to handling nonlinear operations.

The fundamental approach to protect against fault attacks is to incorpo-
rate redundancy, allowing for the detection or correction of the injected faults.

5

To encode the circuit to protect against fault attacks (specifically first-order),
we use duplication as redundancy. Similar to StaTI, we first share the state of
the cipher, and then duplicate each share. For example, a bit x ∈ F2 is first
shared into x0, x1 ∈ F2 such that x0 + x1 = x, and then each share is dupli-
cated ⟨x0

0, x
0
1, x

1
0, x

1
1⟩. In our notation, subscripts indicate the share domain, and

superscripts indicate the replication domain.

2.3 StaTI: Protecting against Fault Attacks Using Stable Threshold
Implementations

StaTI [DOT24] is a fault countermeasure framework combining threshold imple-
mentations [NRR06] and linear encoding techniques. It is built upon the notions
originating from threshold implementations: correctness, non-completeness, and
uniformity. Correctness ensures that the output is the sharing of the correct out-
put. Non-completeness ensures that each coordinate function operates on data
independent of the secret input. Uniformity requires that the function outputs
a uniform sharing given the input sharing is uniform. Further details on these
notions can be found in [NRR06]. In addition to these notions, StaTI [DOT24]
introduces two notions: stability and fault non-completeness to protect against
a single gate/register-faulting adversary when complemented the threshold im-
plementation notions. Stability states that any fault present in the input code-
word of a function propagates to the output, ensuring that an incorrect input
codeword cannot be matched to a correct output codeword. This notion is par-
ticularly effective in preventing the occurrence of ineffective faults. We include
the definition from [DOT24]:

Definition 2 (Stability). Consider a shared and encoded register-to-register
function F̃ : Fn

2 → Fn
2 and a code C ⊂ Fn

2 . We call F̃ stable if for any x̃ ∈ C and
e ̸∈ C, F̃ (x̃+ e) ̸∈ C.

The stability notion is introduced as a serially composable property, prevent-
ing injected faults from becoming ineffective, particularly in serially composed
circuits. Later, in StaMAC [DOT25], stability was proven to be arbitrarily com-
posable, making it the first composable notion that protects against ineffective
faults without requiring intermediate error checks or corrections.

Fault non-completeness ensures that no gate is shared between two coordi-
nate functions. This prevents faults injected to the gates to affect a single output
bit. Relaxed version of this notion ensures that each gate of the circuit drives
a non-complete set of output shares, ensuring that any gate fault results in an
additive fault at the output which is independent of the secret data.

StaTI proposes stable encodings for XOR and AND gates, as these gates
are not inherently injective and therefore lack stability on their own. The stable
encodings are defined as follows:

XOR z0 = a0 + b0 + (a0 + a1)(b0 + b1) z1 = a1 + b1 ,

AND z0 = a0b0 + (a0 + a1)(b1 + 1) + (b0 + b1)(a1 + 1) z1 = a1b1 .

6

The extension of XOR gate to the shared domain is trivial, however, a shared
AND gate is more complex. StaTI proposes the following two share AND gate:

Stage 1 Stage 2
x0
0 = a10b

1
0 + b00 + (a00 + a10)(b

0
0 + b10 + 1)

x0
1 = a10b

0
1 + (a00 + a10) + (b01 + b11)(a

0
0 + 1) z00 = x0

0 + x0
1 + (x0

0 + x1
0)(x

0
1 + x1

1)
x0
2 = a11b

0
1 + (a01 + a11) + (b01 + b11)(a

0
1 + 1) z01 = x0

2 + x0
3 + (x0

2 + x1
2)(x

0
3 + x1

3)
x0
3 = a11b

1
0 + b00 + (a01 + a11)(b

0
0 + b10 + 1)

x1
0 = a10b

1
0 + b10

x1
1 = a10b

1
1 z10 = x1

0 + x1
1

x1
2 = a11b

1
1 z11 = x1

2 + x1
3

x1
3 = a11b

1
0 + b10

2.4 Related Work

The earliest countermeasures against combined attacks rely on MAC tags and er-
ror detection. The CAPA countermeasure, proposed by Reparaz et al. [RMB+18],
is based on the principles of the Multiparty Computation protocol SPDZ [DPSZ12].
CAPA performs computations on shared data and shared associated MAC tags,
combining masking with fine-grained redundancy that employs intermediate
error checks. It claims higher-order security against SCA, fault attacks, and
their combination. However, its high implementation costs and a recent at-
tack [TNN24] exploiting a single probe and single fault challenge its practicality.
M&M [MAN+19] relaxes CAPA’s security model by extending any probing-
secure masking scheme with MAC tags. However, it does not address ineffec-
tive faults, as also shown by a recent zero-value attack published at CHES
2024 [HMA+24]. To address this attack, Hirata et al. [HMA+24] proposed λ-
detection M&M, adding intermediate cross-checks at critical points inside the
AES S-box. However, as stated in [DOT25], λ-detection M&M is specifically
designed against clock glitching, and does not protect against a gate/register-
faulting adversary.

Dhooghe and Nikova [DN20b] proposed the first combined secure compos-
able gadgets. However, their first proposal relies on intermediate abort mecha-
nism which is deemed impractical to be implemented in hardware, and the sec-
ond proposal was shown insecure by Richter-Brockmann et al. [RFSG22]. Then,
Dhooghe and Nikova [DN20a] presented a gadget similar to CAPA, which again
requires intermediate abort mechanisms. Later on, Feldtkeller et al. [FRSG22]
proposed several combined secure gadgets based on the proposed notion of
Combined-Isolating Non-Interference (CINI). These gadgets were later shown
to be flawed by Feldtkeller et al. [FGM+23], who subsequently proposed the cor-
rected versions. In a later work, Feldtkeller et al. [FRSG24] demonstrated how
to adapt TI-like constructions to protect against combined attacks. All these
countermeasures either rely on intermediate error correction, which becomes in-
creasingly costly under multiple faults, or intermediate error detection, which
requires intermediate abort mechanisms that are impractical to implement.

7

3 Stability Notion is Not Secure against Combined
Attacks

In this section, we discuss the limitation of the original stability notion presented
in [DOT24], which renders it vulnerable to combined attacks.

The stability notion ensures that any incorrect input codeword will always
result in an incorrect output codeword. In the case of a register-to-register func-
tion with multiple input and output bits (e.g., Q4

12), a single faulty input/output
bit x (where x ̸= x′) causes the entire input/output codeword to be incorrect.
Hence, in the StaTI countermeasure, error propagation is ensured at the level
of the entire codeword rather than on each share. While this approach ensures
the fault propagation and the circuit to abort if at least one bit of the output
codeword is faulty, it can introduce vulnerabilities in the presence of combined
attacks, as demonstrated in SCA-FTA [SBJ+21].

The stable encoding of the two-share Q4
12 from StaTI is presented in Sec-

tion A. If a10(= a00) is faulted to a10 +∆, the fault propagates to the output, as
x1
0 = a10 +∆ will always be faulty (x0

0 ̸= x1
0 where x0

0 = a0) producing a faulty
output codeword. However, if an error check layer is implemented after Q4

12, a
probe at the output of the error check of y00 and y10 can reveal a secret data
dependent fault propagation:

y00 = b00 + a00c
0 , y10 = b10 + a10c

1 +∆c1 ,

where y00 ̸= y10 if c = 1, making the fault propagation dependent of the S-box
input c. Moreover, even if error propagation is ensured for all output shares,
under certain composable combined security notions, an adversary may observe
both duplicates of a value. While the fact that they differ from each other is
independent of the secrets due to the stability, the observable difference may
remain data-dependent and thus be exploitable.

