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Abstract. Differential Fault Attacks (DFAs) have recently emerged as
a significant threat against stream ciphers specifically designed for Hy-
brid Homomorphic Encryption (HHE). In this work, we propose DFAs on
the FRAST cipher, which is a cipher specifically tailored for Torus-based
Fully Homomorphic Encryption (TFHE). The round function of FRAST
employs random S-boxes to minimize the number of rounds, and can
be efficiently evaluated in TFHE. With our specific key recovery strat-
egy, we can mount the DFA with a few faults. Under the assumption of
precise fault injection, our DFA can recover the key within one second
using just 4 or 6 faults. When discarding the assumption and consider-
ing a more practical fault model, we can still achieve key recovery in a
few minutes without increasing the number of faults. To the best of our
knowledge, this is the first third-party cryptanalysis on FRAST. We also
explored countermeasures to protect FRAST. Our analysis revealed that
negacyclic S-boxes, a key component of TFHE-friendly ciphers, are un-
suitable for incorporating linear structures to resist DFA. Consequently,
we recommend removing the negacyclic restriction in the penultimate
round of FRAST and introducing non-zero linear structures into the
S-boxes of the last two rounds. We believe that our work will provide
valuable insights for the design of TFHE-friendly ciphers.

Keywords: Differential Fault Attack - Hybrid Homomorphic Encryp-
tion - Torus-based Fully Homomorphic Encryption - FRAST.

1 Introduction

Homomorphic Encryption (HE), a crucial cryptographic tool for protecting sen-
sitive data in cloud computing, was first introduced by Rivest et al. [33] in 1978
and has been extensively studied since then. In traditional HE schemes, the bot-
tlenecks are the heavy communication overhead caused by ciphertext expansion
and the excessive computational burden on the client side. To address these
issues, the transciphering framework, also known as Hybrid Homomorphic En-
cryption (HHE), was proposed. In HHE, the client only needs to encrypt data
using a symmetric key cipher, and the server can then homomorphically decrypt
it to obtain the HE ciphertext of the original data. To further enhance the per-
formance of HHE, a wide range of HE-friendly ciphers have been developed over
the past decade, such as LowMC [2], Kreyvium [11], FLIP [28], and Rasta [17], etc.
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Torus-based Fully Homomorphic Encryption (TFHE), introduced by Chillotti
et al. [I2[13], boasts the fastest bootstrapping among Fully Homomorphic En-
cryption (FHE) schemes. A key feature of TFHE is its ability to homomorphi-
cally perform table lookup operations via Programmable Bootstrapping (PBS).
This feature removes the limitation of the algebraic simplicity of nonlinear lay-
ers, enabling the design of new TFHE-friendly ciphers such as Elisabeth [16] and
its patches [20], FRAST [15], and Transistor [7]. Proposed by Cho et al. at ToSC
2024, FRAST employs an effective unbalanced Feistel structure and uses random
S-boxes in its round function. Compared to Kreyvium (resp. Elisabeth), FRAST
achieves 2.768 (resp. 10.57) times higher throughput for TFHE keystream eval-
uation in the offline phase of the transciphering framework.

Despite their outstanding performance in HHE application, the novel and
aggressive design strategies make HHE-friendly ciphers vulnerable to specific at-
tacks, such as Differential Fault Attacks (DFA). DFA is a powerful cryptanalysis
tool first proposed by Boneh et al. [9] in 1997. Unlike traditional cryptanalysis
techniques, DFA can bypass the block-box assumption and exploit the cipher’s
weakness in the physical implementation. DFAs are often tailored to specific
cryptographic primitives, requiring intricate knowledge of their structure and
state propagation. Since its birth, DFA has been widely applied to analyze sym-
metric key ciphers such as AES [31U39124], Trivium [2I], and others [43127I26125].

Recent advancements in DFA research have extended its scope to HHE-
friendly symmetric key ciphers. Roy et al. [35] pioneered the first DFA on
Kreyvium and FLIP, later followed by Radheshwar et al. [32] targeting RASTA
and FiLIP-DSM. Subsequent studies have expanded to attacks on RAIN and
HERA [23], FLIP and FiLIP [29]. Most recently, Aikata et al. [I] introduced the
SASTA-DFA framework, enabling DFA through high-level protocols and success-
fully applying it to Rubato, HERA, Pasta and Masta. Although TFHE-friendly
ciphers have only been proposed recently, there has already been some related
DFA research. Wang et al. [42] proposed a DFA on Elisabeth with a merge-
and-intersect procedure. This attack was later optimized and generalized to a
broad sub-family of ciphers following the group filter permutator paradigm, and
subsequently applied to the patched versions of Elisabeth [41].

Since the introduction of DFA, how to protect ciphers against DFA has be-
come a significant topic in cryptography. Common DFA countermeasures can be
broadly categorized into four types: prevention, detection, infection and cipher-
level protection. The first three approaches often lie outside the domain of cipher
design, leaning more towards engineering-level solutions. Among these, the fault
detection mechanisms based on error correction codes have gained consider-
able attention, with notable examples including CRAFT [8] and FRIET [40]. At
ASTACRYPT 2021, Baksi et al. [5] proposed the first cipher-level DFA counter-
measure, using linear structures in S-boxes to ensure exponential DFA search
complexity. As a result, they introduced DEFAULT, a DFA-resistant cipher. Al-
though DEFAULT was later broken by information-combined DFA [30/22], the
attack required a strong fault model and a large number of faults. Hence, in-
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troducing linear structures in S-boxes remains a promising countermeasure in
practical applications.

