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Abstract. We propose a new iterative method to convert a ciphertext
from the Generalized BFV (GBFV) to the regular BFV scheme. In par-
ticular, our conversion starts from an encrypted plaintext that lives in a
large cyclotomic ring modulo a small-norm polynomial t(x), and gradu-
ally changes the encoding to a smaller cyclotomic ring modulo a larger
integer p. Previously, only a trivial conversion method was known, which
did not change the underlying cyclotomic ring.
Using our improved conversion algorithm, we can bootstrap the GBFV
scheme almost natively, in the sense that only a very small fraction of the
operations is computed inside regular BFV. Specifically, we evaluate (an
adapted version of) the slot-to-coefficient transformation entirely in the
GBFV scheme, whereas the previous best method used the BFV scheme
for that transformation. This insight allows us to bootstrap either with
less noise growth, or much faster than the state-of-the-art.
We implement our new bootstrapping in Microsoft SEAL. Our experi-
ments show that, for the same remaining noise budget, our bootstrapping
runs in only 800 ms when working with ciphertexts containing 1024 slots
over Fp with p = 216 + 1. This is 1.6× faster than the state-of-the-art.
Finally, we use our improved GBFV bootstrapping in an application that
computes an encrypted edit distance. Compared to the recent TFHE-
based Leuvenshtein algorithm, our GBFV version is almost two orders
of magnitude faster in the amortized sense.

Keywords: Fully homomorphic encryption · GBFV · Bootstrapping ·
Edit distance.

1 Introduction

Applications of fully homomorphic encryption (FHE) often rely on parallel data
processing. To accommodate this parallelism, many state-of-the-art FHE schemes
such as BGV [5], BFV [4,15] and CKKS [12] have a built-in mechanism for
“single instruction, multiple data” (SIMD) operations. In typical settings, these
schemes can pack thousands of data elements in a SIMD vector. Basic arithmetic
operations are then evaluated entry-wise on these huge vectors.

While the above SIMD schemes can pack a massive amount of data, certain
applications (such as encrypted edit distance computation) only need a moderate
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packing capacity. Of course, it is always possible to use a subset of the available
SIMD slots, but this is quite wasteful in practice because it leaves a large portion
of the message space unused. Recently, Geelen and Vercauteren [17] proposed a
generalized version of the BFV scheme - called GBFV - which brings a better
solution to this problem.1 Loosely speaking, the GBFV scheme decreases the size
of the SIMD vector by some small integer factor α, resulting in a scheme that
can be up to α times as efficient as BFV. This means that either the latency can
be reduced, or the computational capacity increased, almost by a factor of α. In
other words, the GBFV scheme trades packing for efficiency.

Similarly to other FHE schemes, GBFV has a bootstrapping procedure to
evaluate circuits of arbitrary size. In fact, the current bootstrapping algorithm
can be understood as a hybrid solution: its last step (called digit removal) is
evaluated using GBFV directly; its first step (called noisy expansion) is instan-
tiated in the BFV domain; connecting both steps is achieved via a conversion
routine between GBFV and regular BFV. However, a major drawback of this
hybrid approach is that it hurts the performance. In particular, the BFV scheme
uses much more computational budget than GBFV, so the cost of bootstrapping
becomes completely dominated by the noisy expansion step. Therefore, further
improvements of this step are required to reduce the computational cost.

1.1 Contributions

The main observation of this paper is that noisy expansion does not use the
available plaintext space efficiently. Since this step is evaluated in the BFV do-
main, only a 1/α-fraction of the slots contain relevant information and the others
contain garbage. One solution to this problem is batch bootstrapping [17], but
this is less interesting from a software engineering point of view, because multiple
ciphertexts need to be collected (which may not even be available depending on
the application) and then bootstrapped simultaneously. Therefore, we propose a
bootstrapping algorithm for individual ciphertexts that makes better use of the
available space by staying much longer in the GBFV domain. In particular, we
contribute to the state-of-the-art as follows:

– We propose an improved noisy expansion step in which almost all operations
are evaluated inside GBFV. As a result, we either retain more computational
budget, or can bootstrap faster than previous work. The core of our algorithm
is a new subroutine that homomorphically converts between two isomorphic
rings R′

t and R′′
p with different encoding, and where R′′ is a subring of R′.

This is an iterative procedure consisting of min(log2(n
′′), log2(n

′/n′′)) steps,
where n′ and n′′ are the vector dimensions of R′ and R′′ respectively. The
previous best GBFV bootstrapping algorithm used a trivial conversion from
R′

t to R′
p, instead of R′′

p . Our implementation in Microsoft SEAL shows
that we can bootstrap a ciphertext of 4096 slots in only a second, while still
having 6 remaining multiplicative levels.2

1 A similar solution in leveled mode was proposed independently by Cha et al. [6].
2 See https://github.com/KULeuven-COSIC/Bootstrapping BGV BFV/tree/traces.

https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV/tree/traces
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– Using our improved bootstrapping algorithm, we present a GBFV-tailored
algorithm to homomorphically compute the Levenshtein distance of two en-
crypted strings. The Levenshtein distance computes the minimal number of
deletions, insertions and substitutions that turns the first string into the sec-
ond. Measuring amortized performance, our GBFV version is approximately
two orders of magnitude faster than the state-of-the-art solution, called Leu-
venshtein [21], which takes a TFHE-based approach.

2 Preliminaries

Generalized BFV (GBFV) is a relatively new FHE scheme that was proposed
independently by Geelen and Vercauteren [17], and by Cha et al. [6] for two dif-
ferent applications (respectively low-latency bootstrapping and the offline phase
of SPDZ). This section recaps the aspects of GBFV that are relevant to us.

2.1 Notations

This paper uses standard power-of-two cyclotomics, which are more convenient
to implement than the somewhat more convoluted non-power-of-two cyclotomics.
All plaintext data lives in the 2n-th cyclotomic ring R = Z[x]/(xn + 1), and we
will also use its subrings R′ = Z[xn/n′

]/(xn + 1) and R′′ = Z[xn/n′′
]/(xn + 1).

We call R the R-LWE ring because it is used to generate samples from the ring
learning with errors distribution (hence it determines the security level of our
homomorphic encryption scheme). The 2n′-th cyclotomic ring R′ is called the
GBFV ring, and the 2n′′-th cyclotomic ring R′′ is called the BFV ring. Those
subrings are embedded in R, and they will encode GBFV and BFV plaintexts
respectively. We can apply ring automorphisms σi : x 7→ xi to elements of R for
any odd integer i ∈ Z×

2n. It is well known that the automorphism group has rank
two and can be decomposed as ⟨σ−1⟩ × ⟨σ5⟩.

We consider a modulus T = T (x) ∈ R (not necessarily a scalar) and define
the quotient ring RT = R/TR. Elements of R or RT are written as m = m(x),
and those will correspond to the plaintexts of our encryption scheme. We also
define p ∈ Z as the smallest positive integer in tR, with t = t(y) ∈ R′ the initial
plaintext modulus. Here we substituted the indeterminate y = xn/n′

for ease of
notation. The integer modulus p is constant during the linear transformations,
but the modulus T gradually changes from T = t(y) when working in the GBFV
ring, up to T = p when working in the BFV ring.