Although each injected fault propagates to the output, triggering an abort
signal without leaking any information about secret data (with no probing), it
still reveals information about the specific share where the fault was injected. In
the context of fault attacks, this does not leak any information about the secret
data as it is equivalent to probing that specific share. However, in the context of
combined attacks, based on the described combined security model in Section 2.1,
a probe on the complimentary share (in a two-share implementation) of the
faulted share leaks information about the unshared secret data. Consequently,
the stable two-share AND gate proposed in StaTI does not provide combined
security as both shares can be compromised, one through fault injection and the
other through probing.

Furthermore, a reset fault to b00 (b00 = 0, b10 = {0, 1}) renders the stable two-
share AND gate not secure against combined attacks in the following scenario.
Such a reset fault yields the following in Stage 1:

x0
0 = a10b

1
0 , x1

0 = a10b
1
0 + b10 ,

x0
1 = a10b

0
1 , x1

1 = a10b
1
1 ,

8

and in Stage 2:

z00 = a10b
1
0 + a10b

0
1 , z10 = a10b

1
0 + b10 + a10b

1
1 .

As z00 is simplified to a0b (where b is correct) which is not masked with a random,
thus, not probing secure even though the circuit aborts when the injected reset
fault is effective (i.e., b00 = 1).

4 Stability Extended against Combined Attacks

In this section, we extend the stability notion introduced in StaTI to address
and mitigate combined attacks. While most composable notions for combined
security rely on error correction, our approach is based on error detection. As
a result, not only the probes, but also the abort signal may leak information
about the secret data, either by revealing the values of the variables targeted by
the faults, or through fault propagation patterns that may depend on the secret
data. Additionally, as in StaTI, we incorporate a single error check placed at the
end of the entire circuit (i.e., after encryption/decryption). This requires us to
account for the faults that may propagate throughout the computation before
being detected.

In this work, we focus on smaller gadgets, as their reduced complexity makes
them easier to analyze and verify for security properties. However, the combined
security definition given in Section 2.1 (Definition 1) is not composable and must
be applied to the entire circuit. In this section, we work on deriving composable
combined security properties such that, for when such gadgets are arbitrarily
composed, the resulting circuit satisfies the combined security definition. We
first quickly introduce the notion of simulatability, originally proposed in the
context of probing security, which defines security through a simulation game.
This notion is particularly useful for proving the security of composable gadgets.

Definition 3 (Simulatability [CS20b]). Let P = {p1, ..., pℓ} be a set of ℓ
probes of a gadget C and CP the tuple of values of the probes for an execution of
C. Let I = {(i1, j1), ..., (ik, jk)} ⊂ {0, ..., d− 1} × {0, ...,m− 1} be a set of input
wires of C. A simulator is a randomized function S : Fk

q → Fℓ
q. The set of probes

P can be simulated with the set of input wires I if there exists a simulator S
such that for any inputs x∗,∗, the distributions CP (x∗,∗) and S(xi1,j1 , ..., xik,jk)
are equal, where the probability is over the random coins in C and S.

As described in Section 2.3, stability is arbitrarily composable and ensures
data-independent fault propagation. To leverage these properties effectively in
the context of combined security, we make use of arbitrarily composable glitch-
extended probing security notions. However, we note that while the naive com-
bination of stability and a glitch-extended probing secure notion does not im-
mediately provide combined security, it still offers a stronger foundation than a
simple combination of duplication and masking, due to its restrictions on probe
and fault propagation. In the next section, we discuss how injected faults in-
fluence probing security and explore how to effectively integrate stability with

9

glitch-extended probing secure notions to achieve security against combined at-
tacks.

4.1 Composable Combined Security Properties

We now define security for gadgets that are subject to both probing and fault
injection within the same execution. We first establish the correctness of the cir-
cuit under the single-probing and single-faulting combined adversary described
in Section 2.1. Stability already ensures the correctness in this setting. It guaran-
tees that any fault value present in the inputs propagates to the outputs, where
it is eventually detected by the error detection mechanism placed at the end of
the circuit. Any fault injected at the intermediate gates either affects a single
output bit, resulting in an incorrect codeword when implemented considering
fault non-completeness, or becomes ineffective producing the correct output. In
either case, the output is either an incorrect codeword that triggers an abort
signal, or a correct output, ensuring the correctness of the circuit.

Next, we establish the privacy of the circuit using simulation based argu-
ments. To this end, we extend the definition of simulatability to account for
both injected fault and the resulting abort signal, since our approach relies on
error detection. In the simulation game, the adversary interacts either with the
actual gadget or with a simulator that is given the injected fault and a subset
of the inputs, depending on the specific security notion, but has no access to
the secrets of the gadget (i.e., unshared inputs). The simulator is required to
simulate the probed variables and the abort signal. The adversary’s goal is to
distinguish whether they are interacting with the actual gadget or the simulator.
If the adversary fails to distinguish between the two, it implies that they learn
no more information than what is provided to the simulator.

While the original stability notion guarantees correctness at the codeword
level, it falls short of preventing information leakage under combined attacks, as
explained in Section 3. Specifically, although an incorrect input codeword results
in an incorrect output codeword, an adversary can still exploit data dependent
fault propagation at the share level by probing the error detection, or by observ-
ing the difference between the duplicates of a value. To address this, we refine the
notion of stability into “diffused stability”, which enforces fault propagation at
the level of individual shares and ensures that the resulting error values between
the duplicates remain independent of the inputs.

We first define the fault propagation term, which captures the difference be-
tween duplicated values in the presence of a fault.

Definition 4 (Fault Propagation Term). Consider a duplicated register-to-
register function computing F such that for any correct duplicated input (x0, x1),
the output is (y0, y1) with y0 = y1 = F (x0) = F (x1). Assume the input is faulty
such that x0 ̸= x1, resulting in an output (y0, y1) where y1 = y0 + ∆fp. We
define ∆fp as the fault propagation term, i.e., the difference between the two
output duplicates caused by the faulty input.

We now define diffused stability.

10

Definition 5 (Diffused Stability). Consider a shared duplicated register-
to-register function F̃ : F2n

2 → F2m
2 . We call F̃ diffused stable, if the fault

propagation is ensured for each output share, and the fault propagation terms
for each output share remain independent of the inputs of F̃ , for all incorrect
input codewords.

This refined notion ensures that the fault propagation remains independent
of the secret data, not only at the output level, but also at the level of in-
dividual shares. As a result, it mitigates potential leakages arising from data
dependent fault propagation that could be exploited by FTA-SCA [SBJ+21].
However, despite its strengthening over previous notions, diffused stability alone
is not sufficient to guarantee combined security, as we discuss below. At first,
this property seems similar to the independence property that limits the fault
propagation [AMR+20,SRM20,RSM21], but there are key differences. Diffused
stability propagates input faults across the computation, impacting each output
bit individually. In contrast, the independence property aims to constrain the
effect of a fault to at most one output bit and does not guarantee that faults
propagate. When enforced strictly, fault non-completeness reflects this property
by limiting the spread of the faults. However, this restriction only applies to gate
faults and does not protect against fault/combined attacks alone.

Before formally defining the notion of combined stability using diffused sta-
bility and arbitrarily composable glitch-extended probing security notions, we
first discuss some key observations regarding the interaction between faults and
probes. One notable observation, as noted by Clavier et al. [Cla07], is that fault
injection can, in certain cases, serve as a probing tool. This can happen by fault-
ing a variable to a fixed value and then observing whether the injected fault was
effective based on the status of the abort signal. In the simulation game, this
share is then given to the simulator, which implies that the adversary learns at
most one additional share for each fault injection.