1.1 Our contributions and Organization of the Article

In this work, we analyze the security of the TFHE-friendly cipher FRAST against
DFA under nibble fault model. We successfully mounted DFAs on FRAST with
a few number of faults and discussed potential improvements to enhance its
resistance against DFA. The main contributions of this paper are as follows:

— First, we investigate the propagation of single-nibble faults in one round
of the FRAST. The 1-round differentials are classified into two categories

(illustrated as Figure : faults occurring in the leftmost nibble (X{i)) and

faults occurring in other nibble (X g%) Using the first type of differentials,
we can significantly reduce the size of candidate round key set. Under the
assumption that the adversary can control the fault location, we propose the
first DFA against FRAST. By injecting 2 faults (resp. 3 faults) into rounds
39 and 40, we are able to recover the master key with a probability of 85.1%
(resp. 99.1%) in 0.27 s (resp. 3.49 s).

— Second, we discard the assumption of precise fault injection and consider a
more practical random fault model. In the case of random fault locations,
we increase the number of faults to obtain a sufficient number of first type
of differentials, leading to our second DFA. To reduce the number of faults,
we shift the fault injection one round earlier, increasing the effective fault

ratio from 3% to % Based on the new differential equations, we develop the
third DFA. By injecting 2 faults (resp. 3 faults) into rounds 38 and 49, we
are able to recover the master key with a probability of 52% (resp. 75.2%)
in 88.82 s (resp. 377.95 s).

— Finally, we explored how to improve FRAST to resist DFA. We focus on
DEFAULT-like countermeasures and provide the definition of linear struc-
tures over groups. We prove that if a negacyclic S-box possesses a non-zero
linear structure, it will degenerate into a binary function or a constant func-
tion (shown as Proposition . Hence, removing the negacyclic limitation
in the penultimate round and introducing non-zero linear structures into
the S-boxes of the last two rounds are the recommended countermeasures
for FRAST. Since negacyclic S-boxes are a critical component of TFHE-
friendly ciphers, this finding also provides valuable insights for designing
DFA-resistant TFHE-friendly ciphers.

The summary of our results is provided in Table [I We simulate DFAs using
Python 3.9, and all the experiments are conducted on our workstation (2x In-
tel(R) Xeon(R) 5220R CPUs with 24 cores, running Ubuntu 20.04). Our imple-
mentation codes are given in |Github repositoryl

The structure of the article is as follows. In Section 2] we introduce the nota-
tions, the background information of FRAST and DFA techniques. In Section
we analyze the 1-round differentials caused by a nibble fault, and present the
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Table 1: Our DFA results on FRAST.

. Injected Faults Average
. Precise Success
Cipher . Success Reference
Injection? | Numbers | Rounds Rate i
Time
(2,2) 85.1% 0.27 s
v (39,40) Section 3.2
(3,3) 99.1% 3.49 s
(96,96) 61.9% 1.44 s
FRAST (39,40) Section [A.1]
X (128,128) 81.9% 1.32s
(2,2) 52.0% 88.82 s )
(38,39) Section [£.2]
(3,3) 75.2% 37795 s

first DFA under the precise fault injection assumption. In Section [4] we dis-
card the assumption, give a naive extension from the first DFA, and reduce the
number of faults by injecting earlier. Some possible countermeasures that help
FRAST resist DFA are discussed in Section [5} Finally, we conclude the paper in
Section [Gl

2 Preliminaries

In this section, we will introduce the notations that will be utilized throughout
the paper. Following that, we will provide a description of FRAST cipher and a
simple introduction to DFA. The notations we used are listed as follows:

Gg4,F, denote a group a finite field with g elements respectively. Z, = Z/qZ.
|A] denotes the number of elements in the set A.

[a,b] denotes the set of integers {ila < i < j}.

+, — denotes the addition and subtraction of the integer.

U, N denote the union and intersection of the set respectively.

|| denotes the concatenation of two vectors.

RK denotes the ith-round key and RK" denotes the jth nibble of REK®.
X denotes the ith-round state and XJ(-i) denotes the jth nibble of X,
Moreover, X(zg denotes X,Ef), k € [2,32].

e B A o o

2.1 Description of FRAST cipher

FRAST is a TFHE-friendly stream cipher proposed at ToSC 2024 [I5]. The
FRAST cipher with 128-bit security takes a 256-bit key k € ZS$t and a 128-bit
nonce nc € {0,1}!2® as input, and outputs a 128-bit keystream block z € Z32.
The overall structure of FRAST is shown in Figure

The design of FRAST adopts the generalized Feistel structure. Its round func-
tion consists of a contracting round function and an expanding round function.
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Fig.1: The overall structure of FRAST in the counter mode, where ic =
(0,1,...,15,0,1,...,15) € Z32 is the input constant and z[ctr] is the keystream.
The ith-round is a fixed round (highlighted in red) if 4 is a multiple of 5, and a
random round otherwise.

In particular, for X € Z32, the ith-round function RF(®)(X®)) = X(+1) ¢ 732
(see Figure [2)) is defined as
XD = x4 s8(x(? + RES) for j € [2,32]

. A (1)
(z+1) Xl(z) + Séif( (i+1) +X§z+l) 4o +X§;+1) +RK£1)),

where Sér%, Scrf are the S-boxes over Zi5. The cipher employs two variants of
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Fig.2: The ith-round function of FRAST. For a random round, s Sérf are

erf?

generated by an extendable output function (XOF) with input nc| |ctr.

round functions: randomized and fixed. Both share the same structure illustrated
in Figure 2] differing only in their S-boxes. Specifically, FRAST repeats 4 random
round functions followed by 1 fixed round function.

The Serf and S ¢ in Tandom rounds are negacych and generated as follows:

the function value (Sérf( 0),. Sézf( 7)) and (ng( 0),... L5

crf

(7)) are sampled by

! For a negacyclic look-up table L over Z,, we have Vi € Z,, L(i + N) + L(i) = 0.
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the output from XOF with input nonce, and then the other function values
are determined by the negacyclic property of the S-boxes. For the fixed rounds,

FRAST use the same fixed S-box defined in Table |2| as Ség and Sg%
Table 2: The fixed S-box used in the fixed rounds of FRAST.
x o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(m) o 3 5 8 6 9 12 7 13 10 14 4 1 15 11 2

The round keys RK® for i = 1,2,...,40 are generated by multiplying the
master key k with 64 x 64 invertible matrices over Z¢. Specifically, the invertible
matrix M is derived via SHAKE256 using a public seed. For i = 1,2,...,20,
round keys RK (%=1 and RK(®" are defined by M'k = RK(?~D||RK(?)_ The
full key schedule is detailed in [I5]. The key schedule implies that if an attacker
obtains two consecutive round keys REK(**~1) and RK?", (s)he can recover the
master key directly by multiplying M ~! multiple times.

