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Abstract. Symmetric cryptography is confronting threats posed by quan-
tum computing, including Grover’s search algorithm and Simon’s algo-
rithm. In the fault-tolerant quantum computation, the limited qubit
count, connectivity constraints, and error rates of quantum hardware
impose stringent requirements on the implementation of cryptographic
quantum circuits. Constructing low-resource quantum circuit models forms
the foundation for evaluating algorithmic resistance to quantum threats.
In this work, we address the fundamental limitations in in-place imple-
mentations of AES quantum circuits by proposing a set of in-place syn-
thesis methods centered on DW-cost optimization. First, we prove that
within the composite field arithmetic framework, intermediate circuit
states can be utilized to uncompute S-box input states, and introduce a
novel design pathway and circuit structure for in-place S-box quantum
circuits. Second, we establish the necessary conditions for maximizing
parallelization of Toffoli gates under minimal-width constraints in bi-
nary field multiplication. Through co-design and optimization of multi-
ple nonlinear components, we construct a compact in-place S-box with
a DW-cost of merely 276. Finally, building on this, we achieve quan-
tum circuit implementations for AES-128, AES-192, and AES-256 via
co-optimization of key expansion and round functions, reducing their
DW-cost values to 65,280, 87,552, and 112,896 respectively. These results
indicate a reduction of at least 46%, 45%, and 45% compared to exist-
ing state-of-the-art solutions. Building upon these advancements, this
study establishes new technical benchmarks for low-quantum-resource
and fault-tolerant implementations of symmetric cryptography in the
post-quantum era.
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DW-cost.

1 Introduction

Quantum computing, leveraging its unique parallelism and superposition prop-
erties, is fundamentally disrupting the security paradigms of classical cryptog-
raphy, giving rise to the emerging field of post-quantum cryptography. Shor’s
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algorithm [46], through quantum Fourier transform, efficiently solves integer
factorization and discrete logarithm problems, thereby compromising public-key
cryptosystems like RSA and ECC. Grover’s algorithm [16], based on amplitude
amplification, achieves quadratic speedup in unstructured search problems, ef-
fectively halving the security strength of symmetric ciphers such as AES. Si-
mon’s algorithm [47] further exposes potential vulnerabilities in hash functions
and block cipher constructions [24, 4, 5]. However, the practical implementation
of these quantum algorithms faces significant constraints due to resource bot-
tlenecks in quantum circuit models. Consequently, optimizing the trade-offs be-
tween quantum resources has become the central challenge in both post-quantum
cryptanalysis and defense mechanisms.

The implementation of cryptographic algorithms in quantum circuits show-
cases state-of-the-art fault-tolerant quantum circuit techniques while simultane-
ously driving advancements in quantum computing. As a typical example, the
quantum circuit construction of AES must fulfill two essential requirements. First
it needs to accommodate the engineering constraints of fault-tolerant quantum
computing hardware regarding both qubit quantity and quality [40]. Second, it
requires quantitative analysis to establish a reference framework for asymmetric
cryptosystems in NIST post-quantum cryptography [37]. Since lookup-table ap-
proaches are infeasible in quantum circuits, complete quantum circuit modules
must be constructed from fundamental operations. Toffoli’s NCT circuit [4§]
provides a universal basis for implementing any reversible function, motivating
research into reversible logic synthesis for automated quantum circuit generation
[17,42,2]. However, current automated techniques can only synthesize optimal
circuits for 5 bits or fewer [11, 9], necessitating manual optimization for complex
algorithms like AES.

The depth of a quantum circuit determines its computation time, while the
width (number of qubits) constrains the scale of quantum computation. Thus,
the core design objective focuses on the co-optimization of these two metrics.
Furthermore, due to considerations like quantum error correction costs [13, 39,
33|, the Depth-Width product cost (DW-cost) of nonlinear gates (Toffoli and T
gates) has emerged as the most critical metric for evaluating such trade-offs [21].
While fault-tolerant quantum implementations typically employ the Clifford+T
gate set, symmetric cryptography’s finite-field arithmetic requires initial circuit
construction using the NCT gate set under current synthesis techniques. The
technical mapping of Toffoli gates into Clifford+T gates admits multiple ap-
proaches with ongoing improvements [38, 2, 44,23, 14, 30|, causing frequent fluc-
tuations in the T-depth-based DW-cost for identical quantum circuits [32]. From
a long-term perspective, the Toffoli-based DW-cost proves more stable as it is
less susceptible to variations in technical mapping.

1.1 Related Work

For AES, the quantum circuit implementation of the algorithm itself is crucial for
its applications, with primary use cases including encryption/decryption, serv-
ing as the oracle component in Grover’s search algorithm, and functioning as
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the encryption oracle [24]. Research on AES quantum circuits was initiated by
Grassl et al. [15], who designed both out-of-place and 9-qubit in-place S-box cir-
cuits using the Itoh-Tsujii algorithm and reversible logic synthesis, respectively.
Almazrooie et al. [1] subsequently proposed an S-box design with uncomputa-
tion of ancillary qubits, reducing the overall width of AES circuits. Subsequent
studies [25,52,49] have predominantly built upon Boyer and Peralta’s classical
circuit for the AES S-box [6], which employs a composite field arithmetic (CFA)
structure to optimize circuit width and Toffoli depth.

At EUROCRYPT 2020, Jaques et al. [21] for the first time achieved a lower
overall cost in the DW-cost model and provided more comprehensive and cost-
efficient resource estimates for AES attacks using Grover’s algorithm. At ASI-
ACRYPT 2022, Huang et al. [18] proposed an in-place Round transformation
architecture based on out-of-place S-box circuits, which was concurrently devel-
oped by Li et al. [26]. Furthermore, Huang et al. redesigned the CFA structure to
develop an S-box circuit with the lowest reported T-depth of 3, thereby reducing
both the nonlinear gate depth and DW-cost of AES. At ASTACRYPT 2023, Liu
et al. [32] refined circuit details to further reduce the DW-cost of AES circuits
and the cost of Grover’s attacks.

At ASTACRYPT 2024 and IEEE TC 2024, Shi et al. [45] and Zhang et al.
[61] independently proposed more compact in-place Round transformation ar-
chitectures—termed compressed-pipeline and interlacing-uncomputation struc-
tures respectively—achieving further DW-cost reductions. They also optimized
the full depth of AES by reducing the depth of linear layers. Jang et al. [20] made
improvements over all prior work by conducting quantum attack complexity es-
timations for all three AES key lengths and achieving lower DW-cost metrics.
At EUROCRYPT 2025, Huang et al. [19] proposed a T-depth-3 S-box circuit
with minimal width under the CFA structure. Using reversible logic synthesis
methods, they optimized the depth of 9-qubit in-place S-box circuits, enabling
the realization of AES circuits with the smallest width when combined with
existing techniques. Additionally, other studies have improved the S-box design
[10, 35,27] and DW-cost [31] for AES quantum circuits.

When designing quantum circuits, initial derivation and optimization should
first be performed at the algorithmic and architectural levels, particularly tar-
geting the round transformation in AES algorithms which contains the vast
majority of nonlinear operations. This ensures quantum resources reach their
optimal order of magnitude prior to detailed circuit refinement. Currently, the
width and nonlinear gate depth of AES quantum circuits have achieved optimal
results under single metrics, while significant progress has also been made in
reducing circuit width under low-depth constraints within the DW-cost model.
However, significant optimization potential remains for the composite metric
DW-cost, as the in-place structure of S-boxes in SPN architectures has yet to be
thoroughly investigated.
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1.2 Owur Contributions

We investigate novel in-place structures for S-box implementations. Focusing on
the inversion operation that constitutes the core of S-boxes, we prove that within
composite field arithmetic, when the element to be inverted in the composite field
is non-zero, the element to inverted in subfield is also non-zero. This mathemat-
ical property enables the intermediate circuit states to facilitate uncomputation
of the inversion input states, thereby theoretically validating the feasibility of di-
rect in-place quantum circuit design. Building on this foundation, we propose an
innovative design methodology and circuit structure for implementing in-place
quantum inversion circuits.

We construct an in-place quantum circuit for the S-box in AES round func-
tions. For multiplications in binary field Fan, we prove the prerequisite condition
for achieving maximal parallelization of Toffoli gates under minimal-width con-
straints. Leveraging this condition, we design a multiplication quantum circuit
in subfield Fpa with Toffoli depth 2 and width 15. By integrating with other
components, we propose an in-place S-box quantum circuit achieving DW-cost
276, representing at least 77% reduction in DW-cost compared to all existing
in-place S-box quantum circuits.

We design an out-of-place S-box quantum circuit that operates in conjunc-
tion with in-place S-boxes, and used this to construct the key expansion quantum
circuit. By implementing the round function circuit using in-place S-boxes and
integrating it with key expansion through a simplified architecture, we success-
fully developed quantum circuits for all three AES key lengths. The achieved
DW-cost values for AES-128, AES-192, and AES-256 are 65,280, 87,552, and
112,896 respectively, demonstrating at least 46%, 45%, and 45% improvements
over the best existing implementations.