Fault injection can also compromise probing security when it targets the ran-
domness used in the computations. It is clear that if the fault does not change
the distribution of the random value, e.g., a bitflip fault, it does not impact
the probing security. However, faults that disturb the uniformity of the random
value, such as by forcing the random to a fixed value or removing it entirely, un-
dermine the effectiveness of the refreshing operation that relies on it [RFSG22].
In such scenarios, the fault essentially acts as a probe, leaking information about
the involved random value. To account for this in the security model, the simu-
lator is given access to the targeted random value, which may indirectly reveal
additional shares if a value masked by the faulted randomness is also probed.

Additionally, fault injection can also cause a set of probes (or a single probe
in an error detection or correction circuit) to observe fault propagation patterns
that may depend on the secret data [SBJ+21]. Diffused stability addresses this
by ensuring that the fault propagation remains independent of the secret data at
the level of each output share (where an error detection circuit might be placed),
thereby preventing information leakage through such observations. Moreover, it
ensures that the difference between the duplicates of a value, although always

11

non-zero due to stability, is independent of the inputs, eliminating another po-
tential source of leakage under composable probing security notions, including
scenarios where both duplicates may be observed.

Since we include a single error check mechanism placed at the end of the cir-
cuit, we must account for faults that may propagate across gadgets throughout
the entire computation. This means that some gadgets may receive an incorrect
input codeword, caused by a fault injected earlier in the circuit and propagated
across gadgets as a result of stability. Diffused stability ensures that such faults,
when appearing in the subsequent gadgets remain as data-independent additive
faults. In such cases, we rely on the probing security guarantees provided by
the underlying glitch-extended probing security notion. As observed in DOM-
REP II [PBGS24], additive input faults do not compromise the probing security
provided by the underlying glitch-extended probing security notion (which is
strong non-interference in that case). This holds because, even in the presence
of additive faults (which preserve the distribution, and hence do not leak the
value of the faulted variable) and a probe, no additional input shares are given
to the simulator beyond those already given, as long as the randomness is not
faulted.3 This behavior is also ensured in duplicated circuits by the diffused sta-
bility notion, as each fault is propagated, and the resulting fault propagation
terms can simulated without any knowledge of the inputs. Consequently, the
simulator is not given any additional information for an incorrect input code-
word. At the output, even after the recombination of the (faulty) values, the
resulting fault term remains masked by randomness (just like the recombined
output value), thus, it remains independent of the secret data. However, when
the circuit is duplicated, as required for error detection, care must be taken, since
both duplicates of a value may become observable, even under a single-probe as-
sumption (due to the error detection circuits, or composability). In such a case,
fault-induced differences between the duplicates, although individually masked,
can reveal some information regarding the inputs. This issue is addressed by
the diffused stability notion. As a result, diffused stability reduces the combined
security to the underlying probing security of the glitch-extended probing notion
when an adversary probes given the input codeword is incorrect.

We first state the lemma regarding the probing security of the diffused stable
gadgets receiving incorrect input codeword, which we already argued in above
discussion. This lemma is particularly useful when a fault is injected earlier in
the circuit, and a later gadget is probed. Due to the diffused stability, the injected
fault propagates through the circuit, and manifests as an additive fault in the
inputs of subsequent gadgets.

Lemma 1. Let G be a diffused stable and arbitrarily composable glitch-extended
probing secure gadget. If an adversary probes a value both with a correct and an
incorrect input codeword (i.e., with an additive fault that is independent of the

3 It is important to note that we use fresh randomness, and therefore, we do not
consider the randomness as part of the input codeword, as the propagated faults
throughout the entire circuit do not affect the randomness used in the computation.

12

secret data), then no additional information is learned from the case with the
incorrect input codeword beyond what is already learned from the correct one.

We now argue about the combined security of circuits which are arbitrarily
composable second-order probing secure and diffused stable. We first define the
notion of combined stability.

Definition 6 (Combined Stability (CS)). An arbitrarily composable second-
order probing secure masked gadget that is fault non-complete and diffused stable
is called combined stable (CS).

Theorem 1. A CS gadget with an output decoding incorporating a share-wise
error check is single-probe single-fault combined secure (Definition 1).

Proof. We prove the correctness and the privacy of the combined stable gadget,
where an output decoding gadget is called afterwards, against an adversary with
single probing and single gate/register faulting capabilities. The output decoding
gadget performs an error check on each output share, and gives back an abort
signal if any of these error checks detect a fault.

First, we prove the correctness of the gadget, i.e., the gadget returns an
abort signal or the correct output. Probing does not affect the correctness of the
gadget, hence, we focus on faults only. We distinguish between faults that change
the value of the targeted variable (effective) and those that do not change the
value (ineffective). If an injected fault is ineffective on the targeted value, then
it is clear that the output does not change (i.e., correct output). For an effective
input fault making the input codeword incorrect, the correctness is ensured by
the definition of diffused stability: any output share codeword is either incorrect
causing an abort, or correct (when it is not driven by the faulty input) over all
input values. Similarly, as shown in StaTI, an effective gate fault results in an
incorrect codeword due to the fault non-completeness, which is then triggers an
abort signal. Hence, the adversary cannot harm the correctness of the gadget.

Second, we prove the privacy of the gadget, i.e., the abort status and the
probed variable do not depend on the secrets. We know from the diffused stability
that fault propagation is ensured for each output bit, and the difference between
the duplicates (fault propagation term) is independent of the gadget inputs. We
also know that the adversary learns at most one input share (of each input) with a
probe as the gadget is arbitrarily composable second-order probing secure. From
the discussed observations, a bitflip fault injected to a share of the input does not
affect the probing security, meaning, the adversary still learns at most one input
share (of each input), which preserves the privacy of the gadget. The fault also
does not reveal any information about the share itself and always results in an
abort signal. Then, simulating the abort signal is trivial in this case. A set/reset
fault to an input share, however, reveals the value of the targeted share due to
the abort signal. Meaning, the value of the targeted share is required to simulate
the abort signal. Therefore, in addition to one share of each input required to
simulate the probe, in total two shares are now required. As the gadget is glitch-
extended second-order probing secure, meaning the gadget is implemented using

13

at least three shares, the privacy of the gadget is not harmed. If the adversary
injects a gate fault, then we can perceive this as an additional probe. Then, the
adversary still learns at most two shares in total due to the combined stability.
As the (perceived) probe reveals the value of the faulted variable, it is again
trivial to simulate the abort signal as an effective fault will always result in an
abort signal.

The above theorem shows that in order to protect against single-probe single-
fault combined adversary, it is sufficient to design a gadget that is arbitrarily
composable second-order probing secure, fault non-complete and diffused stable,
combined with an output decoding that performs a share-wise error detection.

Having established that the CS gadgets are secure against single-probe single-
fault combined adversaries, the next step is to show that these gadgets are
arbitrarily composable, that is, when such gadgets are composed, the resulting
circuit preserves the combined stability.

Theorem 2. A composition of two CS gadgets is again CS.

Proof. Let G3 be the composition of G1 and G2. We prove that G3 is CS given
that both G1 and G2 are CS. W.l.o.g. we assume G1 and G2 share at least one
wire, and the output of G2 is not an input of G1. We then verify that G3 is fault
non-complete, diffused stable, and glitch-extended probing secure.

First of all, fault non-completeness is ensured by using separate gates for each
output share. Since this separation in design is maintained under composition,
the composed circuit is inherently fault non-complete.

In StaMAC [DOT25], stability of the arbitrary composition of stable gadgets
was already proven. W.l.o.g., this extends to diffused stability. Since diffused
stability extends stability by enforcing it individually for each output share, it
preserves the same composability properties as the original stability notion.

Finally, G3 preserves the arbitrarily composable second-order probing secu-
rity.

Considering Lemma 1 and Theorem 2, it follows that a circuit composed of
CS gadgets is secure against single-probe single-fault combined adversary. The
key insight provided by the Lemma 1 is that if a fault is injected early in the
circuit, probing a different gadget later in the computation, whether it receives a
correct or incorrect input codeword, does not leak additional information, since
the fault propagates as a data-independent additive fault.

