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Abstract. We present a purely theoretical public-key cryptosystem based on the
symmetric group Sn and a one-way function derived from conjugacy class sizes. The se-
cret key is a carefully chosen partition λ ⊢ n, and the public key is f(λ) = |Cλ| ·m1(λ).
Decryption inherently requires knowledge of λ to compute ϕ(f(λ)) or equivalently to
factor f(λ). The system combines combinatorial inversion hardness and integer fac-
torization difficulty, ensuring that only someone who knows λ can decrypt. Historical
context, worked examples, and theoretical security analysis are included.

1. Introduction

Public-key cryptography was initiated by Diffie and Hellman [3] and realized in prac-
tice via the RSA scheme [9], which relies on the difficulty of factoring large integers.
Beyond number-theoretic approaches, algebraic and group-theoretic cryptography has
been studied, including braid groups [8, 2], non-commutative schemes [1, 4], and sym-
metric group-based constructions [5, 6].

Symmetric groups possess rich combinatorial structure, including partitions and con-
jugacy classes. Previous works [6] showed that functions based on conjugacy class sizes
can be one-way. In this paper, we propose a cryptosystem in which decryption is only
possible with knowledge of the secret partition λ, providing a theoretical foundation
where combinatorial and number-theoretic hardness are intertwined.

2. Preliminaries

The symmetric group Sn, the set of all permutations of {1, . . . , n}, is fundamental in
mathematics, linking algebra, combinatorics, and computer science. Let Sn denote the
symmetric group on n letters. A partition λ = (λ1, . . . , λℓ) ⊢ n defines the cycle type
of a permutation. The conjugacy class corresponding to λ is

Cλ = {σ ∈ Sn : cycle type(σ) = λ},

with size

|Cλ| =
n!∏

i(λ
mi
i mi!)

,

where mi is the multiplicity of the part i.
Define the one-way function:

f(λ) = |Cλ| ·m1(λ),
1
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where m1(λ) is the number of 1-cycles. Computing f(λ) is polynomial-time, but recov-
ering λ from f(λ) is combinatorially hard. Actually, f(λ) is the permutation character
(See [7, Chapter 13])

3. Partition Selection for Hard-to-Factor f(λ)

To make f(λ) hard to factor, we choose partitions with:
(1) Exactly one 1-cycle (m1(λ) = 1), preserving large primes in n!.
(2) Remaining parts as distinct composition numbers (λ2, . . . , λℓ > 1), preventing

repeated primes in the denominator.
(3) Optional: parts as products of small primes to keep the denominator manage-

able.

Proposition 3.1. Partitions chosen this way ensure f(λ) contains large prime factors,
making factorization computationally infeasible for large n.

Sketch. Since n! contains all primes up to n and the denominator only cancels small
primes from repeated parts, large primes survive in f(λ). Factorization without knowing
λ is equivalent to factoring a large integer with unknown prime composition, which is
hard. □

4. Worked Example

Let n = 20 and choose

λ = (1, 3, 4, 5, 7),
∑
i

λi = 20.

Then
|Cλ| =

20!

1! · 3 · 4 · 5 · 7 · (1!5)
=

20!

420
, f(λ) = |Cλ| · 1 =

20!

420
.

Large primes 19, 17, 13, 11 survive in f(λ), demonstrating why factorization is hard
without λ.

5. Cryptosystem Design

5.1. Key Generation.
(1) Choose a large n and construct a partition λ ⊢ n as above.
(2) Compute f(λ).
(3) Factor f(λ) using knowledge of λ to compute ϕ(f(λ)) =

∏
i p

ei−1
i (pi − 1).

(4) Choose encryption exponent e coprime to ϕ(f(λ)) and compute d = e−1 mod ϕ(f(λ)).
(5) Public key: (f(λ), e), Secret key: λ (or equivalently d and factorization of

f(λ)).

5.2. Encryption.
c = me mod f(λ), m ∈ [1, f(λ)− 1].
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5.3. Decryption (requires λ).
(1) Using λ, factor f(λ) and compute ϕ(f(λ)).
(2) Compute d = e−1 mod ϕ(f(λ)) if not precomputed.
(3) Recover m = cd mod f(λ).

Remark 5.1. Without knowledge of λ, one cannot factor f(λ) or compute ϕ(f(λ)).
Therefore, decryption inherently requires the secret partition, linking combinatorial and
number-theoretic hardness.

6. Security Considerations

• One-way function: f(λ) is easy to compute but hard to invert (recover λ).
• Hard-to-factor: “one 1 + distinct compositions” preserves large primes.
• Decryption requires secret: Knowledge of λ is necessary to factor f(λ) and

compute ϕ(f(λ)).

7. Extensions

• Use multiple partitions λ1, . . . , λk to increase hardness.
• Embed messages using symmetric group characters or group algebra methods.
• Extend to other non-abelian groups with complex conjugacy structures.

8. Conclusion

We presented a symmetric group-based public-key cryptosystem where decryption
explicitly requires knowledge of the secret partition λ. The system combines combi-
natorial hardness of inverting f(λ) with the number-theoretic hardness of factoring,
yielding a purely theoretical cryptosystem with clear dependence on the secret.
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