2 Preliminaries

2.1 Advanced Encryption Standard (AES)

AES [36] stands as the most widely adopted symmetric encryption standard to-
day, safeguarding data security in critical domains including finance and telecom-
munications. The algorithm employs a Substitution-Permutation Network (SPN)
architecture that achieves robust security through multi-round iterations. Each
round comprises four core transformations:

— SubBytes (byte substitution via S-boxes)
— ShiftRows (row-wise permutation)

— MixColumns (column diffusion)

— AddRoundKey (key mixing)

These operations are coupled with a Key Expansion algorithm that expands
the initial key into multiple round subkeys. A complete schematic of the AES
encryption process can be referenced in [43,20], in addition to the specification
documents.
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2.2 Composite Field Arithmetic

Rijmen [41] proposed using composite field arithmetic (CFA) for efficient imple-
mentation of the AES S-box. For the finite field Fozm, let r(y) = y? + 7y + v
be an irreducible polynomial over Fom, where 7, € Fom. The corresponding
composite field can be constructed as F(omy> = Fom [y] Jy? + 71y +v. Let Y be
a root of r(y), the basis of the composite field can take two forms: polynomial
basis {1,Y} and normal basis {V,Y2?"}. An element G € Fy2m can then be rep-
resented in the composite field as either G = 1Y 4+ 79 or G = 1, Y2" + Y.
Canright et al. [7] derived inversion formulas for both representations:

MY +7%) ' =0 'Y + [ (o + )], M=viv+nvr+1) (1)
m -1 _ m _
(%Y2 + 70Y> =(0""0)Y? + (07')Y. (0 =707 + (0§ +1)v) (2)

CFA significantly optimizes the logical complexity of nonlinear operations
by mapping the finite field Fo2m to a composite field F(om)2. Compared to au-
tomated reversible logic synthesis algorithms, CFA has demonstrated superior
performance in classical circuits, achieving both lower depth and smaller size.
In quantum circuit implementations, CFA leverages the algebraic structure of
subfield operations to reduce both quantum gate count and circuit depth, partic-
ularly minimizing expensive Toffoli gates while maintaining efficient ancilla qubit
allocation. This enables an optimal balance between quantum circuit depth and
width.

2.3 Quantum Circuit Model

In the quantum circuit model [38], qubits serve as the fundamental units of
information, with their states represented by vectors |1)) = «|0) + 3|1) in a two-
dimensional Hilbert space, where «, 3 are complex numbers satisfying |a|? +
|3]? = 1. Multiple qubits form quantum states where an n-qubit system’s state
space is a 2"-dimensional tensor product space (|¢) = |11) @ |[1h2) @ -+ @ [hy)).
Quantum gates are unitary operations U acting on quantum states that satisfy
U'U = I, including common single-qubit gates like Pauli-X/Y/Z and Hadamard
gates, and two-qubit gates like CNOT gates. Quantum circuits consist of tem-
porally arranged quantum gates to implement specific quantum algorithms. The
NCT gate set forms a minimal complete universal set for classical reversible
computation, while the Clifford+T gate set enables both efficient simulation
and universal quantum computation.

For a reversible function f, there are two forms of quantum circuits that use
a unitary operation U to act on the input state |x) and auxiliary state |0) to
obtain the output state |f(x)). The in-place circuit where U|x)|0) = |f(x))|0)
directly overwrites the input qubits with the output, and the out-of-place circuit
where Ulx)|y)|0) = |z)|y @ f(z))|0) preserves the input state while storing the
result in ancilla qubits, reflecting distinct strategies for balancing computational
efficiency and quantum resource utilization. In [19], the circuits are classified
based on whether |y) equals |0). We adopt this definition, denoting the circuit
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U|z)|0Y|0) = |z)| f(2))]0) for the case |y) = |0) as €%circuit for f, and the circuit
Ulz)|y)|0) = |z)|y & f())|0) for arbitrary |y) as €*-circuit for f. In this paper,
we will not distinguish between U as a unitary operation and U as a quantum
circuit.

The Toffoli gate in the NCT gate set can be decomposed into combinations of
Clifford+T gates, with this technical mapping forming the foundation of quan-
tum compilation optimization. [21] proposed circuit combinations where, when
the output qubit of a Toffoli gate is initialized to |0) or outputs |0}, it can be im-
plemented using either a quantum AND (QAND) gate or its conjugate (QANDT)
with lower T-depth-1 and only 1 ancilla qubit or no T gates (see Fig. 1(a)(b)).
Building upon QAND and QANDT gates, the Toffoli gate can also be imple-
mented with T-depth-1 at the primary cost of 2 ancilla qubits [23,30] (see Fig.
1(c)). The Toffoli gate separately implemented with QANDT gate contains no
T gates and thus incurs no high error-correction costs, making it exempt from
both T-depth and Toffoli-depth counting [21, 18,32, 45]. These technical map-
pings guarantee that when converting NCT circuits to Clifford+T circuits, the
original circuit’s Toffoli-depth exactly equals the converted circuit’s T-depth.

|a) O elrtle @ |a)
1b) SHr H® 1b)
o) {H-+=-H1] a-9)
|0) b—aq{T}H D |0)
(a) QAND gate
2 T a) :Z;
Ja-b) X H—10) 10)
[ — lc® a-b)
b) QAND' gate ¢) Simulation of Toffoli gate
(b) Q g g

Fig. 1: Technical mappings of Toffoli gate

The complexity of quantum circuits can be estimated using metrics such as
width, depth, gate count, and the product of depth and width. Due to the spe-
cific constraints of qubit count, the width metric becomes particularly critical.
While gate count in classical circuits correlates with area and power consump-
tion, this association does not apply to quantum circuits, thereby diminishing
the significance of gate count as a metric. In fault-tolerant quantum circuit im-
plementations of symmetric cryptography, the nonlinear operations in SPN ar-
chitectures originate from S-boxes in SubBytes, which rely heavily on T gates
with high error-correction costs. This dependency leads to dramatic expansion
of both circuit depth and width. Consequently, optimizing the depth and count
of T gates far outweighs the importance of optimizing other Clifford gates. The
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cost estimation of T gates depends on technology mapping approaches for Toffoli
gates in NCT circuits, making the evaluation of Toffoli gate depth and count a
primary task. The DW-cost model seeks to balance these trade-offs. From the
nearly half-century development of reversible logic synthesis, T-gate-based DW-
cost reflects metrics closer to hardware-level implementations, whereas Toffoli-
gate-based DW-cost demonstrates greater stability and generalizability. On one
hand, Toffoli gates directly correspond to bit multiplication operations. On the
other hand, if measurement-based technology mapping emerges to implement
Toffoli gates as alternatives to T gates, Toffoli depth could potentially translate
into a “measurement-depth” metric [12].

2.4 Bilinear Multiplication

In the multiplication algorithm in finite field Fy», there exist two types of opera-
tions. The first are linear operations, such as addition and scalar multiplication.
The second are bilinear operations, such as the bilinear multiplication between
two coefficients in F, (e.g., a; - b; = a;b;, where a;,b;,a;b; € F,). The bilinear
complexity of the algorithm is determined by the number of required bilinear
multiplications, formally defined as:

Definition 1. /3, 28] Let F,, be a finite field and n > 1 be an integer. Let Fj‘n
be the dual space of Fyn as a vector space on F,. Then the bilinear complexity
tq(n) of the multiplication in Fyn is defined as follows:

1
pg(n) = min{l € N| Ju;,v; € Fqln,wi € Fygn s.t. Va,b € Fyn,ab = Zui(a)-vi(b)wi}.

i=1

The symmetric bilinear complexity p;¥™ (n) is defined by the definition of bilinear
complezxity pg(n) plus condition u; = v; for all i.

In the context of multiplication in [y, the bilinear complexity refers to the
minimal number of required F,-bilinear multiplications (i.e., operations of the
form w;(a)-v;(b)). When ¢ = 2, the bilinear complexity corresponds to the lower
bound on the number of Fo multiplications in binary field arithmetic.

Since each Fy multiplication is implemented by a Toffoli gate in quantum
circuits, the bilinear complexity of binary field multiplication directly determines
the theoretical minimum for Toffoli gate counts.

3 Structure of In-Place S-box Circuit

The optimization of AES quantum circuits presents a core challenge in design-
ing both the overall architecture and S-box structure, which directly determine
critical performance metrics including circuit width, nonlinear gate depth, and
DW-cost. The S-box structural optimization plays a decisive role in the global
architecture, particularly for the parallel-executed S-boxes in Round transforma-
tions. The SPN architecture of AES further emphasizes the necessity of S-box
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optimization, as employing an in-place implementation strategy can simultane-
ously prevent redundant quantum state storage and maximally simplify archi-
tectural complexity.

