
Thunderbolt: A Formally Verified Protocol for Off-Chain Bitcoin
Transfers

Hongbo Wen

hongbowen@ucsb.edu

Nubit

University of California, Santa

Barbara

Hanzhi Liu

hanzhi@ucsb.edu

Nubit

University of California, Santa

Barbara

Jingyu Ke

windocotber@sjtu.edu.cn

Nubit

Shanghai Jiao Tong University

Yanju Chen

yanju@ucsb.edu

University of California, Santa

Barbara

Dahlia Malkhi

dahliamalkhi@ucsb.edu

University of California, Santa

Barbara

Yu Feng

yufeng@cs.ucsb.edu

Nubit

University of California, Santa

Barbara

Abstract
We present Bitcoin Thunderbolt, a novel off-chain protocol for

asynchronous, secure transfer of Bitcoin UTXOs between unco-

ordinated users. Unlike prior solutions such as payment channels

or the Lightning Network, Bitcoin Thunderbolt requires no prior

trust, direct interaction, or continuous connectivity between sender

and receiver. At its core, Bitcoin Thunderbolt employs a Byzantine

fault-tolerant committee to manage threshold Schnorr signatures,

enabling secure ownership delegation and on-chain finalization.

Our design supports recursive, off-chain UTXO transfers using

tweakable, verifiable signature components. The protocol tolerates

up to 𝑓 malicious nodes in a 3𝑓 + 1 committee and ensures correct-

ness, consistency, and one-time spendability under asynchronous

network conditions.

We formally verify Bitcoin Thunderbolt’s key security properties,

namely, unforgeability, ownership soundness, and liveness—using

the Tamarin prover. Our results demonstrate that Thunderbolt

provides robust, scalable, and non-interactive off-chain Bitcoin

transfers, significantly expanding the practical utility of Bitcoin for

decentralized applications.

Keywords
Formal Verification, Blockchains, Consensus Protocols

1 Introduction
Bitcoin has emerged as the most widely deployed cryptocurrency,

renowned for its decentralized consensus, strong security guar-

antees, and censorship resistance [16]. However, these properties

come at the cost of latency: Bitcoin transactions require approxi-

mately ten minutes for confirmation and multiple blocks for high

assurance. This delay renders it impractical for latency-sensitive

applications such as point-of-sale payments, online gaming, or

financial systems requiring instant settlement.

To mitigate this, various off-chain solutions have been proposed,

most notably payment channels [9, 10] and layer-two networks

like the Lightning Network [10, 21]. These protocols offer lower-

latency payment capabilities by avoiding immediate on-chain fi-

nality. However, they typically require interactive communication,

pre-established channels, and active monitoring, making them ill-

suited for non-custodial, asynchronous, or casual transfer scenar-

ios. Moreover, limitations such as routing complexity [14], channel

liquidity constraints [13, 17], and failure recovery have hindered

widespread usability.

In this paper, we present Thunderbolt, a novel off-chain proto-

col that enables asynchronous, secure, and instant UTXO transfers
on Bitcoin between mutually distrusting users without requiring

prior coordination or live connectivity. Unlike payment channels,

Thunderbolt does not rely on bilateral agreements or route-based

liquidity. Instead, it introduces a semi-trusted threshold-signing

committee to mediate ownership, ensuring cryptographically ver-

ifiable transfers while remaining fully compatible with Bitcoin’s

native transaction model. The committee is trusted only to be avail-

able and to not collude with a sender once a transfer completes.

Thunderbolt builds on the recently adopted Schnorr signature

standard for Bitcoin (BIP340) [24], whose algebraic structure en-

ables linearity and efficient aggregation. In particular, at the core

of Thunderbolt is a cryptographic protocol that enables the com-

mittee and the sender to collaboratively construct a transferable

signature, with the signing capability securely re-assigned to a new

recipient. Transfers are achieved using a tweakable multi-signature

structure, where each participant adjusts their signing contribu-

tion using shared secrets. This approach is inspired by recent work

on secure delegation and key shifting in Schnorr-based construc-

tions [18, 19, 22]. However, Thunderbolt is uniquely tailored for

non-interactive, recursive delegation under adversarial conditions.