2.2 The GBFV Scheme

The GBFV scheme generalizes both BFV [4,15] and CLPX [8]. More specifically,
the modulus T is a scalar value in BFV, a linear polynomial in CLPX and an
arbitrary non-zero element in GBFV. Since GBFV is the most general notion,
we omit the description of BFV and CLPX.
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Homomorphic Operations. We now define all relevant GBFV subroutines,
skipping key generation, encryption and decryption. Encryption is carried out in
the R-LWE ring R, though in practice we may encode our data in a cyclotomic
subring. Each algorithm is assumed to know the public key, and each ciphertext
implicitly includes its own plaintext modulus T .

– GBFV.Add(ct1, ct2) → ctadd: given ct1 and ct2 that encrypt m1,m2 ∈ RT

respectively, compute ctadd that encrypts madd = m1 +m2.

– GBFV.Mul(ct1, ct2) → ctmul: given ct1 and ct2 that encrypt m1,m2 ∈ RT

respectively, compute ctmul that encrypts mmul = m1 ·m2.

– GBFV.Auto(ct, σi) → ctauto: given ct encrypting m ∈ RT , and given σi such
that σi(T ) = T , compute ctauto that encrypts mauto = σi(m).

– GBFV.ModUp(ct, T2) → ctup: given ct encrypting m ∈ RT1
, and T2 ∈ T1R,

compute ctup that encrypts mup ∈ RT2 such that mup = m (mod T1R), and
such that mup = 0 (mod (T2/T1)R).

– GBFV.ModDown(ct, T2) → ctdown: given ct encrypting m ∈ RT1
, and T2 such

that T1 ∈ T2R, compute ctdown that encrypts mdown = m (mod T2R) in the
plaintext ring RT2

.

– GBFV.Divide(ct, T2) → ctdiv: given ct that encrypts (T1/T2) ·m ∈ RT1
, and

also T2 such that T1 ∈ T2R, compute ctdiv that encrypts m ∈ RT2
.

– GBFV.InProd(ct) → ctfresh: given ct that encrypts m ∈ Rp, compute ctfresh
that encrypts mfresh = p ·m+ e ∈ Rp2 for some small error polynomial e.

As usual, addition and multiplication also have a plaintext-ciphertext variant.
Observe that BFV-to-GBFV conversion from Geelen and Vercauteren [17] is a
special case of ModDown where T1 = p. On the other hand, the ModUp method
is a stronger notion than GBFV-to-BFV conversion [17], because we additionally
impose that mup = 0 (mod (T2/T1)R).

Encoding in Plaintext Slots. In our improved bootstrapping, the plaintext
space of the input (and output) ciphertext is

R′
t = Z[y]/(yn

′
+ 1, t(y)).

Intermediately, bootstrapping will also use R′′
p and other characteristic-p rings

between those two. We additionally assume that p is a prime number congruent
to 1 modulo 2n′. This restriction gives us base field encoding in Fp and is most
commonly used in (G)BFV to maximize the SIMD parallelism. Bootstrapping
for extension fields can still be handled with ring switching [18,1].

Each ring in our method can pack Fp-elements, so we need a mechanism to
write those slots into a vector. To this end, consider some cyclotomic ring Ri

such that R′′ ⊆ Ri ⊆ R′ and a modulus tj ∈ Ri such that t | tj | p. We will
consider the quotient ring

Ri
tj = Z[y]/(yni + 1, tj(y)),
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where we substituted y = xn/ni for ease of notation. Since the characteristic of
this ring is a prime number p, we can work in the principal ideal domain Fp[y],
and it follows that (yni + 1, tj(y)) = (τ(y), p), where τ(y) = gcd(yni + 1, tj(y)).

Roots of τ(y) over Fp are also roots of yni + 1, so they are primitive 2ni-th
roots of unity. Let ζ ∈ Fp be such a root, then the other ones are of the form

y = ζ(−1)α·5β , (1)

though not necessarily each element of this shape is a root of τ(y). Our analysis
will enforce an order to these roots and the corresponding plaintext slots. More
precisely, let S be the set of roots of τ(y), with order relation ≤ such that

ζ(−1)α·5β ≤ ζ(−1)γ ·5δ

if either β < δ, or β = δ and α ≤ γ. This definition assumes that 0 ≤ α, γ < 2
and 0 ≤ β, δ < ni/2. Finally, we use the isomorphism

Ri
tj = Z[y]/(τ(y), p) → F|S|

p

m(y) 7→ {m(s)}s∈S .

Addition and multiplication act component-wise on the vector of plaintext slots,
and rotations can be implemented with automorphisms.

Our slot ordering is quite non-standard: the more common definition in the
BFV literature [16] switches the role of α and β. However, it is more natural for
our purpose due to the following reasons:

– Noisy expansion maps slots to coefficients in a permuted order. In the stan-
dard definition, this permutation is a bit reversal in both hypercolumns. Our
ordering results in one full bit reversal over the entire slot-vector, similarly
to the plaintext NTT algorithm.

– Given a cyclotomic ring Ri and two “adjacent” moduli such that tj | tj+1,
we can interpret Ri

tj as a subring of Ri
tj+1

. In our ordering, the slots from
the first ring are simply the even-numbered slots from the second one.

– Similarly, given two “adjacent” cyclotomic rings such that Ri ⊋ Ri+1 and
a modulus tj , we can interpret Ri+1

tj as a subring of Ri
tj . In our ordering,

the slot-vector of the second ring is obtained simply by duplicating the slot-
vector of the first one.

– Our conversion algorithm from R′
t to R′′

p applies an additional permutation
to the plaintext slots. In our ordering, this is a simple circular bit shift of ℓ
positions to the left, which we denote by shiftn′′,ℓ.

Additional Restriction. We impose one more restriction on the input ciphertext.
Let τ(y) = gcd(yn

′
+ 1, t(y)) where y = xn/n′

, then we assume that t(y) lives in
the cyclotomic subring of degree n′/n′′, and that τ(y) has n′′ roots, obtained by
setting α = 0 in Equation (1). Note that we set the number of GBFV slots to n′′

such that R′
t
∼= R′′

p . This restriction supports the setting of binomial plaintext
moduli [17], which is also the standard setting of TopGear 2.0 [6]. Moreover,
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it covers the parameter sets that are obtained by “descending” via the relative
field norm, such as the Goldilocks prime in power-of-two cyclotomics [17].

Observe that this restriction only involves the GBFV ring and the BFV ring.
The R-LWE ring can still be an arbitrary power-of-two ring of dimension n ≥ n′.
The fact that α = 0 implies that R′

t has a cyclic rotation group, but it does not
necessarily hold for the other moduli: internally, bootstrapping uses a series of
rings between R′

t and R′′
p , where the latter has a rank-2 rotation group.

In the GBFV scheme, the noise growth upon multiplication is directly pro-
portional to ||t||. With the above restriction and under constant p, this norm is
typically inversely exponential in n′/n′′. As a direct consequence, both the num-
ber of plaintext slots and the multiplication noise decrease when n′/n′′ increases.
We refer to [17] for more details.

Hensel Lifting. The GBFV and BFV plaintext rings can be lifted to prime
powers. Following the procedure of [17], lifting to p2 is achieved in the rings R′

t2

and R′′
p2 . Both these quotient rings encode n′′ slots from Zp2 . It is also possible

to construct lifted rings between R′ and R′′.