Existing in-place S-box techniques primarily encompass automated algo-
rithms based on reversible logic synthesis and circuit combinations utilizing out-
of-place S-boxes. [15] employed a permutation-based stochastic search method to
identify a 9-qubit NCT circuit while establishing upper bounds for gate counts
in the Clifford+T gate set. By integrating MCT decomposition techniques for
permutation identification with technical mapping of MCT gates, [19] success-
fully reduced the circuit cost to current minima of Toffoli-depth 793 and T-depth
1274. A notable advantage of this circuit lies in its requirement of merely one
arbitrary-state ancillary qubit by utilizing idle qubits from the key storage reg-
ister, enabling parallel execution of all S-boxes even in low-width block cipher
designs. Consequently, leveraging this 9-qubit circuit with existing technologies
facilitates the construction of minimal-width circuits for various AES instances,
such as 256-qubit AES-128 circuits. However, it remains evident that the 9-qubit
circuit proves unsuitable for application scenarios demanding stringent circuit
runtime performance.

To reduce circuit runtime, [18,26] employed out-of-place S-box circuits to
construct in-place implementations. Let Ug|z)|0) = |z)|S(z)), where z and
S(z) represent the input and output states of the S-box respectively. Given
S~1(S(z)) = m, the circuit for Ug can be slightly modified to obtain Ug-1]S(z))|0)
= |S(z))|z) without increasing Toffoli depth or width. Since U;,l, as the inverse
circuit of Us-1, satisfies UL, |S(x))|z) = [S(x))[0), combining Us with U},
yields the in-place S-box circuit as shown in Fig. 2. Compared to the 9-qubit

) 1z) — IS@)
0 15 sy LU

Fig. 2: Out-of-place based in-place S-box

S-box, this approach achieves significantly reduced circuit depth. However, the
consecutive invocation of two out-of-place S-boxes within each in-place S-box
doubles the circuit depth. Subsequent work [32,45,51, 19] proposed novel AES
architectures that delayed the U ;,1 operation. These architectures maintained

the original depth by parallel execution of Ug and the previous round’s U ;,1
within a single round, but at the cost of doubling the width.

The limitations of both in-place S-box techniques underscore the need for
innovative construction methods. The inversion operation over finite field Fos,
serving as the core computation of S-boxes, constitutes the primary resource con-
sumption source of nonlinear gates in quantum circuits. Consequently, exploring
in-place inversion structures within the composite field arithmetic framework
emerges as the key breakthrough for reducing quantum circuit synthesis costs.
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3.1 Feasibility Analysis of Direct In-Place Design

When designing in-place inversion circuits in composite fields, whether using the
polynomial basis (Eq. (1)) or normal basis (Eq. (2)), the circuit inputs are always
Yo and ;. A fundamental approach for efficiently uncomputing input states
involves generating -y and 7; states within the circuit and then performing
additive operations with the input states. For the polynomial basis (normal
basis), the intermediate states include 1, n~ 17, and n~1v; (8, 0~y and 6~ 1vy),
indicating that v¢ and 1 can be obtained by multiplying these three intermediate
states. However, this method fails when 7 or 6 equals 0, as the multiplication
result consequently becomes 0. Taking normal basis as an example, although the
inversion formula contains #~! as an inverse function of 6, it cannot guarantee
0 = 0 because the function’s domain actually includes the case where 6 = 0:

9—1:{1/97 G#Oa

0, 0 =0.

When v and ~; are simultaneously 0, uncomputation is unnecessary. In sum-
mary, this method requires two equivalent preconditions:

(1) n and 6 must be non-zero when ~y, and v; are not simultaneously zero;
(2) When treating 7 and 6 as functions of v and ~;, the equations n = 0 (6§ = 0)
must have no non-zero solutions.

Multiple approaches exist to verify these preconditions. Here, we employ finite
field theory to prove the validity of the second precondition.

Definition 2. [29] For o € F = Fym and K = F,. the trace Trp/k(a) of a
over K is defined by

m—1

Trp/k(a)=a+a?+---+af

If K is the prime subfield of F, then Trp k() is called the absolute trace of o
and simply denoted by Trp ().

Lemma 1. [29] Let K = F, and F' = Fym. Then the trace function Trp) g
satisfies the following properties:

(1) Trp/x(a+B) =Trr/x(a) + Trr/x(B) for all o, € F;

(2) Trp/i is a linear transformation from I onto K, where both F' and K are
viewed as vector spaces over K ;

(3) Trr k(o) = Trp k() for all o € F;

(4) Fora € F, Trp k(a) =0 if and only if a = 39 — B for some B € F.

Lemma 2. Let F = Fom be a finite field. For the quadratic equation x% + ax +
B =0 (a#0) over F, if solutions exist, then Trg(8/a?) = 0.
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Proof. Let = ay to obtain the equivalent equation y? + y + 8/a? = 0, and
take the trace on both sides of the equation to obtain Trr(y% +y + 3/a?) = 0.
According to properties (1), (3), and (2) of Lemma 1, there is 0 = Trg(y?) +
Tre(y) + Trr(8/a®) = Tre(y) + Trr(y) + Tre(8/a?) = Trp(8/a®). 0

Based on the above two lemmas, we prove that the second precondition holds.

Theorem 1. For n and 0 in the inversion formulas (Eq. (1) and (2)) in com-
posite fields, the equations 1 = 0 and 0 = 0 with respect to vy and v1 have no
non-zero solutions.

Proof. Let the subfield Fom of the composite field be F, we first prove that
1 = 0 has no non-zero solution. By contradiction, assume there exists a non-
zero solution (vp,7v1) to n = 0, where without loss of generality vo # 0. Let
T = 71/7, substitute x into n = Y3 + 177 + 73 = 0, then the equation
va® +7z+41 = 0 with respect to  has solutions. Since {1,Y} and {Y, V2" } form
bases, we have Y # 0, 1. Therefore, as the trace and norm of Y, 7 =Y +Y?" #£0
and v = Y - V2" # 0. Consequently, the equation z2 + Tx + % has solutions.
By Lemma 2, T?“F((Tl//iyy)z) = Trp(v/7?) = 0. From property (4) of Lemma 1,
IBeF,v/r2=p2-B=p>+B.Leta=7-B€F, then v/7> = a?/7% + /T,
which implies o +Ta+v = 0. However, since r(y) = y?+7y+v is an irreducible
polynomial over F', this leads to a contradiction. Therefore, the assumption is
false, and n = 0 has no non-zero solutions.

We now prove that § = 0 has no non-zero solution. Again by contradiction,
assume 6 = 0 has a non-zero solution, and without loss of generality let ~o # 0.
We may then set = 71 /7 and substitute z into § = v17o7% + (v +~3)v = 0.
Then the equation 272 + (1 +22)r = 0 with respect to z has solutions, i.e., 2% +
éx—i—l has solutions. By Lemma 2 and property (3) of Lemma 1, TrF(W) =

Trr(v?/t*) = Trp(v/7?) = 0. The subsequent argument mirrors the proof
for n = 0 having no non-zero solutions, ultimately leading to a contradiction.
Therefore, the assumption is false, and § = 0 has no non-zero solutions. a

Thus, the method of obtaining the states of 7y and ; by multiplying the three
intermediate states 17, n™ 1o, and ™1y (6, 610 and 6~ 1v;) of the circuit and
adding them to the circuit inputs is viable.

Taking normal basis as an example, among these three intermediate states,
61~y and #~1v; will be further transformed through linear operations to gener-
ate the circuit outputs, leaving only 6 requiring uncomputation. Assuming there
exists a circuit Usy, satisfying Ui, |0) = |071), then if #~1 can be uncomputed
using the circuit’s output states, thereby enabling the complete uncomputation
of 8. Let Uy denote the circuit Uy|vo)|71)|0) = |70)|71)|0) that produces 6, we
describe that Ug can be employed to uncompute 671,

Theorem 2. For 0 in the inversion formula (Eq. (2)) in composite field, we
treat Uy = 117072+ (V3 +73)v as a function of y1Y2" +~0Y . Let hiY?" +hoY =
(71Y?" +4Y) ! be the inversion result, then applying the function Uy( ) to the
inversion, result hiY?" + hoY yields Upg(h1Y?" + hoY) = 6.
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Proof. The inversion result h;Y?" 4 hoY is (0= 1v)Y?" + (§~'4)Y, and by
applying Uy to it, we can obtain:
Up((07"90)Y™" + (07 1)Y)
=(0""90) (07 )72 + [0 9)* + (67 0) v
=027 + (07 %7% + 072 g)v
=07 (yon7* + v +15v)
=0"2.0
=01
O
By Theorem 2, Uglhg)|h1)|0) = |ho)|h1)|0~1). Consequently, the inverse circuit
Ug of Uy satisfies Ug|h0>|h1>|9’1> = |ho)|h1)]0). When Ug combines with the
circuit U;,, for 0, obtains
U§ (1ho)|h1)Uino|0)) = Uj (|ho) [h1)|67")) = [ho) 1) 0), (3)

which enables complete uncomputation of 8. For the polynomial basis case, let
U, denote the circuit Uy|y0)[71)|0) = [y0)|71)[n) that produces 7, analogous
calculations indicate that the same conclusion still holds true.