Designing such a system raises several challenges. Threshold

signing in asynchronous networks is notoriously difficult, as mes-

sage delays and node failures can break liveness and soundness

guarantees [8]. Moreover, signature generation must be robust to

equivocation and enforce one-time use of each spend path. Thun-

derbolt addresses these issues by incorporating a consensus-backed

committee using Byzantine fault-tolerant replication [5, 25]. As

long as 2𝑓 + 1 out of 3𝑓 + 1 committee members behave honestly,

the protocol ensures correctness, consistency, and liveness despite

partial faults or denial-of-service attacks.

Given the security-critical nature of Bitcoin transactions, we

formally verify Thunderbolt’s key properties using the Tamarin

Hongbo Wen, Hanzhi Liu, Jingyu Ke, Yanju Chen, Dahlia Malkhi, and Yu Feng

prover [6, 15]. Our model captures realistic adversarial behavior, in-

cluding adaptive corruption, message delay, and protocol deviation.

We prove properties including unforgeability, one-time spendability,

ownership soundness, and committee accountability. This rigorous

analysis ensures that Thunderbolt is secure by construction and

suitable for deployment in high-assurance systems.

Summary of Contributions. This work makes the following con-

tributions:

(1) The Thunderbolt Protocol: A novel protocol for asyn-

chronous, off-chain Bitcoin UTXO transfers between unco-

ordinated parties, requiring no prior trust or interaction.

(2) RobustAsynchronousThreshold Signatures:A resilient,

tweakable Schnorr threshold signature system that sup-

ports key re-assignment and is robust to Byzantine com-

mittee faults.

(3) Formal Security Proofs: A machine-checked formaliza-

tion of Thunderbolt’s safety, correctness, and liveness guar-

antees using the Tamarin prover, accounting for adversarial

network and committee behavior.

Together, these contributions provide a practical and formally

verified foundation for scalable, user-friendly, and secure off-chain

Bitcoin transactions.

2 Background and Related Work
Bitcoin employs a UTXO-based transaction model and achieves

consensus through proof-of-work mining and longest-chain rule.

While this approach provides strong consistency and censorship

resistance, it suffers from limited throughput and long confirmation

delays, typically requiring at least one block interval (about 10

minutes) to finalize a transaction. These constraints significantly

hinder Bitcoin’s use in interactive or real-time applications.

2.1 Off-Chain Transaction Mechanisms
To overcome latency and scalability limitations, the Bitcoin ecosys-

tem has explored various off-chain techniques. Notably, the Light-

ningNetwork [20] introduces bidirectional payment channels where

participants can executemultiplemicro-transactions off-chain. How-

ever, Lightning requires the receiver to be online during the transac-

tion and necessitates prior channel establishment, limiting usability

in spontaneous or anonymous transfers.

Other constructions, such as state channels and sidechains [1],

similarly aim to reduce on-chain load but often trade off trust as-

sumptions, setup complexity, or user interactivity requirements.

These models typically assume synchronized communication be-

tween senders and receivers or rely on ongoing connectivity, which

is unsuitable for asynchronous or one-shot transfers.

2.2 Threshold Schnorr Signatures
Schnorr signatures, recently adopted in Bitcoin via BIP340 [24],

are particularly well-suited to threshold constructions due to their

linearity and efficient aggregation properties. These algebraic fea-

tures enable multiple signers to jointly produce a single compact

signature by aggregating commitments and key shares. This makes

Schnorr a natural fit for multi-party signing and distributed custody,

where correctness, efficiency, and accountability are paramount.

Threshold signatures allow a subset of parties to collaboratively

generate a valid digital signature on behalf of a group. In a (𝑡, 𝑛)
threshold scheme, any 𝑡 out of 𝑛 participants can jointly sign, while

fewer than 𝑡 cannot forge a valid signature. Such schemes provide

robustness and decentralization in blockchain applications, espe-

cially those requiring fault tolerance and key management across

multiple entities.