Trace Function. To take an encrypted plaintext from an extension ring to a
subring, we can homomorphically apply the trace function [1]. For R/R′, this
function is defined as

TrR/R′ :

n−1∑
i=0

mi · xi 7→ (n/n′) ·

n′−1∑
i=0

mi·n/n′ · yi
 . (2)

It is well known that the trace can be computed iteratively, by passing through
all intermediate cyclotomic subrings, and the cost is dominated by log2(n/n

′)
homomorphic automorphisms.

Linear Transformations. The core of our new bootstrapping is an algorithm
that evaluates a specific Fp-linear transformation on the vector of plaintext slots.
This linear map converts between coefficient and slot representation. Below we
discuss the state-of-the-art for implementing such linear transformations.

Baby-Step/Giant-Step Method. We implement “sparse” linear transformations
with the baby-step/giant-step algorithm. In particular, we use the generalized
variant of Cheon et al. [10]. This method computes linear combinations of ro-
tated ciphertexts by splitting the relevant index set into two components. More
specifically, let I = J ·K ⊆ Z×

2n. Then we can rewrite a linear map L over index
set I as

L(m) =
∑
i∈I

κi · σi(m) =
∑
k∈K

σk

∑
j∈J

κ′
jk · σj(m)

 ,
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where κ′
jk = σ−1

k (κjk). The minimum number of automorphisms is reached when
J and K have (approximately) the same cardinality. Our implementation uses
a heuristic algorithm to determine J and K from I.

Noisy Expansion. Bootstrapping requires linear transformations in the so-called
noisy expansion step. Informally, noisy expansion takes a low-quality encryption
of the SIMD vector (m0, . . . ,mn′−1), and computes a high-quality encryption of
(p ·m0 + e0, . . . , p ·mn′−1 + en′−1), where the entries of the input live in Fp and
the entries of the output in Zp2 . In other words, the plaintext space is expanded
and contains additional “noise” terms ei.

Noisy expansion consists of two major building blocks: the SlotToCoeff and
the CoeffToSlot transformations. The first transformation converts an encryption
of (m0, . . . ,mn′−1) in BFV encoding to a ciphertext that encrypts the polynomial

m(x) =

n′−1∑
i=0

mrevn′ (i) · x(n/n′)·i ∈ R′
p,

where revn′ is the standard bit-reversal permutation of log2(n
′)-bit elements. The

CoeffToSlot transformation is simply the inverse map, but computed over R′
p2

instead of R′
p. Both transformations are Fp-linear over the BFV plaintext space

and can be further decomposed into a series of smaller stages, similarly to the
number-theoretic transform (NTT).

The state-of-the-art SlotToCoeff transformation in power-of-two cyclotomics
is the algorithm concurrently proposed by Geelen [16] and Ma et al. [23]. Both
have identical complexity for the parameters in this paper. If p = 1 (mod 2n′),
the algorithm boils down to homomorphically multiplying the vector of plaintext
slots by an NTT-like matrix U ∈ Fn′×n′

p . Similarly to the NTT, this matrix can
be decomposed as a product of up to log2(n

′) sparse matrices, which we multiply
to the vector of plaintext slots based on the baby-step/giant-step method.

3 Bootstrapping

We start this section with an informal description of our improved SlotToCoeff
transformation and the resulting noisy expansion. Then we treat both building
blocks formally, and we finally conclude by putting everything together in a new
bootstrapping algorithm.

3.1 Informal Overview of the Proposed Method

A first idea to improve the SlotToCoeff transformation could be to evaluate its
first couple of stages directly in the GBFV domain. More specifically, the first
stage of the decomposition evaluates a “butterfly” operation on the two adjacent
slots m(ζ5

i

) and m(ζ−5i) for all i in parallel. This is implemented as

m 7→ κ0 ·m+ κ1 · σ−1(m),
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for some constants κi. It is clear from the equation why this idea doesn’t work:
the automorphism σ−1 is invalid in GBFV, hence it must be evaluated in the
BFV domain. More generally, for this strategy to work, we would need the stages
of the NTT transformation to come in precisely the opposite order; that way, the
automorphism σ−1 would come last in the decomposition, so we could postpone
the GBFV-to-BFV conversion to that point.

Reverting the order of the NTT stages is not possible because they do not
commute. Therefore, we need a different way to evaluate the transformation.
Our idea is to rely on a subring encoding. First of all, note that we only consider
the subset of GBFV slots, which is a fraction of the BFV slots. Therefore, we
can map these GBFV slots to the coefficients of a BFV plaintext that lives in a
cyclotomic subring of R′. In summary, our method consists of two components,
which are described in opposite order for didactic purposes:

– The second component is an algorithm that converts a GBFV ciphertext to
a BFV ciphertext that lives in the smallest possible cyclotomic subring. This
is basically a conversion from R′ to R′′ that also changes the slot-encoding.
One side effect of the algorithm is that it applies an additional permutation
on the plaintext slots, which can be understood as a circular bit shift.

– The first component is evaluating a negacyclic NTT, which is similar to the
original transformation but defined in a smaller dimension (in dimension n′′

rather than n′). To compensate for the circular bit shift, this transformation
is applied to a slot-vector permuted with the inverse circular bit shift.

The computational cost of this algorithm is about the same as the state-of-the-art
SlotToCoeff transformation (the only additional cost is a cheap trace operation).
However, the new algorithm consumes substantially less computational budget,
because the negacyclic NTT can be fully evaluated in the GBFV domain. Note
that we do not achieve fully native GBFV bootstrapping (the second component
converts to regular BFV), but in contrast to the previous work, only a very small
fraction of the algorithm is evaluated in BFV.

We can exploit the reduced noise accumulation of our algorithm in two pos-
sible ways: either we use the same decomposition parameters for the SlotToCoeff
transformation as the previous work, resulting in a ciphertext with more re-
maining computational budget. However, the previous work decomposed the
transformation in only two stages - which is quite low in practice - making it the
bottleneck in terms of execution time. Alternatively, since each stage consumes
less computational budget, we can afford to decompose the transformation into
more stages than the previous work. This second strategy is faster and uses fewer
evaluation keys, but it slightly increases the accumulated noise.

3.2 GBFV to Subring BFV Conversion

This section describes our new homomorphic conversion routine from the GBFV
plaintext ring R′

t to the BFV plaintext ring R′′
p . Although both plaintext rings

are isomorphic, they still have a different encoding, so that we cannot simply
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reinterpret a plaintext from one ring as a plaintext of the other one. Instead, our
algorithm evaluates a particular Fp-linear transformation on the plaintext. This
is done by iteratively passing through a series of intermediate rings, where each
step “recodes” the underlying plaintext. More specifically, we use

R′ = R0 ⊋ R1 ⊋ · · · ⊋ Rℓ ⊇ R′′,

where Ri are consecutive power-of-two cyclotomic rings (i.e. the ratio of their
dimensions is always 2). Since each step goes to a smaller cyclotomic ring, we
need to compensate by increasing the underlying plaintext modulus. Therefore,
we consider the chain of moduli

t = t0 | t1 | · · · | tℓ | p,

which are chosen in such a way that each Ri
ti is isomorphic to Fn′′

p . In particular,
our method constructs ti by multiplying ti−1 with a shifted version of itself. More
details follow later in this section.