Corollary 1. For n in the inversion formula (Eq. (1)) in composite field. Let
91Y +90 = (mY +70) "1 be the inversion result, then applying the function U, ()
to the inversion result 1Y + go yields U, (g1Y + go) = L.

Thereby enabling uncomputation of n as well:

U (190)191)Usnolm)) = Uf (190} 91010~ 1)) = lg0)191)10),

At this point, we have clarified the feasibility and construction pathway for
directly designing in-place composite field arithmetic inversion quantum circuits.

3.2 Circuit Structure for In-Place Composite Field Arithmetic
Inversion

The complexity of inversion can be reduced by simplifying the irreducible poly-
nomial 7(y) of the composite field. The optimal simplification is achieved by
directly setting the trace 7 to unity, which proves superior to setting the norm v
to unity [7]. However, these cannot both be set to unity simultaneously, as r(y)
would then become reducible. While polynomial-basis inversion exhibits equiv-
alent complexity to normal-basis inversion for nonlinear operations, its linear
operations are slightly more intricate, such as in the inversion results. Therefore,
in this work, we select the composite field F(ga)2 = Faaly]/y* + y + v with a
normal basis, for which the inversion formula is:

(Y + ’Y(]Y)_l = (07'70) Y + (07" n)Y, where 0 = y170 + (v +17)v- (4)

Under these conditions, the implementation of an in-place circuit requires the
following components over Foa:
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— The unitary operation Uy|yo}|1)[0) = |70)|71)|0) for computing 6;

— The inversion U;p, |0) = |071) or Uspne|0)|0) = |6)|6~1) for computing 6~ 1;

— The multiplication Uy,,i|@)|3)|0) = |a)|B)|a-B) for computing 8~ vq, 671,
0 1o -0 and 9~y - 6.

The only nonlinear component in Uy is Uy, which gives rise to four primary

construction strategies:

(1) In-place inversion with serial multiplication;

(2) In-place inversion with parallel multiplication;

(3) Out-of-place inversion with serial multiplication;
(4) Out-of-place inversion with parallel multiplication.

When minimizing DW-cost, the core design principle is to balance the num-
ber of Toffoli gates within each Toffoli-depth layer, thereby preventing excessive
qubit allocation to a few layers. Building upon this concept, we conduct a pro-
gressive analysis. For multiplications over Faa, even under a minimum width
constraint of 12 qubits, 4 Toffoli gates can still operate concurrently within a
single Toffoli-depth layer. Thus, any multiplication component supports > 4
parallel Toffoli gates per layer.

In-place inversion circuits can be efficiently implemented using tools like
LIGHTER [22], LIGHTER-R [11], and DORCIS [9]. However, our experimental
results show they require a minimum Toffoli-depth of 5 with <2 Toffoli gates
per layer. For out-of-place inversion circuits, we propose two designs with Toffoli-
depth 2 and 4/3 Toffoli gates per layer (see section 4.2), demonstrating better
synergy with multiplication circuits.

Consequently, we adopt the out-of-place subfield inversion strategy, which
demands that the composite-field inversion circuit maintain Toffoli gate counts
per layer close to 4 or 3. The parallel execution of two multiplication components
can support at least 4 x 2 = 8 Toffoli gates within a single layer. This implies that
parallel multiplication exhibits poor synergy with out-of-place inversion circuits.
Based on the above analysis, strategy (3) is expected to emerge as the optimal
strategy for minimizing DW-cost.

Multiplication over Fos can be implemented via three design approaches: a
12-qubit low-width design, a low-depth design, and a balanced design. Inversion
over o4 has also at least three distinct implementation methods. Additionally,
the parallelization of multiplication components must be considered. After con-
structing the in-place S-box for the Round transformation, co-design is required
for the out-of-place S-box in the Key Expansion. We have exhaustively evalu-
ated and compared dozens of scenarios formed by these combinations, ultimately
adopting strategy (3) to construct the lowest DW-cost circuit. In contrast, strat-
egy (1) and strategy (4) may be better suited for building circuits optimized for
minimal width or depth respectively.

We construct the circuit using the component Uy, U;p, and U, defined
earlier in this subsection. First, when employing Upi|a)|B)|a - B) = |a)|5) o -
B@® - =0) to uncompute the input state, we observe that U;ul|a>|6>|a By =
|)|3)|0) can achieve the same objective. Given that the QANDT gate has a lower
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implementation cost than the QAND gate, we preferentially substitute U,y
with U::wl wherever possible. Next, following the analysis in Section 3.1, the
uncomputation of 6 is ultimately transformed into uncomputation of #~!, which
can be implemented via U;;w|9_1>|9> = |6=1)]|0) due to the interchangeability of
0 and =1 in U;,,,|0)]0) = |0)]0~1). The method for uncomputing §~* is provided
by Eq. (3). Finally, we present the circuit structure for in-place composite field
inversion (71Y16 + ’on)_l = h Y16 + hoY as illustrated in Fig. 3.

|0)
7o) #* @—* |ho)
4 [0) 06" = |h1)
1) 7 mulT mul | [h1)
16)

lv107") = |ho)

|0) 7&‘@ * inv |0)
4 TL o7 [g

10) [inv} Lel}% 10)
) .

4 Cmul } |0)

|0) #% |0)

Fig. 3: In-place quantum circuit structure for composite field inversion. The sym-
bols for all components are derived from the subscripts of the unitary operations
and are drawn in a manner analogous to Toffoli and CNOT gates to explicitly
indicate the positions of inputs and outputs. The bottommost wire represents a
ancillary qubits that may be used by nonlinear components in the circuit.

Building upon the circuit structure for composite field inversion, by incorpo-
rating the isomorphic mapping between the composite field [F(34)2 and the finite
field Fos along with the affine transformation of the S-box algorithm, the struc-
ture of an in-place S-box circuit can be derived. Since both the isomorphic map-
ping and affine transformation belong to linear transformations and are readily
implementable in-place, the overall S-box structure differs only minimally from
that shown in Fig. 3, thus eliminating the need for redundant graphical repre-
sentation.

4 Quantum Circuit for AES SubBytes S-box

The S-box in SubBytes [36] consists of multiplicative inversion in the finite field
Fos = Fa[x]/(2® + 2 + 23 + 2 + 1) followed by an affine transformation over Fa,
which can be expressed as:

S(z) =Bz ' @e, (5)

where B is a linear matrix and c is a constant byte.
To perform inversion in Fys via composite field arithmetic, we first construct
an isomorphism between fields. This work selects:
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— Subfield: Fos = Fa[2]/(s(2) = 22 + 2 + 1)
— Composite field: F(ga)2 = Fas[y]/(r(y) = y* +y+v), where v = 2%+ 2% € Fau

Let Z and Y be roots of s(z) and r(y) in Fos, respectively. Using their vector
representations under the polynomial basis {1, z,22%,...,27} of Fys, we can con-
struct the linear matrix for the isomorphism mapping. Let the isomorphism from
Fas to F(24)2 be @ and isomorphism from [F(34)2 to Fas be &~ 1. Under the normal
basis, the matrix representation of @~ is derived from {Y,Y Z,Y Z2 Y Z3 Y16,
Y167 y1672 Y1673}, |35] provides the representation of Z and Y within the
same composite field:

Y =2%4+2=1(0,1,0,0,0,0,1,0)7,
Z=2" 4+ 2% +2°=(0,0,0,0,0,1,1,1)T.

From this, the representations of the remaining terms can be derived that YZ =
a4+ 1, Y22 =2t Y2 =T 4, YO =20 4041, Y7 = 22 41,
Y172 = 26 4 23 4 22 + 1, and Y623 = 25 + 2* + x, thereby yielding the
isomorphism mapping:

01001110 11100101
01000110 01011011
1100000010 P =(d 1) = 01010110 (6)

—100100001])" - — 110100000
01000001 01100111
11001010 00010000
01010000 01010011

After establishing the field isomorphism, all subsequent operations will be per-
formed in the composite field. As analyzed in Section 3.2 and illustrated by the
circuit structure in Fig. 3, the key operations are out-of-place multiplication and
inversion in Fos.

4.1 Quantum Circuits for Multiplication

In polynomial representation, multiplication in Fys corresponds to polynomial
multiplication modulo s(z) = z% + z + 1. The number of Toffoli gates in the
quantum multiplication circuit is determined by the count of distinct bilinear
multiplications u - v = uv (where - : Fg x Fo — Fy). The key to depth reduction
lies in maximizing the number of bilinear multiplications executed within a single
Toffoli-depth layer.