In the next section, we focus on how to construct such CS gadgets.

4.2 Transforming Probing Secure Circuits to Combined Stable
Circuits

While linear operations are trivial to implement, securing multiplication against
combined attacks is more complex. In this section, we show how to transform
an arbitrarily composable glitch-extended probing secure gadget into a diffused
stable counterpart, ensuring that it satisfies the CS definition (Definition 6). We

14

demonstrate this transformation using the Strong Non-Interferent (SNI) notion
defined by Barthe et al. [BBD+16], which is an arbitrarily composable glitch-
extended probing secure notion. For completeness, we briefly recall the definition
of the SNI notion.

The definition of simulatability (Definition 3) is extended in the context of
SNI security by specifying which information is given to the simulator.

Definition 7 (d-Strong Non-Interferent (d-SNI) [BBD+16]). A gadget G
is d-SNI if any set of d1 probes on its intermediate variables and every set of d2
probes on its output shares such that d1 + d2 ≤ d, the totality of the probes can
be simulated with d1 shares of each input.

Following the definition of SNI, which ensures that a gadget remains se-
cure against a glitch-extended probing adversary in a composable manner, Sta-
MAC [DOT25] describes how to transform a glitch-extended probing secure
circuit into a stable one. This is done by replacing each Fk

2n → Fl
2n register-to-

register function in the original gadget with its stable counterpart. Since diffused
stability strengthens this by requiring stability at the level of each individual
output share, this transformation naturally extends to diffused stable gadgets.
Moreover, using separate combinatorial gates for each output share simply en-
sures the fault non-completeness. It is proven in Theorem 7 of StaMAC [DOT25]
that this transformation preserves the SNI properties of the original gadget. Ad-
ditionally, as noted in StaMAC, this transformation can be applied to other
composable notions such as Probe-Isolating Non-Interferene (PINI) by Cassiers
and Standaert [CS20a].

In this context, due to the propagation of faults across multiple gadgets
till the error detection mechanism, the simulator is given both faulty and cor-
rect values of an input share when the corresponding share is obtained through
probing. This situation can be viewed as an implicit intermediate error checking.
However, because diffused stability ensures the fault propagation remains data
independent, observing both the correct and faulty values reveals no additional
information to the adversary.

In the following section, we apply the transformation to the 2-SNI imple-
mentation of three-share AND gate [CRB+16] based on Consolidating Masking
Schemes (CMS) [RBN+15], as depicted in Figure 1.

5 Combined Secure Multiplication Gadget

In this section, we present a shared and duplicated multiplication gadget over
F2n that achieves security against single-probe single-fault combined adversaries,
constructed using the notion of CS. Our design is based on the second-order
probing secure masking of AND gate over three shares built on CMS, using
9 bits of randomness, as depicted in Figure 1. This gadget, when its outputs
are registered, satisfies the SNI notion, ensuring glitch-extended second order
probing security, similar to the DOM multiplier with registered output as shown
by Faust et al. [FGP+18].

15

Fig. 1: Second-order three share AND gate from [CRB+16]. a0, a1, a2
and b0, b1, b2 are input shares, c0, c1, c2 are output shares, and
r0, r1, r2, r3, r4, r5, r6, r7, r8 are the randoms used in the gadget.

We begin by describing the diffused stable (unshared) addition and multi-
plication gadgets over F2n , which we then use as components to construct a CS
multiplication gadget over F2n . With these gadgets, we focus on ensuring the
fault propagation with a data-independent ∆fp.

Stable addition in F2n . We describe the stable gadget G+ that implements the
addition in F2n , as detailed in Algorithm 1, where x0 = x1 and y0 = y1 are
the duplicated inputs. ∨ denotes the logical OR operation which evaluates to
1 ∈ F2n if at least one of the operands is 1 ∈ F2n , and evaluates to 0 ∈ F2n

otherwise. The operation ̸= evaluates to 0 ∈ F2n only if both operands are the
same and to 1 ∈ F2n otherwise.

Algorithm 1: G+ : A stable addition gadget operating in F2n

Input: x0, x1, y0, y1

Output: z0, z1

if ((x0 + x1) ̸= 0) ∨ ((y0 + y1) ̸= 0) then
z0 = 1
z1 = 0

else
z0 = x0 + y0

z1 = x1 + y1

end
return z0, z1

G+ is correct when the input codeword is correct (i.e., (x0+x1) and (y0+y1)
are both zero) since it returns z0 = x0+y0 and z1 = x1+y1 = z0. In the following,
we prove that G+ is diffused stable.

Theorem 3. The gadget G+ as defined in Algorithm 1 is diffused stable.

Proof. In order to prove the diffused stability of G+, we show that any incor-
rect input codeword is mapped to an incorrect output codeword, and the fault

16

propagation term is independent of the inputs. Let ∆x0 , ∆x1 , ∆y0 , ∆y1 be the
additive fault values present in x0, x1, y0, y1, respectively. In that case, the input
codeword is incorrect if at least one of the following inequalities holds

Ex = x0 +∆x0 + x1 +∆x1 ̸= 0

Ey = y0 +∆y0 + y1 +∆y1 ̸= 0.

Then, given that the input codeword is incorrect, we show that the output
codeword is also incorrect.

To check whether the output codeword is correct, we check whether z0
′
+ z1

′

equals zero, with (z0
′
, z1

′
) (faulted) outputs of G+. We can write this out as

follows.

z0
′
+ z1

′
= (Ex ∨ Ey) + (x0 +∆x0 + y0 +∆y0 + x1 +∆x1 + y1 +∆y1)¬(Ex ∨ Ey)

z0
′
+ z1

′
is zero only when both Ex = 0 and Ey = 0, which implies the input

codeword is correct. When the input codeword is incorrect, ∆fp = z0
′
+ z1

′
=

1 and thus independent of the inputs. That is, G+ maps any incorrect input
codeword to an incorrect output codeword with a data-independent ∆fp and is
thus diffused stable.

We also verified the diffused stability of the addition gadget over F24 using
software by exhaustively evaluating all incorrect input codewords. The choice of
F24 was made to keep the verification feasible, as an exhaustive evaluation over
F28 would require significantly more computational resources.

Stable multiplication in F2n . We describe the diffused stable gadget G∗ that
implements the multiplication in F2n , as detailed in Algorithm 2, where x0 = x1

and y0 = y1 are the duplicated inputs.

Algorithm 2: G∗ : A stable multiplication gadget operating in F2n

Input: x0, x1, y0, y1

Output: z0, z1

if ((x0 + x1) ̸= 0) ∨ ((y0 + y1) ̸= 0) then
z0 = 1
z1 = 0

else
z0 = x0y0

z1 = x1y1

end
return z0, z1

G∗ is correct when the input codeword is correct (i.e.,(x0+x1) and (y0+y1)
are both zero) since it returns z0 = x0y0 and z1 = x1y1 = z0. In the following,
we prove that G∗ is diffused stable.

17

Theorem 4. The gadget G∗ as defined in Algorithm 2 is diffused stable.

Proof. Similar to the diffused stable addition gadget, to prove the diffused stabil-
ity of G∗, we show that any incorrect input codeword is mapped to an incorrect
output codeword with a data-independent ∆fp. Let ∆x0 , ∆x1 , ∆y0 , ∆y1 be the
additive fault values present in x0, x1, y0, y1, respectively. In that case, the input
codeword is incorrect if at least one of the following inequalities holds

Ex = x0 +∆x0 + x1 +∆x1 ̸= 0

Ey = y0 +∆y0 + y1 +∆y1 ̸= 0.