Homomorphic Subring Conversion. We map a slot-permuted GBFV vector
to the coefficients of a BFV ciphertext. This circular bit shift comes on top of the
bit reversal permutation that was already present in the original SlotToCoeff. The
circular bit shift permutation is a side effect of the subring conversion algorithm.
If n′′ ≥ n′/n′′, then subring conversion maps the slot with position i to the slot
with position shiftn′′,ℓ(i), where shiftn′′,j circularly shifts a log2(n

′′)-bit number
with j positions to the left. On the other hand, if n′′ ≤ n′/n′′, no overall circular
bit shift is applied. The next two paragraphs describe our algorithm in each case.

Many Plaintext Slots. If n′′ ≥ n′/n′′, then we proceed as follows. Let there be
ℓ = log2(n

′/n′′) iterations in our algorithm and consider

gi = 5−2ℓ−2

, . . . , 5−21 , 5−20 ,−1 for i = 1, . . . , ℓ. (3)

Then we recursively define the next plaintext moduli as ti = ti−1 · σgi(ti−1) for
each i.3 Iteration i of our subring conversion does the following:

– Compute ModUp to ti, which gives an encrypted plaintext µi ∈ Ri−1
ti . This

plaintext has 2n′′ slots in total, the odd ones of which are identically zero.
– Next, we need to homomorphically map this plaintext to mi ∈ Ri

ti , which

extracts the relevant n′′ slots. To this end, we define the “mask” ai ∈ Ri−1
ti

that encodes ‘1’ in the first half and ‘0’ in the second half of the slot-vector.
Then we homomorphically evaluate the function

GBFV.SubPermutei : µi 7→ ai · µi + σgi((1− ai) · µi).

– Finally, we compute mi by taking the trace of Ri−1/Ri.

3 This operation corresponds to a field norm from the smallest cyclotomic ring T i−1

that contains ti−1, to its largest cyclotomic subring T i ⊊ T i−1.



10 R. Geelen and F. Vercauteren

These steps are summarized in Algorithm 1.

Apart from mapping to a subring, each iteration also applies the permutation
shiftn′′,1 to the slot-vector, which accumulates to shiftn′′,ℓ in total. This can be
seen as follows:

– ModUp doubles the size of the slot-vector, and as a result, also doubles the
index of each plaintext slot.

– SubPermute maps all slots in the second half from index j to index j + 1.

– The trace divides all slots in pairs and maps the slots in the second half from
index j to j − n′′.

These steps result in

shiftn′′,1(j) =

{
2j if j < n′′/2

2j − n′′ + 1 if j ≥ n′′/2.

This implements the aforementioned permutation, i.e. a circular bit shift to the
left with one position.

We visualize the proposed transformation on the plaintext slots in Figure 1.
The empty boxes are slots that are currently not in use. Each step permutes the
order of the plaintext slots with a circular bit shift, and then maps to a smaller
cyclotomic ring via the trace.

Few Plaintext Slots. If n′′ ≤ n′/n′′, then the above method can be optimized by
skipping some iterations. Intuitively, this works because the number of GBFV
slots is relatively small, so we can map them to the BFV ring without passing
through all intermediate cyclotomic rings. The only changes are the following:

– The number of iterations is ℓ = log2(n
′′). The other steps, including compu-

tation of the automorphism indices from Equation (3), are unchanged.

– Since Rℓ ̸= R′′ and tℓ ̸= p, we post-process by converting the modulus to p
and taking the trace to R′′.

These steps are again summarized in Algorithm 1, and we visualize the transfor-
mation on the plaintext slots in Figure 2. No overall circular bit shift is applied,
because shiftn′′,ℓ is the identity permutation. Notably, our conversion algorithm
for few slots slightly violates the condition for an automorphism to be valid (i.e.
we have that σgi(ti) ̸= ti). However, as shown in Figure 2, the result is still well-
defined, because we ensure that the input plaintext is a multiple of σgi(ti−1). In
the implementation, it suffices to compute the “invalid” automorphism σgi by
temporarily switching to the BFV domain.

Interestingly, the conversion algorithm is least efficient if n′′ = n′/n′′ (i.e. if
the versions for many and few plaintext slots collide). In that case, the GBFV
encoding and the BFV encoding are exactly incompatible, which results in a
costly conversion algorithm.
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Optimizations. Algorithm 1 has multiplicative depth ℓ. One optimization that
reduces the depth is merging multiple (or even all) iterations by skipping some
intermediate rings of the form Ri

ti . To enable this optimization, the SubPermute
operation must be implemented using a larger linear transformation, having 2j

terms when j levels are merged. This strategy is reminiscent of level-collapsing
in homomorphic FFT evaluation [7].

Another improvement is merging the level of ModUp into SubPermute. More
specifically, we can implement ModUp as a multiplication with a constant. This
constant can be folded in the subsequent or previous linear transformation by
adapting the definition of ai. This improvement is not possible if there is just a
single slot (i.e. when we have n′′ = 1), because there are zero iterations in that
case. However, in the bootstrapping application, we can still fold our constant
into the adapted digit removal polynomial, even if we have only a single slot.

Algorithm 1 Homomorphic subring conversion

Require: ct0 that encrypts m0 ∈ R′
t

Ensure: ctℓ that encrypts mℓ ∈ R′′
p , encoding the same slots as m0

1: function GBFV.SubConvert(ct0)
2: ℓ← min(log2(n

′′), log2(n
′/n′′)) ▷ Number of iterations

3: for i← 1 to ℓ do
4: cti ← ModUp(cti−1, ti)
5: cti ← SubPermutei(cti)
6: cti ← TrRi−1/Ri(cti)
7: end for
8: ctℓ ← TrRℓ/R′′(ModUp(ctℓ, p)) ▷ Void if n′′ ≥ n′/n′′

9: return ctℓ
10: end function

Homomorphic Extension Ring Conversion. Our bootstrapping algorithm
also requires the inverse operation of subring conversion: converting back to the
original extension ring. Algorithm 2 specifies our extension ring conversion. A
notable difference is that extension ring conversion is defined in characteristic p2.
Specifically, it maps an element from R′′

p2 to the isomorphic ring R′
t2 .

The basic idea of Algorithm 2 is to run all iterations of subring conversion in
reverse order, using the inverse operations. The only exception is the trace: this
function has no inverse, so instead we implicitly reinterpret anRℓ−i+1-encryption
as an Rℓ−i-encryption in iteration i. The inverse of SubPermutei is

GBFV.ExtPermutei : µi 7→ ai · µi + (1− ai) · σ−1
gi (µi),

where we use the same ai as previously, but lifted to Ri−1
t2i

.