As analyzed in the previous section, the optimal implementation of Fos mul-
tiplication requires approximately 4 Toffoli gates per layer, which is a target
achievable even under minimal-width constraints. To this end, we first present
the precondition for computing n distinct bilinear multiplications per Toffoli-
depth layer in Fon» multiplication circuits under the minimal-width constraint of
3n qubits.
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For two elements A = Y " 0 a;xt, B = E?:_Ol bzt € Fan, let their product
C be computed via N bilinear multlphcationss

up - v = (uo)1,...,un - vy = (uv)n,

n n
. 7
where u; = Zpijajq, v = Zqikbkq, 1=1,..., N, pij, qir. € Fo. ()

The product is then given by:

n—1 n N
C=AB= Z et = Z(Z wi (wv))x ™, where wy € Fy. (8)
i=0

i=1 [=1

Let the n x n matrices P = (p;;), @ = (gix) and W = (wy) (1 < 4,4,k, 1 <n)in
Eqgs.(7) and (8). These matrices represent the mapping relationships between the
F5 elements involved in bilinear multiplications uq-v1 = (wv)1, ..., Up vy = (UV)y,
and Fon elements within one Toffoli-depth layer under width constraints, and
their operations will be implemented using CNOT gates.

Theorem 3. In Fon multiplication AB = C implemented with N bilinear mul-
tiplications, for arbitrary n distinct bilinear multiplications, without loss of gen-
erality denoted as (uv)1, ..., (uv)y, if the n x n matrices P = (p;;), Q@ = (¢ik)
and W = (wy) (1 <4i,j,k,l <n) are all invertible, then these n distinct bilinear
multiplications can compute their corresponding parts of the Fon multiplication
within a single Toffoli-depth layer.

Proof. First, we isolate the partial product Ci.., corresponding to the n bilinear
multiplications under consideration from the complete product C"

C= Z Zwil(uv)l)xi_l = Z(Z wi (uv); + Z wiy (uv))x !

i=1 I=1 i=1 =1 I=n+1
1 i—1
= E g wiy (wv))x ! 4 g E wy (uv);)z*
=1 =1 i=1 l=n+1

: levn + C(n+1)~N

Since matrices P and @) are invertible, according to Eq. (7), there exist unitary
operations Up and Ug such that Up @) |a;) = @7, |u;), Ug @12 |b;) =
Q7 |vi), where ®I";|u;) and ®_,|v;) are stored in 2n qubits. The n blhnear
multiplications can then be computed in parallel to obtain ®?_,|(uv);). Further-
more, the invertibility of matrix W and Eq. (9) guarantee the existence of a
unitary operation Uy such that Uy @4 |(uv);) = |Ci~n). Thus, the n distinct
bilinear multiplications complete the computation of their corresponding part
C1~n within just 1 Toffoli-depth layer. a

Theorem 3 establishes that, under minimal-width constraints, the lower bound
for the Toffoli depth of quantum circuits implementing multiplication in Fyn is
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[N/n], while also providing a method to maximize the parallelization of Toffoli
gates. The specific numerical value of N corresponds to the bilinear complexity
of Fa» multiplication. As demonstrated in [8, 3], the bilinear complexity of multi-
plication in Faa is 9. This result guides our construction of two separate circuits,
each with 4 Toffoli gates per layer, while maintaining the remaining single Toffoli
gate’s bilinear multiplication in a simplified form to facilitate subsequent circuit
adjustments.

Ezample 1. Here we demonstrate the design of Fos multiplication. Let A =
Z;LO a;x', B = Z;LO b;x' € Fas with product C = Zf:o c;x*. The bilinear
expression for the product C is:

cg =aobo + (ag + a1)(bo + b1) + (ap + a1 + a2 + as)(bo + by + by + b3)+
(a1 + a3) (b1 + b3) + a1by + azbs + (ag + a2)(bo + ba2) + (a2 + az)(b2 + bs),
c2 =agbo + (ag + az)(bo + b2) + (az + a3)(bzy + b3) + a1by,
¢1 =apby + (ag + a1)(bg + b1) + (a1 + a3) (b1 + b3) + (a2 + a3)(bs + b3),
co =agbo + (a1 + az)(by + b3) + a1by + azbs + azbs.

According to Theorem 3, through invertibility verification of matrices P, @,
and W under various bilinear multiplication combinations, we have identified
two sets of invertible matrices that satisfy the conditions of Theorem 3:

0
1
1 .
1

1700 1901 6100 00
P=Q = (1111> Wi = (1000) ;P = Q2 = <0010> ,Wo = <%%
Let these two matrix sets implement the products C.4 = Z?:o d;z’ and Csg =

OO

0101 1111 0011

3 ; . . . .
> i_oeix’ respectively, then their expressions can be written as:

Clma =[aobo + (a0 + a1)(bo + b1) + (ap + a1 + az + a3)(bo + b1 + b2 + b3)
+ (a1 + ag)(bl + bg)}xg + (10()03’:2 + [aobo + (ao + (h)(bo + bl)
+ (a1 + a3) (b1 + b3)]x + [aobo + (a1 + az) (b1 + b3)],

, (10)
Cs8 :[a1b1 + agby + (ao + az)(bo + bz) + (az + ag)(bz + bg)}Is
+ [(ao + a2)(bo + b2) + (ag + az)(bg + bs) + ayby]z?
+ ((7,2 + ag)(bg + bg)l’ + (a1b1 + CLng).
Meanwhile, the remaining term
09 =C - Cl~4 — C5~8 = a3b3 (11)

maintains an extremely simple form.

According to Eq. (10), it is straightforward to design the €%-circuits cor-
responding to Cis and Cs.g, denoted as €9-C;., and ¢°-Cj.g, where the
¢O-circuit is defined in Section 2.3. For the in-place S-box in SubBytes and the
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out-of-place S-box in Key Expansion, we need to construct the multiplication
€%~ and €*-circuits, respectively.

Since €%-C}.4 and €°-Cs..g cannot be directly combined, it is necessary to
convert at least one subsequent €°-circuit into a €*-circuit. [18, 34] describe the
preconditions and implementation method for converting a €¢°-circuit to a €*-
circuit, with ¢°-C}.4 and €°-C5.g satisfying these conditions. By identifying
CNOT gates whose control and target qubits lie entirely within the output reg-
ister, and then prepending them in reverse order to the front end of output
register, the corresponding €*-circuits can be realized. Based on Eq. (10) and
the above analysis, we propose the €%- and ¢*-circuits for implementing C;.4
and Cs.g in Fig. 4.

e e = ¢ ol L S i a— —

ja2) S1— 1@ [o2) & 4 “r 63

|as Y \f as) |as) NV © |az)

Eevasasevead BN oHo—— i

lb2) Db D@ |bs) i3 4 “r (3

Iby) —o-b— T o) [b3) - & 1b3)
[0(yo)) ‘ [do(@y0)) 10(0)) w leo(©50))
[0(z1)) & 1 & |di(&y1)) 10(y1)) i i i lex(®y1))
[0(y2)) ; |d2(@y2)) 10(y2)) 1 ‘ Tr le2(®y2))
[0(ys)) : |ds(®ys)) [0(ys)) —D : D— les(Dys))

(a) €°- and €*-circuits for Cia (b) €% and €*-circuits for Css

Fig. 4: The ¢°- and ¢*-circuits for computing products C;.4 and Cs.g, where
in both subfigures all gates constitute the €*-circuit, while removing the CNOT
gates on the output register to the left of the dashed line yields the corresponding
¢O_circuit.

The remaining product Cy in Eq. (11), if implemented in a standalone Toffoli-
depth layer, would violate our strategy of maintaining balanced Toffoli gate
counts per layer. To address this, we synchronize the computation and uncom-
putation of Cg with C7.4 and Cs5.g by introducing 3 ancillary qubits. The C5..g
circuit will be executed first because, compared to C} 4, its €%-circuit saves more
CNOT gates than the ¢*-circuit. Ultimately, we present the ¢°- and ¢*-circuits
for multiplication in Fss in Fig. 5.

Next, we analyze the quantum resources required for different multiplica-
tion components in constructing AES quantum circuits. For the ¢°-circuit of
multiplication denoted as @%-mul, its first Toffoli-depth layer contains 5 bit-
multiplications, all implementable with QAND gates, while the second Toffoli-
depth layer also contains 5 bit-multiplications, implementable with 4 Toffoli
gates and 1 QANDT gate. For the inverse circuit of €%-mul, denoted as €%-mult,
both layers contain 5 bit-multiplications. The first layer is implemented using 4
Toffoli gates and 1 QAND gate, while the second layer can be entirely realized
with QAND' gates, consequently this layer does not contribute to T-depth or
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|ao) — F——ao)
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Fig.5: The €%~ and €*-circuits for multiplication in Fys, where (a) and (b) show
the detailed and simplified circuit implementations, respectively. The box ()
on the bottommost wire in (b) represents the occupied ancilla qubits.