2.2 Differential Fault Attacks

The DFA was first introduced by Boneh et al. [9] at EUROCRYPT 1997. Sub-
sequently, Hoch and Shamir [I9] extended DFA to stream ciphers at CHES
2004. In recent years, significant progress has been made in adapting DFA to
HHE-friendly stream ciphers, demonstrating successful key recovery in multiple
implementations [3532123129424T].

During a DFA, the attacker is able to inject faults into the cipher’s internal
state, collect both correct and faulty outputs, and exploit these information to
recover the secret key. Fault injection can be achieved via physical means such
as laser shots, electromagnetic waves, unsupported voltage, etc. Generally, the
basic underlying assumptions of the DFA model are listed as follows:

— The attacker can repeatedly restart the cipher using the same key and other

public parameters (e.g., nonce and IV).

The attacker can inject faults at specific timings during the keystream gen-

eration phase and monitor both normal and faulty keystreams.

The attacker has the required tools for injecting faults.

— The number of injected faults must be kept minimal to prevent potential
damage to the device.

The fault model plays an important role in how DFA works and what results
it can achieve. The random word /nibble error model and the single bit flip model
are two commonly used fault models. In the first model, a random word /nibble
is added to an internal word/nibble of the cipher for the first model, while the
second model flips a single bit in the state. After the fault injection, the attacker
needs to identify the injected faults and recover the secret key with normal and
faulty keystreams.
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The nonce-based encryption scheme was formalized by Rogaway [34] and
was shown to provide better resistance against DFA. However, researchers later
found ways to bypass this protection. For example: nonce-misuse [38], nonce-
bypass [37], internal DFA [36]. Previously, most DFAs on nonce-based HHE-
friendly stream ciphers [3532I2329/42[4T] all used nonce repetition. Recently,
Aikata et al. [I] developed a new DFA framework called SASTA-DFA for HHE-
friendly ciphers, which avoids nonce repetition. In this work, we assume the
attacker can compute the difference between normal and faulty keystreams using
nonce repetition or SASTA-DFA.

3 DFA with a Strong Assumption

In this work, we apply the random nibble error model as our fault model, i.e.,
after the fault injection, a random nibble is added to an internal nibble of the
cipher. Due to the unbalanced Feistel network structure of FRAST, faults in-
jected into the nibble x; lead to distinct patterns compared to other nibbles
(as demonstrated in our later analysis), which critically impacts our DFA work-
flow. In this section, we assume the attacker can precisely control the location of
faulty nibbles. Such a fault model requires sophisticated physical fault injection
techniques but is still practical. Some examples using similar fault models with
high temporal resolution can be found in [14].

Consider an S-box operating over Z,. Given an input difference a and corre-
sponding output difference 8 — forming a differential trail &« — 5 — we define
the filtered input set as

A(S,0.8) = {z € Z,|S(x + a) - S(z) = B},

where the addition operator (+) is defined over Z, rather than bitwise XOR.
Given the S-box and (a, ), the filtered input set can be computed with O(q?)
time complexity.

By intersecting filtered sets derived from multiple differential pairs («y, 5;),
ie., MN;A(S, i, B;), an attacker can (uniquely) determine the S-box’s input value.
This foundational relationship forms the basis of our DFA methodology for re-
covering round keys.

3.1 Two Types of 1-round Differentials

To mount a DFA on FRAST, we need to investigate how the difference propagates
through 1-round FRAST at first.

Suppose a fault is injected at X {l), according to Equation , we can compute
the output difference of the round function AX*Y as

AXHD = AsO(x () + RED), j € [2,32)

4 , S | , ‘ 2)
AX{TY = AXY 4 ASOXTTY + x{TY 1k xBTY + RE).
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In this scenario, the differential is illustrated in Figure [3al All nibbles of X (+1)
become active, and the resulting differential equations contain all round key
nibbles. _

When a fault is injected at X,EZ),k € [2,32], we can compute the output
difference AX G+ as

AXUY = AXD, AXTY = 0,5 € [2,32],5 £ K,

crf

(3)

In this scenario, the differential is illustrated in Figure Only two nibbles of
X0+ x 1(l+1) and X ,E’H), become active, and the resulting differential equations

contain only one round key nibble, RK fi).

& 0) O o © x®
X ;)X SHER €4

‘ RK; ?_‘Lu W
I e
& 4]
RK;,
il o & ]
RKY — [0l
B [so] &
'] © RK; ?_‘ & = & |
EE‘—E} Tt f il
s L P R 0 ey
(a) Fault injected at X£ ) (b) Fault injected at X(>;

Fig. 3: Two types of 1-round differentials. Affected state nibbles are highlighted
in red, while involved key nibbles are highlighted in blue.

From the above analysis, when recovering round keys using 1-round differen-
tials, the first differential plays a significantly more critical role than the second
one due to the linear layer of the round function. Therefore, in our first DFA
on FRAST, we will primarily use the first type of 1-round differential, i.e., faults
injected into the leftmost nibble (X fz)) of the round state.