The previous optimizations also apply here. In particular, we can implement
ModDown as a constant multiplication, similarly to ModUp. This multiplication
can be merged with ExtPermute.
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Algorithm 2 Homomorphic extension ring conversion

Require: ct0 that encrypts m0 ∈ R′′
p2

Ensure: ctℓ that encrypts mℓ ∈ R′
t2 , encoding the same slots as m0

1: function GBFV.ExtConvert(ct0)
2: ℓ← min(log2(n

′′), log2(n
′/n′′)) ▷ Number of iterations

3: for i← 1 to ℓ do
4: cti ← ExtPermuteℓ−i+1(cti−1)
5: cti ← ModDown(cti, t

2
ℓ−i)

6: end for
7: return ctℓ
8: end function

3.3 Improved Noisy Expansion

Algorithm 3 specifies our improved noisy expansion. In contrast to the original
definition of noisy expansion [17], we explicitly incorporate the conversion from
GBFV to BFV within the algorithm. It consists of the following steps:

– Multiply the slot-vector of the input ciphertext by an adapted NTT matrix.
Let U ∈ Fn′′×n′′

p be the usual NTT matrix [16,23], and furthermore consider
the permutation matrix P that implements shiftn′′,ℓ. We define the adapted
NTT matrix as V = P−1UP (i.e. a simple change of basis) and homomor-
phically multiply the slot-vector by V . We apply the same level-collapsing
decomposition as the previous works [16,23], but in the basis determined
by P . Alternatively, this can be understood as evaluating the same transfor-
mation on a permuted slot-vector.

– Convert the resulting GBFV ciphertext to BFV with our new algorithm. A
side effect of this step is multiplication by P , so the full transformation thus
far is PV = UP .

– Refresh the ciphertext using InProd and take the trace to R′′, which removes
the redundant coefficients.

– Convert the resulting ciphertext back to the extension ring.
– Homomorphically multiply the slot-vector by ((n/n′′)·V )−1, which is defined

over Zn′′×n′′

p2 . This step also compensates for the additional factor of (n/n′′)

in the trace (cf. Equation (2)).

Similarly to how we apply level-collapsing within multiplication by V , and within
SubConvert, we can also apply level-collapsing by mixing these building blocks.
Specifically, these building blocks boil down to linear transformations, and we can
save multiplicative levels by composing multiple of them. For this optimization to
work, we need to move the first occurrence of ModUp right before the composed
linear transformation.

3.4 Our Bootstrapping Algorithm

We summarize our improved bootstrapping in Algorithm 4. First, it applies noisy
expansion to the input ciphertext. Then it removes the additional noise terms
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Algorithm 3 Noisy expansion

Require: ct that encrypts m ∈ R′
t

Ensure: ctexp that encrypts mexp ∈ R′
t2 , encoding a noisy version of the slots of m

1: function GBFV.NoisyExpand(ct)
2: ctlt ← V · ct ▷ Adapted SlotToCoeff
3: ctsub ← SubConvert(ctlt)
4: ctfresh ← TrR/R′′(InProd(ctsub))
5: ctext ← ExtConvert(ctfresh)
6: ctexp ← ((n/n′′) · V )−1 · ctext ▷ Adapted CoeffToSlot
7: return ctexp
8: end function

by applying a slot-wise digit removal polynomial. Finally, the result is converted
back to modulus t with a homomorphic division.

Our bootstrapping uses the digit removal procedure from Ma et al. [22]. More
specifically, we use their algorithm over Zp2 (not their alternative algorithm over
the finite field Fp because it is usually less efficient). We refer to the appendix
of [16] for a simplified computation of the polynomial H(x). Similarly to the
previous work [17], we post-process by multiplying with (p/t)−1 (mod t). In an
implementation, this factor can be folded in the coefficients of H(x).

Algorithm 4 Bootstrapping

Require: ct that encrypts m ∈ R′
t

Ensure: ctboot that encrypts m ∈ R′
t with less noise

1: function GBFV.Bootstrap(ct)
2: ctexp ← NoisyExpand(ct)
3: ctrem ← Mul(H(ctexp), (p/t)

−1) ▷ Adapted digit removal
4: ctboot ← Divide(ctrem, t) ▷ Mere reinterpretation
5: return ctboot
6: end function

3.5 Complexity Analysis

Neglecting the field trace (which can be evaluated in logarithmic time and with-
out level consumption), noisy expansion consists of an equally expensive forward
and inverse transformation. As such, it suffices to study the forward transfor-
mation (i.e. multiplication with the adapted SlotToCoeff matrix V in conjunc-
tion with SubConvert). In fully decomposed format, multiplication by V requires
log2(n

′′) iterations [16,23]. Each iteration is a linear transformation that can be
implemented using 2 (or sometimes 1) automorphisms and 3 (or sometimes 2)
plaintext-ciphertext multiplications. Furthermore, our SubConvert algorithm has
ℓ = min(log2(n

′′), log2(n
′/n′′)) iterations, each of which needs 1 automorphism

and 2 plaintext-ciphertext multiplications.
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As mentioned previously, we do not need to fully decompose the above trans-
formation, and we can apply level-collapsing in each phase. In short, we choose
decomposition parameters ℓ1, . . . , ℓs such that ℓ1+ . . .+ ℓs = ℓ+ log2(n

′′). Then
we merge the first ℓ1 iterations in a first stage, the next ℓ2 iterations in a second
stage, and so on. Each stage consumes one multiplicative level, and it requires
O(2ℓi/2) automorphisms and O(2ℓi) plaintext-ciphertext multiplications using
the baby-step/giant-step algorithm.

We believe that the most useful parameter sets in practice will be those with
many slots (i.e. having n′/n′′ ≥ n′′). In that case, the total number of iterations
is log2(n

′). This is the same as in the previous method [17], so our method does
not improve the time complexity under the same decomposition parameters.
Instead, the improvement is in terms of noise growth: the last stage typically
covers the entire SubConvert algorithm, and SlotToCoeff is implemented in the
other s − 1 stages. Therefore, the first s − 1 stages can be fully evaluated in
GBFV, which incurs less noise growth than BFV. Because of the reduced noise
growth, we can afford to decompose the linear transformation into more stages
than the previous work. This does slightly increase the noise growth again, but
it reduces the execution time. In particular, the previous work [17] decomposed
in a very limited number of s = 2 stages for ring dimension n = 214, whereas we
will also explore 3-stage and 4-stage decompositions.

In the end, the complexity of our algorithm (expressed as number of basic
FHE operations), only depends on n′ and n′′, but is independent of the R-LWE
ring dimension n. In particular, for a constant number of slots n′′, the cheapest
transformation is achieved when n′ = n′′. This special case coincides with the
regular BFV scheme. When working in the GBFV scheme, the method needs
more iterations because of SubConvert. It therefore becomes more expensive in
execution time, but consumes less noise budget depending on the ratio n′/n′′.

4 Homomorphic Edit Distance

This section presents an algorithm to homomorphically compute the edit dis-
tance, more precisely the Levenshtein distance, leveraging our improved GBFV
bootstrapping. Given two input strings a,b, the Levenshtein distance ∆(a,b)
is the minimal number of operations needed to transform the first input string
into the second. The Levenshtein distance considers three operations: insertion,
deletion and substitution. Each operation is considered to have unit cost.