Given that the input codeword is incorrect, we show that the output code-
word is also incorrect. To check whether the output codeword is correct, we check
whether z0

′
+ z1

′
equals zero, with (z0

′
, z1

′
) (faulted) outputs of G∗.

When we error check (z0
′
+ z1

′
== 0), we obtain the following:

z0
′
+ z1

′
= (Ex ∨ Ey) + ((x0 +∆x0)(y0 +∆y0) + (x1 +∆x1)(y1 +∆y1))¬(Ex ∨ Ey)

It is clear that z0
′
+ z1

′
= 0 only when both Ex = 0 and Ey = 0. When the

input codeword is incorrect, then ∆fp = z0
′
+ z1

′
= 1 and input independent.

That means, G∗ is diffused stable.

Similar to the diffused stable addition gadget, we also verified the diffused
stability of the multiplication gadget over F24 using software by exhaustively
evaluating all incorrect input codewords.

In the next section, we present the construction of the CS multiplication
gadget, building on the diffused stable addition and multiplication gadgets in-
troduced in this section.

5.1 Combined Stable Multiplication Gadget

In this section, we describe the CS multiplication gadget in Algorithm 3, obtained
by transforming the second-order masking of AND gate over three shares based
on CMS with registered outputs into its diffused stable variant.

According to Theorem 7 in StaMAC [DOT25], each addition and multiplica-
tion gate in the probing secure multiplier can be replaced with its stable coun-
terpart to achieve (diffused) stability. While it is not necessary to replace every
addition and multiplication to achieve stability, it is important to consider that
the adversary is capable of probing intermediate values, not just the final result.
That is, we must ensure that any probed intermediate value (also gadget outputs)
does not reveal more information than what is allowed under the SNI property.
Algorithm 3 describes the CS multiplication gadget, where G∗ is the unshared
diffused stable multiplication gadget described in Algorithm 2, and G+ is the
three input version of the unshared stable addition gadget described in (Algo-
rithm 1). The extension of the unshared stable addition to three inputs is trivial:

18

the if condition is extended to ((a0 + a1) ̸= 0)∨ ((b0 + b1) ̸= 0)∨ ((c0 + c1) ̸= 0).
For clarity, we depict the algorithm for computing a single output share (z00 , z

1
0)

in Figure 2.

Algorithm 3: CS multiplication gadget

Input: Independent duplicated shares of x = (x0
0, x

1
0, x

0
1, x

1
1, x

0
2, x

1
2) and

y = (y00 , y
1
0 , y

0
1 , y

1
1 , y

0
2 , y

1
2), and uniform randoms ri for 0 ≤ i ≤ 8

Output: z = xy = (z00 , z
1
0 , z

0
1 , z

1
1 , z

0
2 , z

1
2)

for i← 0 to 2 do
u0
i,i, u

1
i,i = G∗(x

0
i , x

1
i , y

0
i , y

1
i) + r3·i + r3·i+1

for j ← i+ 1 to 2 do
u0
i,j , u

1
i,j = G∗(x

0
i , x

1
i , y

0
j , y

1
j) + r3·i+j (mod 3) + r3·i+j+1 (mod 3)

u0
j,i, u

1
j,i = G∗(x

0
j , x

1
j , y

0
i , y

1
i) + r3·j+i (mod 3) + r3·j+i+1 (mod 3)

end

end
for i← 0 to 2 do

z0i , z
1
i = G+(ui,i, ui,i+1 (mod 3), ui,i+2 (mod 3))

end

Fig. 2: The computation of the output share (z00 , z
1
0) in the CS multiplication

gadget. G+ and G∗ are the stable addition (Algorithm 1) and multiplication
(Algorithm 2) gadgets, respectively. The XOR gates refer to the duplicated XOR
(the same random is added to both duplicated values).

We first prove the correctness of Algorithm 3. Given correct (duplicated)
input sharing of x and y, we show that the output shares zi are duplicated
Boolean shares of xy (i.e.,

∑2
i=0 z

0
i =

∑2
i=0 z

1
i = xy). If the input sharing is

correct, then we know that G∗(a, b) returns ab, and G+(a, b, c) returns a+ b+ c,
both in duplicated form. Then, the computations for both redundancy domains

19

are being identical, we have

2∑
i=0

zi =

2∑
i=0

(2∑
j=0

ui,j

)

=

2∑
i=0

(
xiyi + r3·i + r3·i+1 +

∑
j<i

(ui,j + r3·j+i (mod 3) + r3·j+i+1 (mod 3))

+
∑
i<j

(ui,j + r3·i+j (mod 3) + r3·i+j+1 (mod 3))

)

=

2∑
i=0

(
xiyi +

∑
j<i

xiyj +
∑
i<j

xiyj

)

=

2∑
i=0

xi

2∑
j=0

yj = y

2∑
i=0

xi = xy .

We now prove that the presented multiplication gadget is combined stable.

Theorem 5. The presented multiplication gadget in Algorithm 3 is CS.

Proof. Combined stability requires circuits to be fault non-complete, diffused
stable, and arbitrarily composable glitch-extended second-order probing secure.

First, fault non-completeness is related to the implementation, and is achieved
by using different gates for each output share.

Second, we know that the three-share CMS multiplier with registered out-
puts is known to be 2-SNI, which means it is arbitraily composable second-order
glitch-extended probing secure. According to Theorem 7 in StaMAC, trans-
forming an arbitraily composable glitch extended probing secure gadget into
its diffused stable counterpart preserves the probing security. Additionally, 2-
SNI security of the combined stable gadget has been formally verified using the
verification tool VERICA [RFSG22].

Next, we show the diffused stability of the gadget. We first show that any
incorrect input codeword generates an incorrect codeword at the state of the
middle register layer of the multiplier. Similar to the discussion in Section 4.1,
we exclude the random values, as they do not affect the correctness, but only
probing security. Moreover, incorrect input codeword happens when an earlier
gadget produces incorrect output codeword, and since we use fresh randomness,
the random values can be faulty only if they are targeted by the fault injection.
We assume at least one of the values (x0

0, x0
1), (x0

1, x1
1), (x0

2, x2
1), (y00 , y0

1),
(y01 , y1

1), (y02 , y2
1) is an incorrect codeword. As each u0

i,j , u
1
i,j couple is com-

puted using a diffused stable multiplication gadget, an incorrect input codeword
is mapped to an incorrect state codeword in the middle register layer for each
ui,j . Additionally, the differences between u0

i,j and u1
i,j are independent of the

corresponding stable multiplication inputs. For the second phase of the multi-
plication gadget, the diffused stable additions deriving the outputs of the stable

20

multiplications ensure that the fault present in the input is propagated to the
output and it is independent of the secrets while it is ensured for each output
share. Thus, the gadget is CS.

Lemma 2. The CS multiplication gadget described in Algorithm 3 satisfies 1-
SNI security when the input codeword is incorrect.

Proof. We assume each input xl
i, y

l
i has a fault value ∆xi

l , ∆yi
l . We construct a

simulator for the probed intermediate value that makes use of at most one share,
or output value without any use of input shares. We first classify the internal
variables in the following groups.

1- xl
i +∆xi

l , yli +∆yi
l

2- ul
i,j

3- zli

We define two sets of indices I and J such that |I| ≤ 1, |J | ≤ 1, and the
probed value and its duplicate can be perfectly simulated using {x0

i , x
1
i }i∈I and

{y0j , y1j }j∈J . Then, we construct the sets as follows.

– If the probe is in (1) or (3), add i to I and J .
– If the probe is in (2), add i to I and j to J .

Then we have |I| = 1, |J | = 1. We now show how the simulator behaves for the
observed values.