3.2 First DFA: Injecting Faults at the Leftmost Nibble

In our first DFA on FRAST, we assume that all faults are injected at the left-
most nibble of the round state. For this DFA, we begin by injecting faults into
the penultimate round of the cipher and utilize these faults to recover or filter
the round key of the final round RK (%), The process of recovering the round
key with the fault is illustrated in the Figure [ It is important to note that
this path represents the optimal recovery path for DFAs on FRAST, which is
derived from FRAST’s round function and 1-round differentials. Selecting any
other path would expand the guessing space for intermediate variables, thereby
increasing the time complexity required for key recovery. In the following part
of this section, we provide a detailed explanation of the entire process.
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i 2 3 @ 5
11) ax@) U @) © pp@0) P L@ o @0 O 40
XED, AXED — Ax} RK; X; RKy2 — X320,

Dax(* = asGP (x*” + RK*),j € [232] 2 AxI = ax80 4 AsUO (M 4y XD 4 REH)
XM = x4+ SEP O+ xGD + REEY) @ ax*Y = asGY (x(* + RK*) j € [2,32]

/ 41 40 40, 40 40 .
5 X" = X 1+ 5GP (x{* + RK*) j € [2.32]

Fig. 4: The key recovery path using the fault AX §40), with the equations required
for each step. Known information is highlighted in red.

Given multiple different output differences of an S-box, we can uniquely de-
termine the input difference by intersecting the sets of possible input differences
corresponding to these output differences. A small example illustrating this pro-
cess is provided in Appendix|A] From Equation , we can derive 31 differential
equations with input difference AX :EZ)

we can use AXQ(ilg)2 to uniquely determine the fault value AX; (40

through the round function. Therefore,
).

After determining AX {9, we can use equation AX(41) AX(4O +Ascrf (X 41)—}—
St X?E;u) + RK£4O)) to filter the candidate value for RK{ ) At this stage, the
input difference of the S-box Séffo ) can be calculated as 2?12 AX ;41), and the

output difference is AX; (41) - AX, (40), By subtracting 232 X; D from each
element in the filtered input set A( Crf ,232 AX(41 AX (41) AXYLO))7 we
obtain the candidate set for RK {40)’

Given RK{4O), X1(40) can be calculated as X1(41) - 5(40)(X§41) +-F Xé;ll) +

crf

RK {40)). Next, the candidate set for RK ;40) can be derived from the input fil-
tered set A(S(ffo), AX(4O) AX(41)) and X1(40) for all j € [2,32]. At this point, we

€
have successfully filtered the candidate set for RK %), Additionally, the interme-
diate state X 4% can be computed by applying the inverse of the round function.

The pesudo-code for recovering the ith-round key is provided in Algorithm

It is important to note that the filtering procedure described above typically
results in a candidate set rather than a unique value when only a single fault
is injected. A natural approach would be to verify each candidate round key
until the correct one is found. However, such verification is unfeasible because
the encryption function cannot be simulated with only RK (49, The master key
is necessary to simulate the FRAST cipher. Due to the key schedule of FRAST,
the master key can be retrieved only when at least two consecutive round keys
are known. Therefore, we need to inject faults into the third-to-last round to
recover RK®9 . With RK®“9 already known, we can derive both correct and
faulty states of penultimate round by decrypting one round. Repeating a filtering
process similar to the one used for solving RK(*9), we can then determine the
candidate set for RK(39). Finally, we can recover the master key and verify the
candidate RK®% and RK*0).
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Algorithm 1 Recover the ith-round key with 1-round differentials

Input: Normal round state pans faulty round states (Fl7 F?, ..
Output: The candidate set for ¢th-round key RKC.

—
=

11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:
31:
32:

tmpF = all possible input differences that lead to A

R =0.
for k from 1 to N do
FVF ={1,...,15}.
for j from 1 to 32 do
AX(PFU Fk Xg(i+l)'
if j > 1 then
FV* = FV* nimpF.
end if
end for
end for
PF=FV!'xFV?x.---x FV*,

for each possible fault [AX{?{, c
for k from 1 to N do
AL = A(SGL T2, AXGY

crf?

AX{"\] € PF do

) Ax(l-‘rl)

KO ={a—X%, X<’+“| eAi,k}.

end for
’C(Z) — mk 1K(1)
for RK") € /<:§“ do

AXY).

X=X gl x4 RE(M).

crf

for j from 2 to 32 do
for k from 1 to N do
Al = A8, AX

erf?

K¢ ={a—X{"]ae Aﬁ} for k=1,...,N.

end for _
KD = i)
end for
tmpK = {RK"} x K x
RK =RKUtmpK.
end for
end for
return R

AXEY.

~><IC§Q.

) S(l) S(l)

erf > Merf *

X“H) under S%

erf *
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Using only two faults (one for RK 9 and another for RK 49) will lead to an
extremely large candidate set for master key, rendering the verification process
impractical. To enhance the efficiency and practicality of the attack, we need to

inject more faults and intersect the candidate sets derived from different faults.
The process for our first DFA on FRAST is shown in Algorithm

Algorithm 2 DFA with fault position assumption

Input: Normal keystream Z, faulty keystreams derived from penultimate round
faults (Zl,...,ZN ), faulty keystreams derived from third-to-last round faults
(ZN*+1 .., ZNTM) Public parameters of FRAST.

Output: The master key of FRAST k.

1: K4 = Algorithm [[[ Z, (Z°, ..., Z"), 840, 5140,

2: for RK“? ¢ K49 do

3: Perform one round decryption on Z, ZN*t . ZNTM ith RK™“9 and derive
Y,V .. ., vM

4: K89 = Algorithm [I{Y, (Y, ..., YM), 5839 g9y

5. for RK® € K9 do

6: k=M (RKCY|RK"0)

7 if FRAST (ic,nc||ctr, k) equals Z then

8: return k

9: end if

10: end for

11: end for

From Algorithm [T] and Algorithm [2] one can know that the runtime of DFA
is highly related to the size of the intermediate set, especially [K(4?)| and [}C(39)].
Furthermore, we implemented the algorithm with Python and simulated the
DFA with a different number of injected faults. The specific implementation
code is available in |Github repository. In our implementation, we set a one-hour
run-time limit for the program. Any instance exceeding this time limit (typically
corresponding to excessively large search spaces) was discarded during the ex-
periment. For each case, we tested with 1,000 different nonce. Our experimental
results are listed in Table [Il

The results demonstrate high efficiency and effectiveness under the assump-
tion that the attacker can control the injected fault locations. Specifically, with
2 faults injected in rounds 39 and 40 (denoted as (2,2) in rounds (39,40)), the
attack achieves a success rate of 85.1% with an average time of 0.27 seconds.
When increasing the number of faults to 3 each round, the success rate increases
t0 99.1% at the cost of a slightly higher average time of 3.49 seconds.