4.1 Algorithmic Variants

Wagner-Fisher. As in previous works [13,21] on homomorphic edit distance,
the starting point of our algorithm is the Wagner-Fisher [28] algorithm. Given
two input strings

a = a1 . . . an and b = b1 . . . bm,

this algorithm computes an (n + 1) × (m + 1) distance matrix D which equals
D[i, j] = ∆(a[1 : i],b[1 : j]) for 0 ≤ i ≤ n and 0 ≤ j ≤ m, where a[1 : 0] and
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b[1 : 0] are defined as the empty string. The first row thus satisfies D[0, j] = j
as well as D[i, 0] = i for the first column. Since each operation has unit cost, we
can compute D[i, j] for i, j > 0 as

D[i, j] =

{
D[i− 1, j − 1] if ai = bj

1 + min(D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]) otherwise,
(4)

where by definition D[i, j] = 0 for i, j < 0. The value D[n,m] will then contain
the actual Levenshtein distance. The definition of D[i, j] already hints that an
anti-diagonal approach is most natural, since the k-th anti-diagonal only depends
on the (k − 1) and (k − 2)-th anti-diagonals.

To compute the above homomorphically, we thus need an efficient equality
test and an efficient method to compute the minimum of three values. Note that
the equality test is only computed on freshly encrypted ciphertexts, whereas the
minimum function is not. Since the Levenshtein distance is limited to n+m, we
know that the inputs to the minimum function are bounded by this value. How-
ever, computing such minimum is still very expensive homomorphically, which
is why we switch to the Myers variant of the Wagner-Fischer algorithm.

Myers. The Myers [25] variant differs from Wagner-Fischer in that it computes
an (n+1)×m matrix H and an n× (m+1) matrix V containing the differences
between horizontal and vertical values in D, so in particular

H[i, j] = D[i, j]−D[i, j − 1] and V [i, j] = D[i, j]−D[i− 1, j].

The first row of H and the first column of V contain all 1’s. By substituting how
the values of D[i, j] are defined in Equation (4), we can compute the difference
matrices H and V for 0 < i ≤ n and 0 < j ≤ m as

H[i, j] = 1− V [i, j − 1] + min(−δi,j , V [i, j − 1], H[i− 1, j])

V [i, j] = 1−H[i− 1, j] + min(−δi,j , V [i, j − 1], H[i− 1, j]),

where δi,j = 1 if ai = bj and δi,j = 0 otherwise. The Levenshtein distance can
then be recovered by computing the sum of the entries in H and V that lie on
any path from index (0, 0) to index (n− 1,m− 1), e.g. one could first compute
the sum of the first row of H and then add the sum of the last column of V .
Furthermore, since the first row consists of all 1’s, the Levenshtein distance can
be recovered as

∆(a,b) = m+

n∑
i=1

V [i,m].

Although the Myers algorithm computes two matrices instead of only one
in Wagner-Fischer, the non-linear part, i.e. min(−δi,j , V [i, j − 1], H[i − 1, j]),
is common for both approaches. As such, the number of non-linear functions to
compute is identical to Wagner-Fischer. Furthermore, the main advantage of the
above approach compared to Wagner-Fischer is that we only need to evaluate
the minimum function on the restricted domain S = {−1, 0} × {−1, 0, 1}2.
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Figure 3 shows an edit distance computation between the acronyms “FHE”
and “HFE”, similar to the visualization of Legiest et al. [21]. Our figure shows
both the absolute distance matrix D (used in the Wagner-Fischer algorithm),
and the horizontal and vertical difference matrices H and V (used in the Myers
variant). The edit distance ∆(FHE,HFE) = 2 is obtained in the bottom right.
That is, one word can be transformed into the other via two substitutions, or
via one insertion and one deletion.
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Fig. 3. Example edit distance computation between FHE and HFE

Homomorphic edit distance computation. Since we work with a finite field
of odd characteristic, we can represent the minimum function min(x, y, z) on S
by the following polynomial expression: set h(t) = (1− t) · t, then define

g(x, y, z) = x+ ((1 + x)/4) · (2h(y) + 2h(z) + h(y) · h(z)) for x, y, z ∈ S.

One can easily check that g(x, y, z) = min(x, y, z) on the domain S. Moreover,
it is clear that g can be computed with a depth-3 circuit.

Assuming the characters belong to an alphabet A, we will simply encode
these as the set {0, . . . , |A|− 1}. Of course this requires that the plaintext space
can represent this set. In our application, we use p = 216 +1, which allows us to
even represent 2-byte encodings, e.g. UTF-16. The complexity of the equality test
directly depends on the size of A. That is, using our encoding we can compute
δi,j by first computing zi,j = (ai − bj)

2, which can only take |A| values, namely
k2 mod p for k = 0, . . . , |A| − 1. Let e(x) denote the polynomial that maps all
these values to 0, except 0 which is mapped to 1, then it is clear that δi,j = e(zi,j).
The total degree is 2(|A|− 1), so the equality test has depth 1+ ⌈log2(|A|)⌉. For
the standard ASCII encoding which uses 7 bits, we obtain depth 8. If we use
the full domain Fp, the equality test simply becomes 1− (ai − bj)

p−1 because of
Fermat’s little theorem.
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Using the minimum and equality subroutines, we can formulate the homo-
morphic edit distance algorithm. For simplicity, we assume that m = n and that
our GBFV instance can encode up to d slots. In practice, we take p = 216 + 1
and d = 4096 for a ring dimension of n = 214.

The main use case of edit distance computation is that one encrypted input
string b = b1 . . . bm needs to be compared with a (typically large) number N of
encrypted input strings a(i). Since the GBFV instance can manipulate vectors
of length d, and the intermediate values in the computation consist of m values
per edit distance, we will be able to process d/m edit distance computations in
parallel, where m is a power of two. By repeating this routine ⌈Nm/d⌉ times,
we can process N strings. To simplify notation, we will specify the algorithm for
a single distance computation between a and b. The parallel version is similar,
where the only difference is that d/m vectors of length m are packed in a single
ciphertext. Specifically, our implementation uses an “interleaved” packing where
multiple vectors are merged, so that their circular rotations do not interfere.

From the definition of the matrices H and V , we see that (like the Wagner-
Fischer algorithm), it is possible to compute them in an anti-diagonal manner.
In the k-th step we will therefore compute the k-th anti-diagonal of the matrices
H and V . These anti-diagonals are packed in a single ciphertext ctH (resp. ctV )
which in the k-th step (for k ≤ m) of the algorithm contains the length-m vector

[H[0, k], . . . ,H[k − 1, 1], 0, . . . 0],

and similarly for ctV .
For k > m, the anti-diagonals shrink in size and the ciphertext ctH contains

the length-m vector

[H[k −m,m], . . . ,H[m, k −m], 0, . . . , 0].

The actual algorithm does not explicitly put the last components of the above
vector to zero (they may contain garbage values), but the first components will
match. This saves unnecessary masking operations.

The only data that are still missing are the δi,j . Since these are also needed in
the same anti-diagonal order, and we want to compute them in the slots, we first
duplicate the entries of a to obtain M = ⌈m2/d⌉ ciphertexts (or up to M = m
ciphertexts in the parallel version) containing the m2 values

a1 | a1, a2 | a1, a2, a3 | · · · | am−1, am | am,

where | separates subblocks (this is just for sake of clarity). We use a similar
encoding for b, but with subblocks in reverse order:

b1 | b2, b1 | b3, b2, b1 | · · · | bm, bm−1 | bm.