– For a probe in group (1), the simulator has access to xl
i + ∆xi

l , yli + ∆yi
l

values. Thus, these values can be perfectly simulated.
– For a probe in group (2), the simulator has access to xl

i+∆xi
l and ylj +∆yj

l

values. Additionally, any random value can be simulated as uniform random
variable. Thus, ul

i,j values can be perfectly simulated.

– For a probe in group (3), the simulator has access to xl
i+∆xi

l and yli +∆yi
l

values. Then we assign random values to the terms u0
i,j , and u1

i,j = u0
i,j + 1

for j = {0, 1, 2} (depending on the input fault) due to the unshared diffused
stable multiplication gadget.

We now simulate the outputs zli using no information from the inputs. Each
output has a random value, which is not probed before. Plus, due to the un-
shared diffused stable addition and multiplication gates, simulator can assign z0i
a random, and z1i = z0i + 1, which are also perfectly simulated, completing the
proof.

We also provide a simulation-based proof that, for a given incorrect codeword
(or a single data-dependent input fault), the CS multiplication gadget retains
1-SNI security in the glitch-extended probing model, meaning that the probe
can be simulated using at most one share.

Lemma 2 provides a necessary step to establish that the CS multiplication
gadget described in Algorithm 3 is combined secure.

21

Theorem 6. The CS multiplication gadget described in Algorithm 3 is single-
probe single-fault combined secure (Definition 1).

Proof. Due to the diffused stability, simulating the abort signal is trivial and
requires at most one input share. Thus, whether the input codeword incorrect
due to an earlier fault or not, the probe and the abort signal can be simulated
using at most two shares, meaning the three share CS multiplication gadget is
combined secure.

We verified that the CS multiplication gadget with an additional input ∆,
subsequently XORed to one multiplication input (e.g., x0

0) is 2-SNI using the
verification tool VERICA [RFSG22]. While this does not prove the combined
stability of the gadget, the output probes are indeed simulated using no input
values, and that probing two duplicates at the same time does not leak any more
input shares.

We finally note that it is also possible to obtain combine stable multipliers by
transforming HPC1 [CGLS21], HPC2 [CGLS21], or HPC3 [KM22] PINI-secure
multiplication gadgets, as well as all SNI-secured multiplication gadgets.

6 Combined Stable AES S-box Implementation

In this section, we describe the hardware implementation of AES S-box based
on the CS multiplication gadget, as detailed in Section 5.1. We first discuss
its side-channel, fault, and combined security. Then, we present the hardware
cost of our implementation in comparison to state-of-the-art combined attack
countermeasures.

6.1 Combined Stable AES S-box

The AES S-box consists of an inversion in F28 (mapping zero to zero) followed
by an affine transformation. As the affine transformation is a linear operation
and typically straightforward to implement securely, our focus is on protecting
the inversion.

Our implementation is based on the Canright’s S-box [Can05], which uses a
tower-field decomposition with six pipeline stages. The inverter in the Canright’s
S-box is composed of linear maps performing basis changes, multiplications in F22

and F24 , linear scaling functions, and a linear two-bit inverter. The construction
of this inverter is depicted in Figure 3.

To secure the AES S-box against a single-probe single-fault combined ad-
versary, we first duplicate the circuit, and replace all finite field multiplications
with their CS counterparts, using the CS multiplication gadget described in Al-
gorithm 3. The resulting circuit design is shown in Figure 3. It is important to
note that replacing the XOR gates with their stable variants is not necessary, as
the S-box input is also the input of the multiplications in Stage 5, ensuring that
any fault present in the S-box input is always propagated to the S-box output.
We also note that, specifically for the first-order combined security, we use an

22

8

4

4

4

2

2

2

2

2

4

4

4

8

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Fig. 3: Canright implementation of the F28 inverter in the AES S-box.

unstable addition in the CS multiplication gadget. As any fault affects either one
or three shares, the design still guarantees fault propagation despite the unstable
addition gadget.

8

4

4

4

2

2

2

2

2

4

4

4

8

Fig. 4: AES S-box protected against single-probe single-fault combined adver-
sary. CS Mult. gadgets refer to the CS multiplication gadget described in Al-
gorithm 3.

Protecting the AES S-box does not increase the latency, i.e., number of clock
cycles, compared to the SCA-only S-box implementation. Similarly, we use the
same amount of randomness, 162 bits, as the SCA-only design.

6.2 Side-Channel Security

In this section, we discuss the SCA security of the combined stable AES S-box
implementation. To evaluate the SCA security of our design, we perform TVLA
(Test Vector Leakage Assessment) [CDG+13]. We perform the assessment for the
combined stable S-box by supplying it with fixed versus random inputs. The S-
box is placed on a Xilinx Spartan-6 FPGA located on a SAKURA-G evaluation
board [SAK], whereas mask generation is located on a separate control FPGA.
The devices are supplied with a stable 6.144 MHz clock and an oscilloscope
samples power consumption traces at a rate of 1 GS/sec. The results of the
first, second, and third-order tests are depicted in Figure 5. The results report
no leakage regarding first and second-order probing security. Since the design

23

is second-order secure against SCA, we observe leakage starting from the third-
order test.

Fig. 5: Combined stable S-box TVLA result, first, second and third-order secu-
rity, 100 million traces, and a sample trace.

6.3 Fault and Combined Security

To evaluate the practical fault and combined security of countermeasures, no
standardized fault and combined evaluation methodologies currently exist, com-
parable to TVLA used to evaluate SCA security. Hence, we currently lack the
means to evaluate the fault and combined security of our design practically.

Furthermore, existing fault and combined verification tools cannot be applied
to our design, as they are built to verify security notions different from stability,
and CS. In particular, in the proposed security notion CS, duplicated computa-
tion domains intentionally interact with each other, which results in diffusion of
faults across these domains. Current verification tools and security notions are
based on isolated computation domains, and limited fault diffusion, and hence,
do not account the fault propagation patterns introduced by the notion of CS.
As a result, these tools are unable to accurately verify the security properties
provided by our design. Since the notion of CS cannot be captured by these tools,
we rely on formal security proofs to establish the security of our design against

24

single-probe single-fault combined adversaries. Consequently, our evaluation is
currently limited to theoretical security proofs. These proofs demonstrate that
our design satisfies the security requirements of the combined security.

To assess the diffused stability of our CS AES S-box implementation, we first
verified the diffused stability of its core building gadgets (i.e., unshared addition
and multiplication) via a simple software tool. This tool exhaustively checks each
incorrect faulty input codeword and verifies that the output codeword is also
incorrect for each output share. Then, due to the composability of the diffused
stability notion, the entire AES S-box is diffused stable. Following that, we used
VERICA to verify that the CS multiplication gadget satisfies 2-SNI. Since this
gadget is both fault non-complete and diffused stable, it fulfills the requirements
of our combined security notion.

In addition to the diffused stability verification, we performed an attack sim-
ulation on the C implementation of the CS AES S-box. Faults were modeled
as XOR additions applied to variables. The simulation involved extending the
C implementation to inject faults by XORing a fault variable to selected criti-
cal variables (e.g., inputs of the multiplications) aligning with the gate/register
faulting adversary. The results verified that all injected faults were propagated
to the S-box output yielding an incorrect output codeword for each output share
regardless of the S-box input.

6.4 Hardware Benchmarks

In this section, we evaluate the hardware benchmarks of our combined sta-
ble AES S-box implementation compared with the AES S-box implementa-
tions protected with λ-detection M&M [HMA+24], Combined Private Circuits

(ĈPC1) [FGM+23], and Combined Threshold Implementation (CCMS, CTI,
CNFR) [FRSG24] countermeasures. We use the Synopsys Design Compiler (ver-
sion S-2021.06-SP3) together with the open source NANGATE 45nm library.
The hierarchy is preserved during evaluation by enabling the set dont touch con-
straint and the compile option exact map is used to avoid optimizations.