Since the injected fault values are random, the probability of two nibble faults
being identical is %5, which accounts for the success rate of Algorithm Taking
the case of injecting two faults as an example, when the two fault values are
identical, we essentially obtain only one effective faulty keystream. As a result,
the filtered key set becomes excessively large, making it impractical to determine
the correct key within a reasonable time. Therefore, the probability of obtaining
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two effective faulty keystreams in rounds 39 and 40 is (1 — £)(1 — {5) = % ~
87.1%. Similarly, we can analyze the case of injecting three faults. Beyond the
scenario where the injected fault values are identical, there are additional factors

that can cause a failure. For example, Zj’

Ax{ = Ax{ + ASGP (x4 o+ xXGY + REYY) to filter RE(',
which could also result in a large candidate key set. Despite that, under the

assumption that the attacker can control the fault locations, we can mount the
DFA on FRAST with a minimal number of faults and a high success rate.

2:2 AX ;41) = 0 prevents us from using

4 DFA under Practical Random Fault Model

In previous section, we introduced the DFA under the precise fault assumption
and achieved promising results on FRAST. However, the assumption may be
challenging or require significant costs to realize in practical scenarios. In this
section, we relax the strong assumption and present DFAs under a more practical
random nibble error model.

4.1 Second DFA: A Naive Extension of First DFA

In Section[3] we established that when faults are injected into the leftmost nibble,
we can use 1-round differentials to significantly reduce the size of the candidate
round key set. Without the assumption that the attacker can precisely target a
specific nibble, a natural approach for DFA is to inject numbers of faults and
select the useful ones. In this section, we extend the prior DFA by injecting
additional faults to mount a DFA on FRAST under the practical random nibble
error model. Under this model, the attacker can inject faults into a specific round
state, but the fault will randomly land on one of the nibbles within that round
state.

First, we inject faults into the 40th-round state X (49 and collect the corre-
sponding faulty ciphertexts. After computing the output differences between nor-
mal ciphertext, we determine the fault locations by analyzing the pattern of these
differences. Specifically, if the output difference AX 1) satisfies AX {41)’ AX ,541) #+
0, AXJ<41) =0,j € [2,32],j # k, it indicates that the fault occurs at X1§40);conversely,
if the output difference satisfies Vj € [1, 32], AXJ(-“) # 0, the fault is located at

X{40). In other words, we can distinguish whether the fault occurs at X1(40) or
other nibbles by observing the number of non-zero terms in AX®*. Once the
fault location is identified, we select the faulty ciphertexts where the fault is
injected into X1(40) and recover RK (%) using Algorithm

Next, we inject faults into the 39th-round state X9 and use RK™9 to
decrypt and compute the faulty state and the corresponding difference AX (40).
It is important to note that when an incorrect RK“9 is used for decryption,
differences AX 9 will appear random, making it impossible to determine the
fault location. However, when the correct RK9) is used, differences AX 0
exhibit non-random characteristics. In particular, differences with less than 2
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non-zero terms make up most of these cases (with a probability of 31). With
this observation, we can filter candidate RK (%), and then distinguish the fault
location based on the number of non-zero terms in AX “%. Someone may note
that the 39th-round is a random round, meaning its S-boxes of round function
are randomly generated. According to the specification of FRAST, the randomly
generated S-boxes might not be permutations. Therefore, it is possible that a
non-zero input difference results in a zero output difference, i.e. da # 0,a —
0. Nevertheless, since the round state consist of 32 nibbles, the probability of
misclassifying the fault type due to such differential trail is negligible. After
determining the fault location, we can use Algorithm 1] to recover RK 39 again.

The procedure of this DFA is similar to Algorithm [2] with the added step of
determining fault location during each round. Accordingly, we simulated it with
Python and tried varying numbers of injected faults. Again, we tested 1,000
times for each case. The experimental results are summarized in Table

Table 3: DFAs using 1-round differentials under practical random fault model

#fault in Round 39 and 40 Success Rate Average Success Time
(32,32) 6.3% 20.11 s
(64,64) 32.8% 0.98 s
(96,96) 61.9% 1.44 s
(128,128) 81.9% 1.32 s

From Table [3] it can be observed that as the number of injected faults in-
creases, the success rate of our attack tends to rise. When 128 faults are injected
per round, the success rate reaches 81.9%, with an average runtime of just 1.32
seconds. Based on the results in Section 3] it is known that when more than one
faults injected into the leftmost nibble per round, the adversary can efficiently
recover the master key with a high probability. Furthermore, when n faults are
injected into a specific round, the probability that more than one faults occur
at the leftmost nibble can be computed as

Lo/32\ 1, 1 (nes) 1., n 1.,
Pn)=1 ;<i)(32)(1 p) Tt )t
Since the probability of obtaining two effective faulty keystreams when 2 faults
are injected into X :EZ) is@Q = %, we can estimate the lower bound of the DFA
success rate as P?(n)Q?, when n faults are injected per round. Using this for-
mula, we calculate the success probabilities for injecting 32, 64, 96 and 128 faults
per round as 6.1%, 31.2%, 56.5%, 72.4%, respectively. This estimate aligns well
with our experimental results in Table[3] When a larger number of faults are in-
jected, the probability of obtaining two effective faulty keystreams @) increases.
This explains why the experimental success rate exceeds the estimated lower

bound.
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4.2 Third DFA: Reducing the Number of Faults

While we have successfully mounted DFA on FRAST under the practical fault
model, achieving a desirable success rate requires a large number of faults, which
somewhat limits its applications. In this section, we explore how to minimize the
number of fault injections while maintaining reasonable attack efficiency.