Prior work has explored threshold Schnorr signatures [3, 12, 22]

and multi-party key generation [18]. However, many of these de-

signs are tailored for synchronous settings [3, 7], assume honest-

majority participation [7, 12], or are vulnerable to Byzantine faults

in asynchronous networks. These assumptions limit their applica-

bility in decentralized environments where message delays, node

failures, or adversarial coordination may occur.

Thunderbolt departs from these models by enabling resilient,

asynchronous threshold signing within a Byzantine fault-tolerant

framework. It supports dynamic, recursive delegation of signing

power, allowing secure off-chain asset transfers without assuming

synchronized interaction or honest coordination among signers.

2.3 Consensus-Based Committees
Distributed consensus protocols, such as PBFT [5], allow a set of

𝑛 = 3𝑓 + 1 replicas to reach agreement despite up to 𝑓 Byzantine

faults. These protocols have been widely used in permissioned

blockchains and fault-tolerant services. When applied to threshold

signature generation, committee-based approaches can enforce

collective behavior, accountability, and consistency in signature

state and UTXO ownership records.

To maintain off-chain ownership state in a decentralized yet

reliable manner, Thunderbolt leverages a consensus-based commit-

tee to execute signing operations and record transfer events. The

committee is trusted only for availability and robustness, not for

custody or correctness, as the security of each transfer depends on

cryptographic guarantees rather than behavioral assumptions.

2.4 Adapter Signatures and Scriptless Contracts
Adapter signatures [19] allow embedding hidden data within par-

tially completed signatures. These constructs enable conditional

payments and atomic swaps off-chain. However, adapter signatures

generally require interactive communication and a trusted coun-

terparty during setup, limiting their usability for non-custodial or

interaction-free use-cases.

Scriptless contracts and multi-party ECDSA constructions [11]

have explored similar directions but often entail complex zero-

knowledge proofs or costly interactive rounds. In contrast, Thun-

derbolt simplifies secure delegation by combining Schnorr homo-

morphism with carefully designed signature tweaking that enables

asynchronous and uncoordinated off-chain ownership transfer.

2.5 Formal Verification of Crypto Protocols
Formal verification tools such as the Tamarin prover [23] and

ProVerif [4] allow symbolic reasoning about security properties

of cryptographic protocols under adversarial models. These tools

have been successfully applied to analyze key exchange, secure

Thunderbolt: A Formally Verified Protocol for Off-Chain Bitcoin Transfers

messaging, and consensus protocols. In high-stakes financial sys-

tems, such as Bitcoin, formal methods provide strong guarantees

of protocol correctness, soundness, and safety.

In this work, we formally model the Thunderbolt protocol in

Tamarin and verify key properties including integrity, authentica-

tion, and spendability, ensuring its resilience against adversarial

behaviors in realistic asynchronous environments.

2.6 Threat Model and Assumptions
The Thunderbolt protocol is designed to operate securely in ad-

versarial environments, including partially trusted off-chain com-

mittees and asynchronous communication networks. This section

defines the security assumptions under which the protocol operates,

the capabilities of adversaries it is intended to resist, and the scope

of protection it aims to provide.

Thunderbolt assumes a model in which participants include hon-

est users, a committee of replicated nodes, and a network adversary.

The user, such as Alice or Bob, seeks to either create, transfer, or

redeem a Bitcoin UTXO via off-chain delegation. The committee

comprises 𝑛 = 3𝑓 + 1 nodes responsible for maintaining off-chain

state and generating threshold Schnorr signatures. Importantly, the

committee is not trusted with funds—it holds no unilateral signing

authority. Its sole role is to remain available for signing and to

refrain from collusion with the sender after a transfer completes.

We assume a powerful Dolev-Yao adversary who has full control

over the communication network. The adversary may delay, drop,

replay, or reorder any message. Moreover, the adversary may stati-

cally compromise up to 𝑓 committee members, granting them full

access to their local state, including secret shares and vote histories.