Table 1 compares the performance characteristics of AES S-box implementa-
tions protected with the listed countermeasures in terms of latency, randomness
and area costs, and overhead compared to SCA-only implementations. For this
work, the overhead is calculated based on our own implementation of the SCA-
only design by De Cnudde et al. [CRB+16] which is based on three-share CMS.
Numbers for λ-detection M&M [HMA+24] are directly taken from the respec-

tive publication. For Combined Private Circuits (ĈPC1), the reported numbers
are taken from [FRSG24]. Numbers for CCMS, CTI and CNFR and their corre-
sponding SCA-only designs were obtained by resynthesizing the publicly avail-
able reference implementations provided by the authors.

Among the countermeasures listed in Table 1, only λ-detection M&M [HMA+24]
and this work employ error detection based on two replications, whereas the other
designs rely on error correction mechanisms using three replications. Similarly,
both λ-detection M&M [HMA+24] and our design provide second-order SCA se-
curity, while the remaining designs achieve only first-order SCA security. A key

25

Table 1: Hardware cost comparison of combined attack countermeasures imple-
menting an AES S-box. s refers to number of shares and n refers to the number
of replications. Overhead factor is relative to SCA-only implementations.

Design s n Latency Rand. Area Overhead

(cycles) (kGE) (factor)

CMS [CRB+16] 2 1 5 54 1.83 -

CMS [CRB+16] 3 1 5 162 5.18 -

TI [GC17] 4 1 3 0 3.55 -

NFR [SM21]§ 2 1 5 1 1.91 -

λ-detection M&M [HMA+24]† 3 2∗ 6 903 29.3 3.49

ĈPC1 [FGM+23]‡ 2 3 6 144 10.8 4.01

CCMS [FRSG24] 2 3 5 62 6.51 3.55

CTI [FRSG24] 4 3 3 0 11.45 3.22

CNFR [FRSG24]§ 2 3 5 2 7.01 3.67

This work 3 2 5 162 11.57 2.23

§ Only the F28 inversion, ∗ Duplication through MAC tags,
† Reported numbers by the authors, ‡ Numbers are taken from [FRSG24]

distinction of this work is that it does not rely on intermediate error detection
or correction, relying instead on a single error detection mechanism at the end
of the circuit.

Due to the compact structure of CMS and NFR AES S-box designs [CRB+16]
with two shares, the CCMS and CNFR [FGM+23] designs achieve the lowest
absolute area among the combined countermeasures listed in Table 1, with areas
of 6.51kGE and 7.01kGE, respectively. However, these designs rely on three
replications and intermediate error correction, resulting in overhead factors of
3.55 and 3.67, respectively, compared to their SCA-only counterparts.

In contrast, our design employs two replications and achieves combined secu-
rity with a lower relative overhead factor of 2.23, despite having higher absolute
area (11.57kGE). This lower overhead is due to the absence of intermediate error
checks and the use of diffused stable operations to enable a single error detection
with two replications. Although the area is higher in absolute terms, the relative
overhead remains competitive given the stronger security guarantees.

Finally, it is worth noting that our implementation is based on the second-
order CMS multiplication gadget, which requires 162 bits of randomness. Replac-
ing this gadget with an alternative SNI-secure multiplication gadget requiring
less randomness could potentially reduce the area further.

7 Conclusions and Future Work

In this work, we addressed the challenge of protecting cryptographic implemen-
tations against combined attacks without relying on intermediate error checks

26

and corrections. Building on the concept of stability introduced in StaTI, we
proposed the notion of “combined stability”, a novel composable security notion
that extends glitch-extended probing security notions with “diffused stability”.
This notion enables the secure composition of small gadgets into larger circuits,
requiring only a single error detection mechanism placed at the end of the com-
putation. Compared to traditional approaches that often involve multiple layers
of error correction, this represents a significant improvement in the design of
countermeasures against combined attacks.

We proposed a generic transformation for building composable combined
secure gadgets, and demonstrated its practicality on a second-order CMS-based
AND gate. This gadget was then used to implement a combined secure AES
S-box. The resulting design achieves second-order SCA security, first-order fault
security, and single-probe single-fault combined security, all with competitive
implementation cost.

To the best of our knowledge, this is the first work to demonstrate that com-
bined security can be achieved with a single error detection mechanism placed
at the end of the circuit. This pioneering use of a single detection layer opens
new directions for scalable and practical countermeasure design in the context of
combined attacks. Our approach focuses on robust first-order combined security
as a solid foundation, leaving higher-order protection as a promising direction
for future research. While higher-order SCA protection can be achieved by in-
creasing the number of shares, supporting multiple faults is more challenging
due to the significantly larger attack surface. In such cases, the stability may
be broken, for instance, if a second fault targets the equality checks in the CS
gadgets. This may require reintroducing intermediate error checks or replicating
equality checks with increased redundancy/number of shares. Future work could
also explore alternative CS gadget designs that resist multiple faults.

Although some countermeasures are theoretically scalable to higher-order
combined security, we note that they are rarely implemented beyond first-order
security in practice. This is largely due to the complexity and inefficiency of
higher-order protections, for instance, reliable majority voting becomes quickly
impractical.

Another interesting future work direction is to extend the notion of stability
to support error correction. This could enable different trade-offs. For instance,
replacing a design with three share, two replications, and a single error detection,
with one uses two shares, three replications, and a single error correction. Such an
approach could benefit from the compact area of two-share SCA secure designs,
though the overhead (and practicality) of stable gadgets with three replications
remains to be evaluated. Finally, integrating the notion of combined stability
into formal verification tools would enable the systematic evaluation of hardware
designs with respect to this security notion.

Acknowledgements. This work was supported by CyberSecurity Research Flan-
ders with reference number VR20192203. This work has been partially supported
by the National Science Fund of Bulgaria under Grant KP-06-N82/5.

27

A Stable encoding of Q4
12

Stage 1 Stage 2
k00 = a00 x0

0 = k00
k01 = a01 x0

1 = k01
l00 = b00 + a00c

0
0

l01 = a00c
0
1 y00 = l00 + l01 + (l00 + l10)(l

0
1 + l11)

l02 = a01c
0
1 y01 = l02 + l03 + (l02 + l12)(l

0
3 + l13)

l03 = b01 + a01c
0
0

m0
0 = c00 + a00b

0
0 + a00c

0
0

m0
1 = a00b

0
1 + a00c

0
1 z0 = m0

0 +m0
1 + (m0

0 +m1
0)(m

0
1 +m1

1)
m0

2 = a01b
0
0 + a01c

0
0 z01 = m0

2 +m0
3 + (m0

2 +m1
2)(m

0
3 +m1

3)
m0

3 = c01 + a01b
0
1 + a01c

0
1

n0
0 = d00 w0

0 = n0
0

n0
1 = d01 w0

1 = n0
1

k10 = a10 x1
0 = k10

k11 = a11 x1
1 = k11

l10 = b10 + a10c
1
0

l11 = a10c
1
1 y10 = l10 + l11

l12 = a11c
1
1 y11 = l12 + l13

l13 = b11 + a11c
1
0

m1
0 = c10 + a10b

1
0 + a10c

1
0

m1
1 = a10b

1
1 + a10c

1
1 z10 = m1

0 +m1
1

m1
2 = a11b

1
0 + a11c

1
0 z11 = m1

2 +m1
3

m1
3 = c11 + a11b

1
1 + a11c

1
1

n1
0 = d10 w1

0 = n1
0

n1
1 = d11 w1

0 = n1
1

References

AK97. Ross J. Anderson and Markus G. Kuhn. Low cost attacks on tamper re-
sistant devices. In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas,
and Michael Roe, editors, Security Protocols, 5th International Workshop,
Paris, France, April 7-9, 1997, Proceedings, volume 1361 of Lecture Notes
in Computer Science, pages 125–136. Springer, 1997.