In previous analysis, we demonstrated how to recover the round key using
faults injected into the leftmost nibble Xl(z). To obtain the faulty keystream

for Xl(i), we either assume the attacker can control the fault location (as in
Section[3.2)), or inject a large number of random faults (as in Section [4.1)). Given

that the round state contains 32 nibbles, statistically, only 1 in 32 faults is

expected to affect X 1(i). This explain why our second DFA requires a significant

number of faults to achieve a acceptable success rate. However, if we can use

faults injected into XS%, we can greatly reduce the number of faults needed.

From Equation it is known that 1-round differentials for faults in X(>Z% are

ineffective to recover the round key. Therefore, we now investigate the 2-round

differential propagation for faults in X (ZZ;

Suppose that the fault is injected at X ,gi), k € [2,32]. The 2-round differential

is illustrated in Figure [5| Based on Equation , Xl(H'l),X,giH) will become
active after one round propagation. Then, we can compute the difference of
X (i42) g

AX’EHQ) :AX](Ci+1)+AS(i+1)(X1(i+1)+RK](:+1)),

erf
AX[TH = ASGEV (XY 4 RE(Y) e (2,320, # &, (4)
AXT = AXTD £ ASU (X o X5 4 REUTY),

With Equation (3)) and Equation (), we can recover the round key RK (1) with
faults injected at X g% The key recovery path is illustrated as Figure@ Therefore,

we can inject faults into X9 and recover RK®“?) with the faults. The key
oo . R . (40)

recovery process is similar to previous attacks, primarily using AX; " to recover

the round key RK(*). Before filtering the round key, we must first determine

the location and value of fault. Since the fault location cannot be easily inferred

from AX Y, we need to iterate over all possible fault locations k € [2,32]. For
. (41) (40) (40) (41) (41)
each guessed k, we use equations AX,"/ = AX; '+ AS L (Xy 4+ X+

crf

RE{*) and AX\*Y = ASEY (X" + RKM),j € [2,32], # k to determine

AXYLO). Then, the value of AX,SLO) can be deduced by AX,SH) = AX,£4O) +
AL (X + REM) and AX[Y = ASTY (05" + -+ X5" + RE(™)
because AXJ(.40) = 0,7 € [2,32],5 # k. Using the above relationships, we can
obtain a guessed set for the injected fault.

For each guessed fault AX ,ggg), we have corresponding AX £40) and AX ,540)
(as derived from the above recovery path). Given the information of AX 540) and
AX 240), we can use Equation to determine the round key RK 49 This step
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Fig. 5: 2-round differentials when fault is injected at X ,gi), k € [2,32].

@ 2 3 @ 5 ®
41 41) L Ap@0) L A0 P a0) Y pa0) O 5 a0) P (40)
XD, Ax D) AX; AXy RK; X; RK,-, Xoo 3y

D ax* = asGP (17 + RK) j € [232]) # ki ax(*D = ax{(* + asGP K + -+ x5V + REHD)

Ax{D = ax§O + asGP (x4 RESV); ax(* = asSY (x5 + -+ 37 + RKPD); ax* = 0,j € [2,32]) # k

3 ax™) = AxH0 4+ AsEO (D 4+ XEV +REED) @ x*Y = x84+ sUP x4+ x5V + REC)
®axg = ax(* + asGP (x{* + REC); ax* = asiP (x{*” + RKV),j € [232],) # k

A 41 0. .
© X" = x4+ 5G9 (x{(* + RK) j € [2,32]

Fig. 6: The key recovery path for RK 49 using the fault AX ,i?’g), k € [2,32], with
the equations required for each step. Known information is highlighted in red.
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is similar to the previous one that uses Equation to recover the round key.
The only difference is that, for recovering the nibble RK ,240), the relationship
we use is AX,SH) = AX,SLO) + ASéffo) (x40 4 RK,SLO)) instead of AX,ELH) =
ASHO (Xfm) + RK ,g40)). It should be noted that the above recovery process

erf
only succeeds when the fault is injected at X(;’Qg ). When the fault is injected

X{?’g), the process will fail and we cannot filter the round key with the fault.
Fortunately, in the case of random fault injection, the probability of a fault being
injected at X g is as high as % After determining the round key RK %) we

can recover RK (39 by injecting faults into X ®®). Finally, the master key can be
derived by inverting the key scheduling algorithm.

We simulated the DFA with a different number of injected faults and tested
with 1,000 different nonce. The experimental results are listed in Table [Tl Our
results demonstrate that our new strategy can effectively reduce the number of
faults compared to previous naive extension. The new strategy enables DFA on
FRAST with minimal number of faults within a reasonable time, while main-
taining a viable success probability. In particular, when 3 faults are injected in
rounds 38 and 39, the attack achieves a success rate of 75.2% with an average
time of 377.95 seconds. As shown in Table[I] while the success rate of the attacks
increases with the number of faults, the time required for the attack also rises
rapidly. This is primarily due to the expansion of the guessed fault set that need
to be traversed. When the number of faults increases to 4 per round, the runtime
and the actual storage capacity of the machine become the main bottlenecks that
limit the attack.

5 Discussion about Countermeasures

Although DFAs pose a significant threat to ciphers, designers can employ certain
measures to protect them from such attacks. In the past two decades, there have
been numerous findings on DFA countermeasures, and interested readers can
refer to [3] for further details. In this section, we discuss how to improve the
resistance of FRAST against DFA, especially the cipher-level countermeasures.