Users are assumed to maintain the confidentiality of their own

secret values during transfer, and cryptographic primitives such as

Schnorr signatures and hash functions are assumed to be secure

against standard attacks.

Thunderbolt does not assume synchronous communication. Nodes

may be offline, delayed, or receive messages in an arbitrary order.

However, for liveness to hold, it is assumed that at least 2𝑓 +1 honest
committee members will eventually respond to a transfer or final-

ization request. Under this assumption, Thunderbolt guarantees

that either the UTXO will be delegated to the intended recipient,

or a valid finalization signature will be produced for on-chain re-

demption.

The protocol does not aim to protect against denial-of-service

attacks targeting individual committee members or users. Sim-

ilarly, it does not address the case where a user’s local secrets

are compromised prior to transfer, nor does it attempt to enforce

privacy or unlinkability of off-chain ownership transfers. These

goals are orthogonal to the protocol’s primary objective: secure

and asynchronous delegation of Bitcoin ownership with minimal

trust assumptions.

3 Thunderbolt Protocol Design

The Thunderbolt protocol enables asynchronous, off-chain trans-

fers of Bitcoin UTXOs between mutually mistrusting parties, with-

out requiring interactive coordination or synchronous communi-

cation. It achieves this by combining threshold Schnorr signatures

with a consensus-based committee that securely manages off-chain

ownership. Once a UTXO is locked on-chain, Thunderbolt allows

it to be transferred any number of times off-chain, with each own-

ership change cryptographically enforced and verifiable by the

recipient alone.

To support robustness against faults and adversarial behavior,

Thunderbolt assumes a committee of 𝑛 = 3𝑓 + 1 participants, toler-

ating up to 𝑓 Byzantine members. As long as at least 2𝑓 + 1 nodes

are honest, the protocol ensures signature correctness, consistency,

and one-time spendability. The design adapts recent advances in

threshold Schnorr signature protocols to a new setting—dynamic

and recursive asset transfer—where ownership delegation must

remain safe and non-interactive.

This section presents the core technical design of Thunderbolt.

We begin by describing the system’s participants and cryptographic

foundations, and then provide a detailed walkthrough of the pro-

tocol’s four main phases. All notation is introduced in context to

ensure clarity and self-containment.

3.1 Protocol Overview
Thunderbolt is a Bitcoin-native protocol that enables secure, asyn-

chronous, and off-chain transfer of UTXO ownership across multi-

ple recipients—without requiring direct interaction, online avail-

ability, or prior coordination between sender and receiver. At its

core, Thunderbolt leverages tweakable Schnorr signatures and

a replicated Byzantine committee to track off-chain ownership

and ensure single-spend finality. This design preserves Bitcoin’s

trust-minimized execution model while enabling flexible delegation

chains that terminate in on-chain redemption.

Protocol Intuition. As illustrated in Figure 1, a Thunderbolt trans-

fer begins when Alice locks a UTXO on-chain under a joint Schnorr

key controlled by both herself and a decentralized committee. Off-

chain, Alice transfers ownership to Bob by applying a cryptographic

tweak to her half of the signature; the committee concurrently

tweaks its half using a secret known only to Bob. These tweaks

ensure that only Bob can invert the transformation and reconstruct

the final signature. The committee verifies and logs the transfer in

its replicated ledger, and marks Bob as the current off-chain owner.

This process generalizes recursively. Bob can reassign ownership

to Carol using fresh tweaks, and Carol can further delegate to

Zenni. Each hop updates the ledger without touching the Bitcoin

blockchain. At any point, the current owner can trigger finalization,

requesting the committee’s release of its final signature share. Once

both shares are assembled and the tweaks are canceled, the owner

can produce a valid Schnorr signature and redeem the UTXO on-

chain.

Entities. The protocol involves the following participants:

• Sender (Alice): The original on-chain UTXO owner.

• Receivers (Bob, Carol, Zenni): Off-chain delegates who

receive and optionally forward UTXO ownership.

• Committee: A replicated, 𝑛 = 3𝑓 + 1 node set that assists

in threshold signing, verifies off-chain transfers, and main-

tains a consistent ledger of ownership. The system tolerates

up to 𝑓 Byzantine faults.