This can be derived using (2m−1) maskings and (2m−2) shifts for the vector a
if the result fits in a single ciphertext (and somewhat more masking operations
otherwise). For b, we first need to reverse the order of the characters, which can
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be done using m maskings and m shifts, and then we proceed similar to a. Since
the expansion operation for b is slightly more costly, it makes sense to use the
fixed input ciphertext as the second argument in all edit distance computations,
because we then only have to compute the above vector once.

By computing the difference of these M ciphertext pairs, squaring and eval-
uating the polynomial e(x), we end up with M ciphertexts containing the δi,j in
the order in which they are needed. This function is called PrecompDeltas(cta, ctb).
Finally, we can now formulate the whole homomorphic edit distance computation
in Algorithm 5. This function uses the following GBFV subroutines:

– Enc: encryption.
– ⊕,⊖ and ⊗: shorthand for GBFV.Add, GBFV.Sub and GBFV.Mul.
– ShiftRight and ShiftLeft: circular shift to the right/left by 1 position, which

requires a single automorphism.
– Eval(g, [ct1, . . . , ctk]): evaluates multivariate polynomial g on [ct1, . . . , ctk].
– ExtractMinusDelta(C, k): extracts −δi,j with i+ j = k from the precomputed

values in C. This requires one masking and one shift when these are contained
in a single ciphertext, otherwise two maskings and two shifts.

The algorithm consists of two main loops: one for the top-left and one for the
bottom-right differences. We use a temporary variable ctT that holds the partial
result for ctH in the first loop and for ctV in the second loop. This is in order
not to overwrite the previous value of ctH (resp. ctV ), which is still used on the
subsequent line.

4.2 Complexity Analysis

The complexity and number of levels now follow from the description given in
Algorithm 5. Precomputing and extracting δi,j requires depth ⌈log2(|A|)⌉ + 3.
Each evaluation of the polynomial g requires depth 3, so the total depth for all
evaluations of g is 6m− 3. The final masking has depth 1, but note that it can
also be omitted (in that case, the other slots just contain garbage). Algorithm 5
on input strings of length m from an alphabet A thus requires depth

⌈log2(|A|)⌉+ 6m+ 1.

The evaluation of g is the only subroutine in our algorithm that accumulates
multiplicative noise growth. As a consequence, it suffices to bootstrap ctmin every
iteration, or to bootstrap ctH and ctV once in L iterations, where L is defined
as the ratio of the remaining noise budget after bootstrapping, to the consumed
noise budget in one evaluation of g.

In the first and last quarter of the iterations, less than half of the plaintext
vector contains useful data. Therefore, if we take the strategy of bootstrapping
both ctH and ctV , we can combine them in a single ciphertext such that only one
bootstrapping per iteration is required. This combination requires extra masking
operations, but those can be folded for free in the computation of g. The time
complexity for all operations is summarized in Table 1.
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Algorithm 5 Homomorphic edit distance

Require: cta, ctb that encrypt input strings a and b of length m
Ensure: ctacc that encrypts Levenshtein edit distance in its first slot
1: function EditDistance(cta, ctb)
2: ctH , ctV ← Enc([1, 0, . . . , 0]) ▷ Length-m vectors
3: ctacc = Enc([m, 0, . . . , 0]) ▷ Accumulator for result
4: C = (ct1, . . . , ctM )← PrecompDeltas(cta, ctb)
5: for k ← 2 to m do
6: ct−δ ← ExtractMinusDelta(C, k)
7: ctmin ← Eval(g, [ct−δ, ctH , ctV ]) ▷ Minimum using polynomial g
8: ctT ← [1, 1, . . . , 0]⊖ ctV ⊕ ctmin ▷ First k − 1 entries are 1’s
9: ctV ← [1, 1, . . . , 0]⊖ ctH ⊕ ctmin ▷ First k entries are 1’s
10: ctH ← ShiftRight(ctT )⊕ [1, 0, . . . , 0] ▷ Set H[1] = 1
11: end for
12: for k ← m+ 1 to 2m do
13: ct−δ ← ExtractMinusDelta(C, k)
14: ctmin ← Eval(g, [ct−δ, ctH , ctV ]) ▷ Minimum using polynomial g
15: ctT ← [1, 1, . . . , 0]⊖ ctH ⊕ ctmin ▷ First 2m− k + 1 entries are 1’s
16: ctH ← [1, 1, . . . , 0]⊖ ctV ⊕ ctmin ▷ First 2m− k entries are 1’s
17: ctV ← ShiftLeft(ctT )
18: ctacc ← ctacc ⊕ ctT
19: end for
20: return ctacc ⊗ [1, 0, . . . , 0] ▷ First entry contains actual distance
21: end function

5 Evaluation

5.1 Implementation

We implemented our new bootstrapping and the edit distance application in
the SEAL FHE library [27]. All experiments below were performed on a 14-core
M4 Pro machine with 64 GB RAM, and in a single thread. We take the same
bootstrapping parameters as the previous work [17]: ring dimension n = 214,
ciphertext modulus q ≈ 2420, noise cut-off parameter B = 15 for digit removal,
a ternary secret key distribution with Hamming weight h = 256, and h̃ = 32
for sparse secret encapsulation. This results in a security level of 128 bits. The
baselines were re-evaluated because we use a different CPU than [17].

Table 1. Complexity of homomorphic edit distance computation for input length m,
alphabetA, duplication sizeM , and L evaluations of g between between bootstrappings

PT × CT 9m+M |A|
CT × CT 8m+ 2M

√
|A|

Automorphisms 9m
Bootstrappings min(3/L, 2) · (m− 1)
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Table 2. Comparison to the baseline [17] with n = n′ = 214, n′′ = 210 and p = 216 +1

Bootstrapping algorithm Baseline Ours Ours Ours
Number of stages s 2 2 3 4

Noise (bits)

Initial 317 317 317 317
Noisy expansion 111 81 96 110
Digit removal 82 82 82 82
Remaining 124 154 139 125

Execution
time (sec)

Noisy expansion 0.95 1.16 0.61 0.47
Digit removal 0.34 0.34 0.34 0.34
Total 1.29 1.50 0.95 0.81

Table 3. Comparison to the baseline [17] with n = n′ = 214, n′′ = 212 and p = 216 +1

Bootstrapping algorithm Baseline Ours Ours Ours
Number of stages s 2 2 3 4

Noise (bits)

Initial 317 317 317 317
Noisy expansion 114 88 111 134
Digit removal 113 113 113 113
Remaining 90 116 93 70

Execution
time (sec)

Noisy expansion 0.95 1.16 0.66 0.57
Digit removal 0.35 0.35 0.35 0.35
Total 1.30 1.51 1.01 0.92

Bootstrapping. Table 2 and Table 3 compare our new GBFV bootstrapping
with the results from [17]. These GBFV parameter sets have 1024 and 4096 slots
respectively, corresponding to 11 and 14 bits of multiplication noise. Due to the
high noise growth of noisy expansion, the baseline algorithm decomposed the
SlotToCoeff and CoeffToSlot transformations into a very limited number of only
two stages. In contrast, we can decompose in more stages, while still having a
comparable noise growth. For example, the four-stage decomposition of Table 2
has approximately the same remaining noise budget as the baseline, but the
execution time is only 0.81 seconds instead of 1.29 seconds. On the other hand,
if we decompose in two stages, our algorithm is 0.21 seconds slower than the
baseline, but we have 30 bits extra remaining noise budget.