A direct idea is to use a separate, dedicated device that detects [18] or a shield
that blocks any potential source of faults. Such an engineering solution, while
applicable to ciphers in general, often incurs high costs in practice and is outside
the scope of cryptography design. Protecting specific parts of the circuit in the
cryptographic algorithm is a more prudent alternative [4]. In our DFA, faults are
often injected into the last two rounds of FRAST. If we can protect the last two
rounds from fault injection, the attack can be effectively mitigated. In addition,
detection and infection techniques are more sophisticated countermeasures that
can help ciphers resist DFAs.

Detection-based countermeasures try to detect data modification caused by
fault injection, using principles from coding and information theory, such as
error-correcting codes [I0I8/40]. Once an anomaly is detected, a predefined pro-
cedure is triggered to prevent the attacker from obtaining any information re-
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lated to the faulty output. Infection techniques are proposed as an extension to
detection. They introduce a diffusion effect caused by the faulty intermediate
value, which propagates throughout the entire cipher state [6]. This approach
avoids the need for explicit detection while making it significantly harder for the
attacker to exploit the fault. Through our earlier analysis of FRAST, we know
that the DFA can be effectively mitigated by checking whether sz) has been
faulted. Therefore, detection and infection techniques can provide low-cost pro-
tection for FRAST by focusing on X {2). However, it is still possible to break such
defenses by injecting a larger number of faults.

Baksi et al. [5] presented the first concept of cipher-level DFA resistance that
does not rely on device/protocol assumption or duplication at ASTACRYPT
2021, and gave a full-fledged block cipher DEFAULT. The new design uses special
S-boxes with linear structures, and these linear structures imply that certain
groups of inputs are differentially equivalent. The definition of linear structure
over Fy is given as follows:

Definition 1 (Linear Structure over F%). A function F : F} — F} is said
to have a linear structure, if there exists an element a € Fy, such that, for some
constant b € FY, F(x ®a) @ F(x) = b holds for all x € F3. (a,b) is called a linear
structure of F.

It is clear that any function has a zero linear structure (0,0), which holds no
meaningful significance in this context. Instead, we focus on non-zero linear
structures where a,b # 0. When the S-box L has a non-zero linear structure
(a,b), for any differential trail « — f, if an element x € FY satisfies L(z ® o) &
L(z) = B, then x @ a will also satisfy L(z @ a ® «) ® L(z © a) = 8. In other
words, we cannot uniquely determine the correct input value of the S-box using
any number of differential trails. More generally, when the S-box has n non-
zero linear structures, the size of the input set filtered with differential trails
will be at least n + 1. Since there are multiple parallel S-boxes in a round, the
introduction of non-zero linear structures causes the size of the filtered key set
to grow exponentially, leading to a sharp increase in attack complexity.

Although DEFAULT was later compromised by information-combining DFAs
under the precise bit-fault model [30J22], the idea of using structures to resist
DFAs remains worthwhile and continues to exhibit resistance under the random
fault model. Since FRAST is defined over the group Zig and our DFAs use
differentials over group, we now consider linear structure over group Zy and
provide the definition by analogy to Definition

Definition 2 (Linear Structure over Zy). A function F : Zy — Zn is said
to have a linear structure, if there exists an element a € Zy, such that, for some
constant b € Zy, F(x 4+ a) — F(x) = b holds for all x € Zn. (a,b) is called a
linear structure of F.

Similar to the case on F3, when the S-box S has a non-zero linear structure
(a,b), for any differential trail («, 8), if an element x € A(S, a, §), then we can
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compute S(x + a+ a) — S(z + a) as

Sz+a+a)-S+a)+S+a)—S)+S()—Sx+a)=20,

0 8 0

ie. x+a € A(S,a, ). This implies that when we replace the S-boxes in a round
of FRAST with those containing a non-zero linear structure, using DFA can only
reduce the size of the round key space to 232. From the key schedule, we know
that two rounds of round keys are required to recover and verify the master key.
Therefore, if we can replace the S-boxes in last two rounds of FRAST with ones
with one non-zero linear structure, then the size of candidate key set will be at
least 264, and the practical DFA can be avoided effectively.

It is important to note that the penultimate round of FRAST is a random
round. According to the cipher description, the S-boxes in this round should be
negacyclic, i.e., Vo € Zy,S(xz) + S (x + %) = 0. Simultaneously satisfying the
properties of being negacyclic and having a linear structure may severely degrade
the S-box, rendering it unsuitable as a secure component. In PBS operation, the
group size is required to be a power of two, so we focus on the case where
N = 2*. Next, we will prove that when a negacyclic S-box possesses a non-zero
linear structure, it will degenerate into a binary function or a constant function.
Before proving that, we present a useful lemma along with its proof.

Lemma 1. Let N = 2% k> 2, for any a € Zn \ {07 %}, there exists a positive
integer m satisfying 2a - m = % (mod N).

Proof. Suppose a € Zy \ {0, %} By the prime factorization theorem, we can
express a as
a=2"-t (0<s<k-—2tisodd).

The original congruence equation 2a - m = % (mod N) becomes:
2t t.m =281 (mod 2F).

Dividing both sides by 2511, we reduce the congruence to:
t-m=2""%"2 (mod 2F7*71).

Because t is odd, we have ged(t, 2¥75~1) = 1. By Bézout’s identity, the modular
inverse ! (mod 2¥~°~1) exists. Thus the general solution is

m=2F"2"2.4"1 (mod 2~ 571,
which clearly satisfies m € ZT. This completes the proof.

Lemma [I] demonstrates that if we start from any = € Zor and increment by 2a
(a # 0 or 2F71), the value will always land on x + 2¥~1. With this lemma, we
can show that it is detrimental for a negacyclic S-box to have a linear structure.
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Proposition 1. Let N = 2F, k> 2, and let S : Zy — Zy be a negacyclic look-
up table, if S admits a linear structure (a,b),a,b # 0, then b = 2*~1 and the
image of S(x) contains exactly two distinct values.

Proof. The negacyclic property implies

N
Ve eZn,S(x)+ S <x—|— 2) =0 (mod N).