• Bitcoin Network: The public blockchain on which UTXOs

are locked and ultimately redeemed.

Hongbo Wen, Hanzhi Liu, Jingyu Ke, Yanju Chen, Dahlia Malkhi, and Yu Feng

Alice

Zenni

Committee
Joint Key

Construction

Signature 𝒔

UTXO

UTXO Bob
𝒔𝒂"

Signature
Reconstruction𝒔𝒄"

= 𝒔𝒂" + 𝒔𝒄" − private𝒂,𝒃 − private𝒌,𝒃
= 𝒔𝒂 + 𝒔𝒄

Signature 𝒔

Carol

…

tweak

tweak
Signature

Zenni

Atomic
Swap

Bitcoin Network

Off-Chain Ledger
Phase 1: Prepare

Phase 2: Transfer

Phase 3: Reassign

Phase 4: Finalize

Figure 1: Illustrative example of Thunderbolt.

Protocol Phases. Thunderbolt operates through four conceptual

phases:

(1) Prepare. Alice locks a UTXO on Bitcoin using a 2-of-2

Taproot-style key shared with the committee. Once con-

firmed, the committee records Alice as the initial off-chain

owner.

(2) Transfer. To delegate ownership to Bob, Alice tweaks her

partial signature using a secret known to Bob. The commit-

tee performs a complementary tweak and records Bob as

the new owner. After this step, Alice can no longer spend

the UTXO, as her version of the signature is no longer valid.

(3) Reassign (Optional). Bob may re-delegate the UTXO to a

downstream user (e.g., Carol or Zenni) by initiating another

round of tweaks and ledger updates. This phase can repeat

recursively.

(4) Finalize (Optional). The current owner requests the com-

mittee’s final signature share. Once received, they combine

it with their own share and subtract the cumulative tweaks

to produce a valid Schnorr signature over the original Tap-

root spend script. This signature is used to redeem the

UTXO on-chain. The committee then irrevocably marks

the UTXO as spent.

Ledger and Consensus. The committee uses a Byzantine fault-

tolerant consensus protocol (e.g., PBFT) to maintain a replicated

ledger of off-chain ownership. This ensures:

• Transfers are only accepted if they conform to the tweak

structure and current ledger state,

• Each UTXO has a single, globally consistent owner at any

time,

• Finalized UTXOs are never reused or re-signed,

• Liveness and correctness are preserved despite up to 𝑓

faulty committee nodes.

Summary. Thunderbolt decouples asset control from network

synchrony and direct interactivity. Through the combination of

tweakable Schnorr signatures and fault-tolerant consensus, the

protocol enables fast, flexible, and trust-minimized Bitcoin owner-

ship transfers—extending Bitcoin’s utility into asynchronous and

programmable off-chain environments.

3.2 Crypto Primitives: Schnorr Signatures
The Thunderbolt protocol builds on the Schnorr signature scheme,

which has been adopted as the standard signature primitive in Bit-

coin (via BIP340 [24]). Schnorr signatures are not only efficient and

compact but also enjoy strong algebraic properties that are essential

to Thunderbolt’s off-chain ownership delegation and multi-party

signing.

A standard Schnorr signature on a message𝑚 is constructed as

follows. The signer generates a secret nonce 𝑟 ∈ Z𝑞 and computes

its public commitment 𝑅 = 𝑟 · 𝐺 . 1 Given a private key 𝑝 and its

corresponding public key 𝑃 = 𝑝 ·𝐺 , the signer computes a challenge

scalar 𝑐 = 𝐻 (𝑅 ∥ 𝑃 ∥ 𝑚), where 𝐻 is a cryptographic hash function.

The final signature consists of the scalar

𝑠 = 𝑟 + 𝑐 · 𝑝,

and the pair (𝑅, 𝑠) is valid if it satisfies the verification equation:

𝑠 ·𝐺 = 𝑅 + 𝑐 · 𝑃 .