Toffoli depth calculations. As for the €*-circuit denoted as €*-mul, its first layer
uses 4 Toffoli gates and 1 QAND gate, and the second layer uses 4 Toffoli gates
and 1 QANDT gate.

For the 8 component in the circuit structure of Fig. 3, its expression is given
by Eq. (4) as 6 = 170+ (72 +73)v, where v = 23+ 22 € Fas. The computation of
y170 will be implemented by the €°-mul circuit. The remaining (3 +~%)v term
can be calculated using 20 CNOT gates without increasing the circuit width (see
Appendix A). Consequently, the §T component can also be realized by combining
the €% mull circuit with the inverse circuit for computing (72 + ~v#)v. Table 1
lists the quantum resources for all five components. 3

Table 1: Quantum resources for five components related to multiplication.
Component # CNOT # Toffoli Toffoli depth #Ancilla ~ Width

O mul 40 10 2 3 15
¢Omault 40 10 1 3 15
C*omaul 45 10 2 3 15
0 60 10 2 3 15
o 60 10 1 3 15

3 Here we provide an explanation of the Toffoli depth statistics for all tables. Taking
Table 4 as an example, the Toffoli depth of 40 reported by [32,45, 20] excludes Tof-
foli gates replaceable by QANDT. This stems from their use of T-depth-4 S-boxes
that reset auxiliary qubits to |0). Resetting requires invoking QAND' to uncompute
the first three Toffoli layers. Thus, without QANDT, their S-box and AES-128 Tof-
foli depths are 7 and 70 respectively, yet all report 40. Crucially, we adopted their
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4.2 Quantum Circuits for Inversion in Fa4

The inversion operation in Fos4 can be represented as a vectorial Boolean function,
which serves as the basis for designing the quantum circuit. The complexity of
this vector function’s expression varies across different isomorphic fields of Faa,
directly impacting the circuit design difficulty. Boyer and Peralta [6] provided
a concise expression under an isomorphic composite field, where the composite
field is constructed as:

— Subfield: Fg2 = Fo[w]/(t(w) = w? +w + 1)
— Composite field: F(g2y2 = Fa2[v]/(p(v) = v2+v+p), where p=w+1 € Fy:

Let W and V be roots of t(w) and p(v) respectively, the basis of this composite
field they chose is {WV2, W2V2 WV W2V8}. For an element X = zqWV? +
2y W2V2 4+ 2, WV + 23W2V8 in the composite field, its inverse Y = oW V?2 +
Y1 W2V2 + 9, WV8 4+ ysW?2V® can be derived. The vector Boolean function for
Y with respect to the components zq, x1, x2, x3 is given by:

Yo =T1T2X3 + ToT2 + X122 + T2 + X3,

Y1 =TpT2x3 + ToX2 + T1X2 + X123 + T3, (12)
Yo =ToT1T3 + ToT2 + Tox3 + To + 1,

Y3 =ToT1T2 + ToX2 + ToT3 + 123 + X1

We further provide the matrix representation of the isomorphism between Fos
and the composite field F(32)2, which still relies on the vector representations of
{WV2 W2v2, WVe W2V8} under the polynomial basis {1, 7, Z%, Z3} of Faa.
Through calculation, we obtain V = Z% and W = Z2 + Z, from which it can
be deduced that WV2 =234+ 7, W2V2=23+1, WV8 =234+ 22 W?V8 =
Z3+7*+Z. Let ¢ and ¢~ ! denote the isomorphism mappings from Fas to F(o2y2
and F(22)2 to [Fya. Then

0100 1011
-1 2 27,2 8 27,8 1001 1000
1111 1111

Both the quantum circuits for ¢ and ¢! require 4 CNOT gates each, as detailed
in Appendix B.

Next, we only need to design the quantum circuit for inversion in F(52)2. In
Eq. (12), the algebraic degree of y; is 3, indicating that it requires at least two
layers of Toffoli gates for implementation. Based on Eq. (12), [6] discovered a
sequentially written classical circuit with depth 4 (see Appendix C). Following
this classical circuit, we can straightforwardly construct a quantum inversion
circuit achieving the minimal Toffoli depth of 2. This circuit requires 10 Toffoli
gates and 24 CNOT gates, as shown in Figure 6.

QAND'-based accounting method, justified by the principle that “Toffoli gates merit
special emphasis due to T gates in decomposition, whereas T-free operations should
be distinguished”.
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Fig. 6: Quantum circuit for inversion in F(52)2. The three sets of dashed lines each
encompass three layers of Toffoli gates operating in parallel. The combined circuit
integrating this design with one isomorphism mapping ¢ and two isomorphism
mappings ¢! will be denoted as inv; for inversion in Fa.

In invy, the 7 Toffoli gates in the first two layers are implemented with
QAND gates, while the 3 Toffoli gates in the final layer are realized using QAND
gates. The inverse circuit im}{ of inv, implements its first-layer 3 Toffoli gates
with QAND gates, while the 7 Toffoli gates in the final two layers use QANDT
gates. Consequently, inv;r achieves a Toffoli depth of just 1, making it optimal
to co-deploy inv; and im}I in the circuit structure of Fig. 3, thereby effectively

minimizing overall circuit depth.

When co-designing the €*-S-box running in parallel with the in-place S-box
for Key Expansion, no uncomputation of input states is required. Consequently,
the €*-S-box’s requirement for Toffoli-depth optimization is relaxed, allowing its
components to trade increased depth for reduced width. We now construct the
inversion circuit in IF(92)> directly from its vectorial Boolean function. In Eq. (12),
there are only 4 distinct quadratic terms, and these 4 terms can be multiplied
simultaneously with 4 different degree-1 terms to generate 4 cubic terms. This
property enables the circuit to be implemented with 12 qubits. Based on this
insight, we propose an alternative quantum circuit for inversion in F(y2)2, which
requires 12 Toffoli gates and 24 CNOT gates, shown in Fig. 7.

The 8 Toffoli gates in the first two layers of invs are implemented with QAND
gates, while the 4 Toffoli gates in the final two layers use QAND' gates. The
inverse circuit im); of invy implements its first two layers of 4 Toffoli gates using
QAND gates, while the 8 Toffoli gates in the final two layers use QANDT gates.
This alternative inversion design ¢nwvs achieves a 2-qubit reduction in width, at
the cost of increasing its inverse circuit’s Toffoli depth by 1. Table 2 lists the
quantum resources of four inverse components in Fou.
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Fig. 7: An alternative quantum circuit for inversion in F(;2)2. The combined
circuit integrating this design with one isomorphism mapping ¢ and two isomor-
phism mappings ¢! will be denoted as inv, for inversion in Fa.

Table 2: Quantum resources for four inverse components in Fos
Component # CNOT #Toffoli Toffoli depth #Ancilla  Width

muy 36 10 2 6 14
invl 36 10 1 6 14
inva 36 12 2 4 12
inv} 36 12 2 4 12

4.3 Quantum Circuit for In-Place S-box

Based on Egs. (5)-(6) and the composite field inversion circuit structure, the
implementation of the S-box quantum circuit proceeds as follows:

ig. -1 c
-2 MY 440y Fig 3 hiY'® + hyY 2l Bm; S(x)

Here, the operations of ! and B can be merged into B®~'. For complex
linear layer matrices, the method proposed by [50] requires fewer CNOT gates
and supports in-place implementation. Applying this approach, the linear layers
@ and B®~! demand 10 and 14 CNOT gates, respectively (see Appendix D).
Building upon the structure in Fig. 3 and the above procedure, we propose the in-
place S-box quantum circuit, as shown in Fig. 8. In this circuit design, the number
of parallel Toffoli gates per Toffoli depth layer exhibits remarkable consistency
with the core design philosophy, with gate counts 5, 5, 3, 4, 5, 5, 5, 5, 5, 5, 3,
and 5 in sequence across successive Toffoli depth levels. Moreover, the utilization
efficiency of auxiliary |0) qubits in nonlinear components proves remarkably high.
During operation of the inversion component with fewer auxiliary qubits, only
a single |0) auxiliary qubit remains idle.

The in-place S-box significantly simplifies the overall architecture of AES,
where the DW-cost of the encryption circuit becomes dominated by the S-box.
This is particularly critical when constructing the encryption oracle for Simon’s
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Fig. 8: Quantum circuit for the in-place S-box. The empty boxes (O) represent
allocated ancillary qubits.

algorithm, as the oracle’s entire DW-cost is determined solely by the in-place
S-box [51]. Therefore, accurately estimating the DW-cost of the in-place S-box
is essential. All quantum resources for this S-box can be calculated from the
data provided in Table 1 and Table 2. We validate the correctness of the S-box
and count quantum gates using the Qiskit toolkit, with the execution results*
matching the substitution values specified in the documentation [36]. In Table 3,

we enumerate these resources and compare them with other existing schemes

5

From the comparison, our S-box achieves at least a 77% reduction in DW-cost,
attributable to its novel structure and technical innovations.