Given the linear structure (a,b), a,b # 0, we have
S(x+a)—S(x)=b (mod N) forall z € Zy,

And S(z) will never be a constant function.
Let ' =z + % Applying the linear structure again:

Sz’ +a)—S(@')=b (mod N).

By the negacyclic property S(2') = —S(x) (mod N) and S(2’' +a) = —S(x+a)
(mod N), substitution yields:

—S(x+a)+SE)=b (mod N).

Adding the equation to the original linear structure equation gives 2b = 0
(mod N). Since b # 0 and N = 2¥, we conclude b = & = 2k~1,

We now analyze the image of S through two cases:

Case 1 (a = %) The linear structure equation becomes

Vo € Zy, S <x+ Z) —S(x) :g (mod N).

Combined with the negacyclic property, substitution gives

28 (m+ ];7) :g (mod N),2S5(z) = 7% = g (mod N).

Solutions satisfy S(z) = & (mod &). Thus the image of S is {&, 23X},

Case 2 (a # %) The linear structure implies periodicity:
S(x+2a)—S(z) = (S(x+2a)—S(z+a))+(S(z+a)—S(x)) =2b=0 (mod N).

By Lemma (1} there exists m € Z* such that 2a-m = % (mod N). Repeatedly
applying the linear structure gives:

N
m PR —
2

N
S(x+2>—5(ac)zm-b =0 (mod N).
Combining with the negacyclic property S (gc + %) = —S(z) (mod N), we
derive 25(z) = 0 (mod N). Thus, the image of S is confined to {0, &§'}. This
completes the proof.
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According to Proposition[I} when a negacyclic S-box has a linear structure, its
output will become very simple, failing to provide sufficient confusion. In other
words, while introducing a linear structure into a negacyclic S-box can help resist
DFA, it introduces other security vulnerabilities, which will render the cipher
insecure. Therefore, we recommend removing the negacyclic restriction from the
penultimate round of FRAST and incorporating a non-zero linear structure over
Z16 into the S-boxes of the last two rounds, thereby mitigate the impact of DFAs.

Some may argue that introducing linear structures over group could make
FRAST more vulnerable to linear attacks. However, since we are only modify-
ing the S-boxes in the last two rounds, FRAST still retains sufficient security
margin to resist linear attacks. Additionally, the linear structures over group
do not compromise FRAST’s ability to withstand algebraic attacks. First, due
to the presence of the standard fixed layers, the modified FRAST still cannot
be expressed as a polynomial over Z32. Furthermore, the linear properties over
Zq¢ are likely to be non-linear over F3, meaning that the linear structures over
group do not weaken the algebraic security of the XOR variant of FRAST. That
said, whether there exist new effective attack vectors remains an open question
worthy of further in-depth investigation

6 Conclusion

In our study, we introduce DFA against the recent TFHE-friendly cipher, FRAST.
Although the unbalanced Feistel structure grants FRAST excellent TFHE appli-
cation performance, it also introduces security vulnerabilities: modifications to
the leftmost nibble directly affect all output nibbles, while changes to the other
nibbles only impact the output at their own position and the leftmost nibble. As-
suming that all faults could be precisely injected into the leftmost nibble, we give
an effective DFA based on 1-round differentials. After discarding the precise fault
injection assumption, we employ 2-round differentials to raise the proportion of
effective faults and develop a DFA without increasing the number of faults. Our
results demonstrate that the secret key of FRAST can be efficiently recovered
within a practical time by introducing a few random nibble-based faults into
the internal round state. In our discussion on improving FRAST against DFA,
we demonstrate that incorporating non-zero linear structures into negacyclic S-
boxes is not a viable strategy. Therefore, it is advisable to remove the negacyclic
restriction in the final rounds of FRAST and instead employ S-boxes with non-
zero linear structures to enhance DFA resistance. Our comprehensive analysis
reveals the vulnerabilities of TFHE-friendly ciphers to DFA, highlighting the
need for closer scrutiny in the design of ciphers in this category.
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A Differential Properties of the Fixed S-box of FRAST

To help readers better understand our attacks, we give the Differential Distri-
bution Table (DDT) over Z;¢ of the fixed S-box (see as Table , and show how
to determine the input differences with multiple output differences.

According to Table [2] we can calculate the filtered input set

A(S o, B) ={x € Zy|S(x + o) — S(x) = B},

for each pair of input and output differences (a, 8). By counting the number of
elements in the set, we can summarize the DDT as Table [

As shown in the table, each non-zero output difference corresponds to mul-
tiple possible input differences (on average, approximately 9). By intersecting
several input difference sets, we can quickly determine the correct input differ-
ence. In the following, we provide an example.

Suppose we obtain four output differences: 2, 10, 14, and 15. According
to Table [4] their corresponding input difference sets are {1,3,5,6,10,11,14},
{1,2,4,5,7,8,9,11,12,14}, {2,5,6,10,11, 13,15} and {2, 3,4,5,9,10,12,13, 14},
respectively. By intersecting these four sets, we can determine the final input dif-
ference to be 5.
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Table 4: DDT over Zg of the fixed S-box. “.” indicates that no element satisfies

the given differential relationship.

/OjJo 1 2 3 4 5 8 a b ¢ d e f
0 |16 S S

1 .1 4 1. .11 2 3

2 5 3. 3 : 2 1 1

3 4 . 2 3 . 2 . A
4 11 2 1 : 1 .2 12
5 1 3 302 1 T S
6 o2 .2 1 4 2 1 11
7 1 1 1 3 1 2 . .2
8 1.1 1 2 : 1 2 1 1 1
9 .2 S 1 2 3 1 1 . 1
a 11 .1 2 4 .12 2 .
b T 1 1 2 3 31
c 2 1 2 : 31 2 . 1 1
d 1 : 2 e 4
e | 1 3 . 3 . 5
f 3.2 1 1 2 1 4 1
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