Table 4 shows experimental results for our new bootstrapping under a varying
number of slots and stages. When there is only a single slot, we can bootstrap
extremely fast and noisy expansion consumes almost no levels. In applications
with a larger number of slots (such as encrypted edit distance), bootstrapping
is slower and consumes more noise. However, amortizing the execution time and
remaining noise capacity over all slots, the best performance is reached in the
last column with 4096 slots.

Encrypted Edit Distance. Table 5 contains timings for the homomorphic
edit distance application. We use the same parameter set as the third column
of Table 3, which results in the best amortized performance. In particular, this
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Table 4. Results for varying number of slots with n = 214, n′/n′′ = 22 and p = 216+1

Number of slots n′′ 1 16 256 4096
Number of stages s 0 1 2 3

Noise (bits)

Initial 317 317 317 317
Noisy expansion 38 58 78 111
Digit removal 109 109 112 113
Remaining 170 150 127 93

Execution
time (sec)

Noisy expansion 0.14 0.35 0.53 0.66
Digit removal 0.35 0.35 0.35 0.35
Total 0.49 0.70 0.88 1.01

parameter set has 93 remaining bits, which allows L = 2 evaluations of g between
two bootstrappings. We use the variant of our algorithm that bootstraps both
ctH and ctV every L iterations, which is the best strategy for L ≥ 2. This table
also compares to the TFHE-based Leuvenshtein [21] method for homomorphic
edit distance computation. The numbers of Leuvenshtein are copied from their
paper, where they used a dual AMD EPYC 9174F 16-core CPU. To allow a fair
comparison, we use the same values of m, except for the second test since we
are restricted to powers of two. We also use the same 7-bit ASCII alphabet.

The table indicates results for the parallel version of our algorithm. For all
benchmarks, we compute the edit distance for a full batch of d/m strings. This
setting utilizes the packing capability of GBFV to its maximum extent. More-
over, it results in M = m, meaning that the precomputation of δi,j can be stored
in m intermediate ciphertexts.

Our amortized performance is up to 79× better than Leuvenshtein. This is a
result of the parallel nature of GBFV, which allows us to process multiple edit
distance computations in the same ciphertext. In terms of latency, Leuvenshtein
is faster than our method for a small number of m = 8 characters. However,
we are still relatively close to their performance (the slowdown is a factor of 6)
thanks to the very small bootstrapping latency of GBFV. For a larger number
of m = 128 or even m = 256 characters, we do beat their latency because each
ciphertext holds longer (but fewer) input strings. Most of the computation time
is used by bootstrapping in our algorithm. The other operations only account
for roughly 37% of the total computation time.

5.2 Comparison to Other Works

Bootstrapping GBFV with CKKS. A recent work from Kim [20] investi-
gates alternative methods to bootstrap GBFV, but in a different setting. Specifi-
cally, this method can bootstrap a wider range of parameters (notably including
the CLPX scheme), but this comes with two disadvantages: the ring dimension
is 4 times higher, which leads to 20 times slower results, and the denoising fac-
tor is tightly coupled to the precision of CKKS bootstrapping. Therefore, Kim’s
method is most useful in settings of extremely high-precision arithmetic such
as the CLPX scheme. That scheme cannot be bootstrapped using our method,
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Table 5. Timings (sec) for edit distance and comparison to Leuvenshtein (LVS)

Algorithm LVS LVS LVS Ours Ours Ours
String size m 8 100 256 8 128 256
Batch size d/m − − − 512 32 16

Equality tests − − − 5.10 82 167
Bootstrappings − − − 11.1 193 387
Other operations − − − 1.50 26 57

Total latency 2.83 439 2903 17.7 301 611
Amortized time 2.83 439 2903 0.036 9.41 38.2

Speedup − − − 79× − 76×

because we convert to regular BFV. However, for moderately sized moduli such
as the Fermat prime p = 216 + 1, our method is preferred.

RMFE-Based BGV Bootstrapping. A recent work [2] improved BGV boot-
strapping in small characteristic using a reverse multiplication-friendly embed-
ding (RMFE). Compared to our bootstrapping, this is still an order or mag-
nitude slower because of the larger ring dimension, and the number of slots in
their method is quite restrictive (typically not more than a hundred). On the
other hand, they do natively support small-characteristic fields. However, large-
characteristic fields may suffice for many FHE applications (such as encrypted
edit distance calculation) because any desired functionality can be interpolated
over a given finite field.

Multiple Precision CKKS. Cheon et al. [9] proposed a Mult2 algorithm that
multiplies two CKKS ciphertexts with asymptotically twice the cost but half the
modulus consumption of a normal multiplication. This is enabled via a new pair
representation by breaking each ciphertext in two components. A quantitative
comparison is difficult because of the approximate nature of CKKS, so instead
we qualitatively compare GBFV bootstrapping to their Mult2 algorithm.

Our improved GBFV bootstrapping is much closer to the Mult2 method than
the original GBFV bootstrapping. Specifically, all our bootstrapping components
(except for InProd) can be evaluated in the GBFV scheme, similarly to how
all CKKS bootstrapping components (except for ModRaise) can be evaluated in
pair representation of ciphertexts. Similarly, both techniques reduce the modulus
consumption by exploiting the underlying high precision, but they cannot reduce
the contribution inherent to the ring dimension and secret key distribution.

We argue that we can reduce the asymptotic latency of GBFV bootstrapping
even more than CKKS bootstrapping in pair representation. If n′ = 2n′′, then
the modulus consumption of GBFV is roughly half that of regular BFV. In that
case, we can scale down both the ring dimension and bit-width of the ciphertext
modulus by a factor of 2, resulting in 4 times lower latency. The same trick is
applicable to CKKS bootstrapping, but in the end its latency can only be halved,
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because Mult2 is roughly twice as expensive as a regular Mult. Neither work can
asymptotically improve the throughput because of the reduced number of slots.

Finally, we note that CKKS tuple multiplication (i.e. Multt instead of Mult2)
involves a quadratic number of O(t2) tensorings. For large t, we therefore expect
tensoring to dominate in execution time over relinearization, which will saturate
their latency reduction at a certain point. This is not the case in our algorithm.

Low-Latency CKKS Bootstrapping. Cheon et al. [11] recently proposed a
low-latency CKKS bootstrapping algorithm called SHIP, which is designed for
parallel computing environments. SHIP can bootstrap in ring dimension n = 213

(half that of our experiments), which results in a latency of around 0.2 seconds
for 4096 slots. However, this parameter set has only one remaining multiplicative
level, supports limited precision (1 to 5 bits) and uses more computing resources
(a 32-core machine) compared to GBFV. Concurrently, Coron and Köstler [14]
showed how to reduce the latency of CKKS bootstrapping by using complex
roots of unity, but they focus on settings with a limited number of slots. A fully
fair comparison to these works is not possible because they use CKKS encoding.

6 Conclusion

We improved the bootstrapping performance of GBFV to only a single second.
We also showed its advantage over TFHE in homomorphic edit distance compu-
tation - an application that requires moderate packing density. Interesting future
work is to integrate our bootstrapping in all state-of-the-art libraries [26,24,3,19]
and to apply it in more FHE applications.
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