Table 3: Quantum resources for in-place S-box

Source | # NOT # CNOT #Toffoli Toffoli depth ~Width | DW-cost
[26] 4 410 96 71 22 1,562
(18] 12 694 104 82 22 1,804
[27] 4 244 96 78 16 1,248
[19] 233 885 833 793 9 7,137

This paper 4 376 80 12 23 276

4 https://github.com/lhyGovinda/ AES-with-In-Place-S-Boxes.git
5 The reason why numerous S-boxes are not compared is that they are out-of-place.
These S-boxes must first be converted to ¢°-circuits, and then generate in-place S-
boxes through the structure shown in Fig. 2, which will result in a depth increase of
at least 2 times and other costs.
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5 Quantum Circuits for AES

In this section, we present compact architectures for implementing quantum
circuits of AES-128, AES-192, and AES-256. Across all three key-length variants,
the S-boxes in the round function account for at least 80% of the total S-box
count. Consequently, all remaining AES components will be co-designed around
the in-place S-box of the round function to ensure its optimal performance. For
other components in the round function:

— ShiftRows requires zero quantum resources, as it can be implemented by
either rewiring or swapping qubit indices.

— Each AddRoundKey operation employs 128 bitwise CNOT gates.

— The MixColumns transformation treats each column’s 4 bytes as a 4-term
polynomial over Fas and performs modular multiplication with a fixed poly-
nomial. This multiplication can be represented by a 32x32 binary matrix
over Fy and its linear component has substantial size. Xiang et al. [50]
achieved the lowest CNOT gate count of 92 for implementing this matrix
to date [45], and we will adopt their implementation results.

After completing the construction of all components in the round function,
we can evaluate the resource requirements for the entire multi-round iterative
process, where all S-boxes in SubBytes operate in parallel.

For a multi-round iterative process with N,. rounds:

— Round 0 consists solely of an AddRoundKey operation, requiring 128 CNOT
gates.

— Rounds 1 to N,.—1 each involve SubBytes, with gate count and width being
16 times that of a single S-box, matching the S-box’s Toffoli depth. Specif-
ically, this requires 64 NOT gates, 6016 CNOT gates, 1280 Toffoli gates,
a width of 368, and a Toffoli depth of 12. ShiftRows incurs no resource
overhead. MixColumns includes 4 modular multiplications, demanding 368
CNOT gates. AddRoundKey again requires 128 CNOT gates.

— Round N, includes SubBytes, ShiftRows, and AddRoundKey, with quantum
resources consistent with the above transformations.

Aggregating the resources across all rounds, a multi-round iterative process with
N, rounds requires 64N, NOT gates, 6512N,,—240 CNOT gates, 12801V,. Toffoli
gates, a Toffoli depth of 12N,., and a fixed width of 368.

After constructing the multi-round iterative process, it remains to imple-
ment the quantum circuit for Key Expansion and estimate the overall quantum
resources required for the full AES implementation.

5.1 Co-Designing the Key Expansion Quantum Circuit

The Key Expansion must be constructed according to the requirements of the
round function. When using in-place S-boxes, the Key Expansion only needs
to generate the required subkeys before each AddRoundKey operation. To meet
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this fundamental requirement, we adopt the in-place Key Expansion architecture
proposed in [21] for all three AES key lengths. Among the components of key
expansion:

— RotWord, like ShiftRows, is a cyclic permutation that requires zero quantum
resources.

— The i-th Rcon[i] requires only a small number of NOT gates, specifically
equal to the count of coefficients with value 1 in the polynomial ‘=1 over
Fos.

— SubWord contains 4 S-boxes. Based on the Key Expansion algorithm, these
S-boxes must be implemented as €*-circuits.

Given that the Toffoli depth of the in-place S-box circuit in the round func-
tion is 12, the design principle for the SubWord S-box is to minimize circuit
width while maintaining the Toffoli depth constraint of no more than 12. This
clearly requires complete parallelization of all SubWord S-boxes. Following this
principle, we first replace the inv,; component with the lower-width invy, then
construct the @%-circuit for the S-box, and finally transform the S-box’s @°-
circuit into a €*-circuit using the same methodology employed in designing the
Fy4 multiplication circuit. The €*-S-box circuit shown in Fig. 9 exhibits high
symmetry, where all components except €*-mul and @c are arranged such that
the left and right halves form inverse circuits of each other. The €*-S-box quan-
tum resource counts are 4 NOT gates, 330 CNOT gates, 64 Toffoli gates with 11
Toffoli-depth, 12 ancillary qubits, and 28-qubit width. For the S-box implemen-
tation in Key Expansion, we have also conducted both correctness verification
and quantum gate count analysis using the Qiskit toolkit®.

lzo) A— 1 j: |zo0)
P +
) A— 7| ¢ 1)
10) 4 0] 1 1 lo7] 10)
0) Linvs | i} | 0)
lyo) /4 . ¢* — mul Folyo @ S(x)o)
4| (B2 ——— Bd ‘&
ly1) 4 ¢ — mul F oy @ S(2)1)
0) A O—0—0 O—0—0 0

Fig.9: Quantum circuit for the €*-S-box in SubWord.

For AES algorithms with three key lengths, the Toffoli depth of the Key
Expansion is consistently lower than that of the multi-round iterative process,
eliminating the need for further depth statistics. When implementing the key
expansion following the architecture described in [21], the total number of Sub-
Word and word-level add operations equals the number of new words that need

5 https://github.com/lhyGovinda/ AES-with-In-Place-S-Boxes.git
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to be generated in the key schedule (see Appendix E). The quantum resources
for Key Expansion with three different key lengths are:

— AES-128 involves 20 RotWord operations, 10 SubWord operations, 10 Rcon
operations, and 30 word-level add operations. In total, this requires 176 NOT
gates, 14160 CNOT gates, 2560 Toffoli gates, and has a width of 176.

— For AES-192, the key expansion includes 16 RotWord operations, 8 SubWord
operations, 8 Rcon operations, and 38 word-level add operations. The total
resource cost is 136 NOT gates, 11776 CNOT gates, 2048 Toffoli gates, with
a width of 240.

— For AES-256, the key expansion comprises 14 RotWord operations, 13 Sub-
Word operations, 7 Rcon operations, and 39 word-level add operations. This
sums up to 215 NOT gates, 18408 CNOT gates, 3328 Toffoli gates, and a
width of 304.

5.2 Quantum Circuits for AES

The quantum circuit implementation of the AES algorithm achieves a simplified
architecture through its in-place design for both multi-round iterations and Key
Expansion. Taking AES-128 as an example, Fig. 10 illustrates this architecture.

n 10)
— [kw)
o— o

] |0)

Fig. 10: Architectural diagram of AES-128. The displayed sections correspond to
Round 0, Round 1, and Round 10, where KE, SB, SR, MC, and CNOT gates
represent Key Expansion, SubBytes, ShiftRows, MixColumns, and AddRound-
Key operations respectively. The architectural modifications for AES-192 and
AES-256 consist exclusively of three adjustments. First, the key register expands
from 128 to 192 and 256 qubits respectively. Second, the total round count in-
creases from 10 to 12 and 14 rounds correspondingly. Third, the implementation
selects the required 128-bit subkey from the key register for the AddRoundKey
transformation.

Tables 4-6 present the quantum resource requirements for AES circuits with
three key lengths in our work, along with a comparison with existing studies.
Regarding the most critical metric for fault-tolerant quantum circuit implemen-
tations, the DW-cost, progress in prior works has shown gradual slowdown and
convergence toward a performance bottleneck. Our work demonstrates one-time
cost reductions of at least 46%, 45%, and 45% across the three key lengths re-
spectively, achieved through innovative implementations of in-place S-boxes and
novel non-linear component design techniques.
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Table 4: Quantum resources for AES-128

Source | # NOT # CNOT #Toffoli Toffoli depth Width | DW-cost

[15] 1,456 166,548 151,552 12,672 984 | 12,469,248
[25] 1,570 107,960 16,940 1,880 864 | 1,624,320
[52] 4,528 128,517 19,788 2,016 512 | 1,032,192
[27] 1,072 53,496 16,664 1,472 328 482,816
[26] 1,072 82,928 15,824 1,108 400 443,200
18] 2,528 126,016 17,888 820 492 403,440
[31] 2,224 77,984 19,608 476 474 225,624
[32] 800 65,736 12,920 40 3,667 146,680
[45] 800 64,750 12,920 40 3,268 130,720
[20] 816 75,784 12,824 40 3,048 121,920
This paper 816 79,040 15,360 120 544 65,280