AMR+20. Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shah-
mirzadi, Falk Schellenberg, and Tobias Schneider. Impeccable circuits.
IEEE Trans. Computers, 69(3):361–376, 2020.

BBD+16. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 116–129. ACM, 2016.

28

BDL97. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture
Notes in Computer Science, pages 37–51. Springer, 1997.

Can05. David Canright. A very compact s-box for AES. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - September
1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer Science,
pages 441–455. Springer, 2005.

CDG+13. Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Ken-
worthy, Pankaj Rohatgi, et al. Test vector leakage assessment (TVLA)
methodology in practice. In International Cryptographic Module Confer-
ence, volume 20, 2013.

CGLS21. Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier
Standaert. Hardware private circuits: From trivial composition to full ver-
ification. IEEE Trans. Computers, 70(10):1677–1690, 2021.

CJRR99. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 398–412. Springer, 1999.

Cla07. Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Work-
shop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of
Lecture Notes in Computer Science, pages 181–194. Springer, 2007.

CRB+16. Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2016 - 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of
Lecture Notes in Computer Science, pages 194–212. Springer, 2016.

CS20a. Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

CS20b. Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

DDRT12. Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria.
Electromagnetic transient faults injection on a hardware and a software
implementations of AES. In Guido Bertoni and Benedikt Gierlichs, editors,
2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven,
Belgium, September 9, 2012, pages 7–15. IEEE Computer Society, 2012.

DN20a. Siemen Dhooghe and Svetla Nikova. Let’s tessellate: Tiling for security
against advanced probe and fault adversaries. In Pierre-Yvan Liardet and
Nele Mentens, editors, Smart Card Research and Advanced Applications
- 19th International Conference, CARDIS 2020, Virtual Event, November

29

18-19, 2020, Revised Selected Papers, volume 12609 of Lecture Notes in
Computer Science, pages 181–195. Springer, 2020.

DN20b. Siemen Dhooghe and Svetla Nikova. My gadget just cares for me - how
NINA can prove security against combined attacks. In Stanislaw Jarecki,
editor, Topics in Cryptology - CT-RSA 2020 - The Cryptographers’ Track
at the RSA Conference 2020, San Francisco, CA, USA, February 24-28,
2020, Proceedings, volume 12006 of Lecture Notes in Computer Science,
pages 35–55. Springer, 2020.

DOT24. Siemen Dhooghe, Artemii Ovchinnikov, and Dilara Toprakhisar. Stati: Pro-
tecting against fault attacks using stable threshold implementations. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2024(1):229–263, 2024.

DOT25. Siemen Dhooghe, Artemii Ovchinnikov, and Dilara Toprakhisar. Stamac:
Fault protection via stable-mac tags. IACR Cryptol. ePrint Arch., page
455, 2025.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, 2012.

FGM+23. Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann,
Sayandeep Saha, Pascal Sasdrich, and François-Xavier Standaert. Com-
bined private circuits - combined security refurbished. In Weizhi Meng,
Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2023, Copenhagen, Denmark, November 26-30,
2023, pages 990–1004. ACM, 2023.

FGP+18. Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable masking schemes in the
presence of physical defaults & the robust probing model. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(3):89–120, 2018.

FRSG22. Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim
Güneysu. CINI MINIS: domain isolation for fault and combined security. In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pages 1023–1036. ACM, 2022.

FRSG24. Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim
Güneysu. Combined threshold implementation. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2024(4):307–334, 2024.

GC17. Ashrujit Ghoshal and Thomas De Cnudde. Several masked implementa-
tions of the boyar-peralta AES s-box. In Arpita Patra and Nigel P. Smart,
editors, Progress in Cryptology - INDOCRYPT 2017 - 18th International
Conference on Cryptology in India, Chennai, India, December 10-13, 2017,
Proceedings, volume 10698 of Lecture Notes in Computer Science, pages
384–402. Springer, 2017.

GMK16. Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented mask-
ing: Compact masked hardware implementations with arbitrary protection
order. In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Pro-

30

ceedings of the ACM Workshop on Theory of Implementation Security,
TIS@CCS 2016 Vienna, Austria, October, 2016, page 3. ACM, 2016.

GMO01. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2001, Third International Workshop, Paris, France, May 14-16,
2001, Proceedings, volume 2162 of Lecture Notes in Computer Science, pages
251–261. Springer, 2001.

Hab65. D. H. Habing. The use of lasers to simulate radiation-induced transients in
semiconductor devices and circuits. IEEE Transactions on Nuclear Science,
12(5):91–100, 1965.

HMA+24. Haruka Hirata, Daiki Miyahara, Victor Arribas, Yang Li, Noriyuki Miura,
Svetla Nikova, and Kazuo Sakiyama. All you need is fault: Zero-value at-
tacks on AES and a new λ-detection m&m. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2024(1):133–156, 2024.

ISW03. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 388–397. Springer, 1999.

KM22. David Knichel and Amir Moradi. Low-latency hardware private circuits. In
CCS, pages 1799–1812. ACM, 2022.

Koc96. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

MAN+19. Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. M&m: Masks and macs against physical attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):25–50, 2019.

NRR06. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
8th International Conference, ICICS 2006, Raleigh, NC, USA, December
4-7, 2006, Proceedings, volume 4307 of Lecture Notes in Computer Science,
pages 529–545. Springer, 2006.

PBGS24. Matthias Probst, Manuel Brosch, Michael Gruber, and Georg Sigl. DOM-
REP II. In IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2024, Tysons Corner, VA, USA, May 6-9, 2024, pages
112–121. IEEE, 2024.

RBN+15. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and In-
grid Verbauwhede. Consolidating masking schemes. In Rosario Gennaro
and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 764–783. Springer, 2015.

31

RFSG22. Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim
Güneysu. VERICA - verification of combined attacks automated formal ver-
ification of security against simultaneous information leakage and tamper-
ing. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):255–284, 2022.

RMB+18. Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel P. Smart. CAPA: the spirit of beaver
against physical attacks. In Hovav Shacham and Alexandra Boldyreva, edi-
tors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part I, volume 10991 of Lecture Notes in Computer Science, pages
121–151. Springer, 2018.

RSM21. Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi, and Amir Moradi. Im-
peccable circuits III. In IEEE International Test Conference, ITC 2021,
Anaheim, CA, USA, October 10-15, 2021, pages 163–169. IEEE, 2021.

SAK. SAKURA. Side-channel Attack User Reference Architecture. http://

satoh.cs.uec.ac.jp/SAKURA/index.html.
SBJ+21. Sayandeep Saha, Arnab Bag, Dirmanto Jap, Debdeep Mukhopadhyay, and

Shivam Bhasin. Divided we stand, united we fall: Security analysis of some
SCA+SIFA countermeasures against sca-enhanced fault template attacks.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 6-
10, 2021, Proceedings, Part II, volume 13091 of Lecture Notes in Computer
Science, pages 62–94. Springer, 2021.

SM21. Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes nullifying fresh randomness. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):305–342, 2021.

SRM20. Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Im-
peccable circuits II. In 57th ACM/IEEE Design Automation Conference,
DAC 2020, San Francisco, CA, USA, July 20-24, 2020, pages 1–6. IEEE,
2020.

TNN24. Dilara Toprakhisar, Svetla Nikova, and Ventzislav Nikov. CAPABARA:
A combined attack on CAPA. In Romain Wacquez and Naofumi Homma,
editors, Constructive Side-Channel Analysis and Secure Design - 15th Inter-
national Workshop, COSADE 2024, Gardanne, France, April 9-10, 2024,
Proceedings, volume 14595 of Lecture Notes in Computer Science, pages
76–89. Springer, 2024.

32

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

	Combined Stability: Protecting against Combined Attacks