Table 5: Quantum resources for AES-192

Source | # NOT # CNOT  #Toffoli Toffoli depth  Width | DW-cost

[15] 1,608 189,432 172,032 11,088 1,112 | 12,329,856
[27] 1,160 60,736 19,328 14,496 328 | 4,754,688
[25] 1,692 125580 19,580 1,640 896 | 1,469,440
[52] 5128 152,378 22,380 2,022 640 | 1,294,080
[26] 1,160 95,696 18,400 1,340 464 621,760
[32] 896 74,456 14,552 48 3,935 188,880
[20] 904 86,388 14,592 48 3,368 161,664
This paper 904 89,680 17,408 144 608 87,552

Table 6: Quantum resources for AES-256

Source ‘ # NOT # CNOT #Toffoli Toffoli depth  Width ‘ DW-cost
[15] 1,043 233,836 215,040 14,976 1,336 | 20,007,936
[27] 1,367 74,472 23,480 17,412 392 6,825,504
[25] 1,992 151,011 23,760 2,160 1,232 2,661,120
[52] 6,103 177,645 26,774 2,292 768 | 1,760,256
[26] 1,367 116,288 22,264 1,540 528 813,120
[32] 1,119 93,288 18,360 56 4,429 248,024
[20] 1,111 104,464 17,992 56 3,688 206,528

This paper 1,111 109,336 21,248 168 672 | 112,896
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The DW-cost metric inherently represents a balanced measure between depth
and width optimization rather than pursuing extreme performance in any sin-
gle metric. Consequently this study omits enumeration of suboptimal tradeoff
alternatives. Alternative design approaches can be flexibly derived through ex-
tensions of our proposed composite field arithmetic in-place structure and various
optimization techniques. It must be emphasized that the normal basis CFA im-
plementation scheme adopted in this work exhibits equivalence in core resource
metrics including Toffoli gate count, Toffoli depth, width and DW-cost when
compared with polynomial basis implementations. The choice of basis does not
affect the statistical outcomes of these quantum resources. Furthermore while
AES quantum circuits have diverse applications such as encryption/decryption
core modules, Grover’s oracle, encryption oracle and while resource estimation
can be converted into alternative models like Clifford+T gate set, their circuit
architecture and resource optimization methodology can both be directly derived
from the AES quantum circuit proposed in this work. We therefore omit detailed
discussions of these extensions to focus on the core technical contributions. A
brief discussion of these extensions is provided in Appendix F.

6 Conclusion

This paper addresses the high cost of AES quantum circuits in fault-tolerant
quantum computation, with a primary focus on DW-cost reduction. First, con-
sidering the SPN architecture characteristics of AES, the S-boxes in round
functions require in-place implementations, yet existing approaches based on
reversible logic synthesis and out-of-place S-box techniques suffer from either
excessive depth escalation or quantum resource redundancy. To overcome these
limitations, we develop a compact in-place S-box structure using composite field
arithmetic. Through a series of optimization techniques for nonlinear compo-
nents, we successfully achieved an S-box quantum circuit with DW-cost as low as
276, filling the design gap in this field. Furthermore, by co-optimizing key expan-
sion and round functions, we present complete quantum circuit implementations
for AES-128, AES-192, and AES-256, with DW-cost values reduced to 65,280,
87,552, and 112,896, respectively. Compared with the existing state-of-the-art re-
sults, these results have reduced by at least 46%, 45%, and 45%, respectively. The
proposed quantum circuit architecture demonstrates broad applicability, as its
core modules can be directly deployed in AES encryption/decryption, Grover’s
oracle, and encryption oracle. Beyond AES, it can be extended to block ciphers
like ARIA, and hash algorithms including Whirlpool and Grgstl.
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A Quantum Circuits for (42 +~?)v and 6

The computation of (73 + ~vi)v involves squaring first, then summation, and
finally scaling by v, all of which are linear operations. This operation sequence
can alternatively be implemented as summation first, followed by squaring and
then scaling by v:

(o +71)%v = (%% + 290 +71)v = (08 + 11w

In this alternative approach, the squaring and scaling operations can be com-
bined. In matrix form, this combined operation can be expressed as

0110\ /1010 0111
Ls— .o |0101] [ooro| _[oo11
1010| |0101 1111
1101/ \0001 1001

Fig. 11(a) shows a quantum circuit implementing the square-scale operation
vS with the minimal CNOT count of 4. By combining the square-scale, addi-
tion, and multiplication circuits, we obtain the complete circuit for 6 as shown
in Fig. 11(b). Compared to the multiplication component €°-mul alone, this
implementation requires 20 additional CNOT gates.

(a) Square-scale operation v.S

Fig. 11: Circuits for square-scale operation vS and 6.

B Quantum Circuits for ¢ and ¢!

The quantum circuits for both ¢ and ¢~! can be implemented with a minimum
of 4 CNOT gates each, as illustrated in Fig. 12.
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Fig. 12: Circuits for ¢ and ¢~ 1.

C Classical Circuit Implementation of Inversion in F(32)2

For an input X = (x1,x9,23,24) and output Y = (y1, y2, Y3, y4), the inversion
operation is expressed as:
t1 =29+ x3 to = X9 X xg t3=1x1+ 12 ty =29+ a1
ts = a3 +to  tg=1t5 Xty tr=t3xt, tg =z XT3
to=ts Xts tro=ta+ty t11 =21 XTa t12 =11 X1
tis=ti+tiz yo=tat+tis y1=x3+1tr y2=t2+to
Y3 =1 + g

D Quantum Circuits for & and B () ® c

The quantum resources of @ are 10 CNOT gates, while the quantum resources
of B&~1() @ c are 14 CNOT gates and 4 NOT gates.

|zo) [(@x)o) 7o) < X} |(Be 'z)o @ 1)
|1) GE [(Bz);) |70 ! T [Xb— [Bo 'z @1)
|2) |(Wz)s)  |72) T & [(B&'x),)
|3) I |(Bx)s)  lzs) & i [(B®~'x)s)
|z4) ? ‘\/ |(@x)4) |z4) ? |(B® ™ x)a)
|5) Cf |(@x)s)  lws) ”T“ X} (B 12)s @ 1)
lzs) T [(@2))  lzo) ? [x] [(B&™'z)s @ 1)
l7) D [(Pz)7) o) |(BS~'z)7)
(a) @ (b) BS ()@ c

Fig. 13: Circuits for @ and B&~1() & c.

E Key Expansion

The calculation of the 40 new words required in the AES-128 key schedule pro-
ceeds as follows:

W — Wi_4 @ SubWord (RotWord (W;_1)) @ Reon(i/4), if i =0 mod 4,
L Wi_s®W;_q, otherwise,
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where i=4,5, ..., 43 .
The calculation of the 46 new words required in the AES-192 key schedule
proceeds as follows:

W — Wi_¢ ® SubWord (RotWord (W;_1)) & Rcon(i/6), if i =0 mod 6
T Wite ® Wiy, otherwise,

where i=6,7, ..., 51 .
The calculation of the 52 new words required in the AES-256 key schedule
proceeds as follows:

W;_s @ SubWord (RotWord (W;_1)) @ Reon(i/8), if ¢ = 0 mod 8,
W; = ¢ W;_s ® SubWord (Wi—l) s if i =4 mod 8,
W,_s & W;_1, otherwise,

where i=8,9, ..., 59 .

F A Brief Discussion

Identifying the S-box type serves as an optimal starting point for discussing
AES architectures. For out-of-place S-boxes, €°-S-boxes are typically selected to
ensure auxiliary qubits can be reused across encryption rounds. From a pure en-
cryption perspective, similar compressed pipeline structures [45] and interlacing-
uncompute structure [51] have historically achieved the lowest DW-cost due to
their compact arrangement of ¢°-S-boxes. However, this doesn’t hold for Grover’s
oracle implementations, where researchers have demonstrated pipeline structures
[21] to be superior when considering either low T-depth or equivalently high aux-
iliary qubit counts.

The Grover oracle first calls the AES encryption circuit, performs result
comparison, then executes the inverse encryption circuit. This final step serves
to uncompute the oracle’s input while simultaneously eliminating all garbage
auxiliary qubits at no additional cost.

This leads to our key insight that circuits with more garbage qubits benefit
from greater free uncomputation and achieve better trade-offs. Pipeline struc-
tures inherently gain advantage from this phenomenon as their original design
omits S-box input uncomputation which results in more redundant states that
paradoxically improve performance. Furthermore, when using basic out-of-place
S-boxes instead of €°-S-boxes in pipeline structures, the encryption circuit com-
pletely avoids QANDT gates. Consequently, the Grover oracle’s T-depth matches
the encryption circuit’s exactly, reaching a minimum of 30, while we estimate
the width may increase to approximately 16,000.

For in-place S-boxes, designers may optionally restore auxiliary qubits to
their initial states. Choosing this restoration approach as adopted in our work
significantly simplifies the overall AES architecture.
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