A key feature of Schnorr signatures is their additive homomor-
phism. Given multiple signers with keys 𝑝1, 𝑝2, . . . , 𝑝𝑛 and nonces

1
Elliptic curve cryptography (ECC) relies on the abelian group formed by the points

on an elliptic curve defined over a finite field. The fixed generating point G is chosen

for its large prime order, ensuring that every point in the subgroup can be produced

by scalar multiplication, while making it computationally infeasible for an adversary

to recover the scalar r from the public point R = r · G.

Thunderbolt: A Formally Verified Protocol for Off-Chain Bitcoin Transfers

𝑟1, 𝑟2, . . . , 𝑟𝑛 , their individual contributions can be linearly aggre-

gated:

𝑠 =

𝑛∑︁
𝑖=1

(𝑟𝑖 + 𝑐 · 𝑝𝑖) =
(∑︁

𝑟𝑖

)
+ 𝑐 ·

(∑︁
𝑝𝑖

)
.

This property enables decentralized threshold signing and key shift-

ing, making it ideal for off-chain transfer schemes where ownership

of an asset must be dynamically reassigned.

Participant Secrets and Commitments. Thunderbolt relies on the

secure management and transformation of signature shares. Each

participant in the protocol maintains private scalars and corre-

sponding public commitments. We briefly describe the key material

held by each role:

Alice (the initial UTXO owner) holds a private signing key 𝑝𝑎 , a

nonce 𝑟𝑎 , and a tweak secret 𝑡𝑎 used for computing pairwise shared

secrets. Her public commitments include 𝑝𝑎 ·𝐺 , 𝑟𝑎 ·𝐺 , and 𝑡𝑎 ·𝐺 .
Bob (the intended new owner) does not participate in the original

signing but in order to receive transfers, publishes public commit-

ments to two tweak secrets: 𝑡𝑏 ·𝐺 and 𝑡2𝑏 ·𝐺 . These are used to

derive shared secrets with both Alice and the committee.

The committee collectively manages a threshold private key

𝑝𝑘 , a nonce 𝑟𝑘 , and one tweak scalar per transfer, 𝑡𝑘,1, 𝑡𝑘,2, ... Their

corresponding public commitments include 𝑝𝑘 ·𝐺 , 𝑟𝑘 ·𝐺 , and 𝑡𝑘,1 ·𝐺 ,

and additional 𝑡𝑘,𝑖 ·𝐺 after each transfer.

These values form the foundation of Thunderbolt’s cryptographic

shifting protocol. Through pairwise multiplications (e.g., 𝑡𝑎 · 𝑡𝑏 ·𝐺
or 𝑡𝑘,1 · 𝑡2𝑏 · 𝐺), parties can construct masked partial signatures

that preserve soundness and unforgeability while transferring sign-

ing power to the next owner. This design enables asynchronous,

liveness-free ownership transfers that remain secure under thresh-

old adversaries.

3.3 Phase 1: Prepare
The Thunderbolt protocol begins with the creation of an on-chain

UTXO that is jointly controlled by the sender (Alice) and a decen-

tralized committee. This UTXO forms the initial anchor in Bitcoin,

and its associated locking script ensures that it can only be un-

locked with a valid Schnorr signature co-produced by Alice and

the committee.

Joint Key Construction. To enable joint control of the UTXO,

Alice and the committee collaboratively construct a composite

public key by aggregating their respective signing materials:

• 𝑝𝑎 : Alice’s private key

• 𝑝𝑘 : The committee’s aggregate private key

• 𝑃 = 𝑝𝑎 ·𝐺 + 𝑝𝑘 ·𝐺 : The combined public key

They also independently generate nonce values:

• 𝑟𝑎 : Alice’s nonce for randomness

• 𝑟𝑘 : The committee’s nonce

• 𝑅 = 𝑟𝑎 ·𝐺 + 𝑟𝑘 ·𝐺 : The combined nonce commitment

The Schnorr challenge is computed as:

𝑐 = 𝐻 (𝑅 ∥ 𝑃 ∥ 𝑚)

where𝑚 is the Bitcoin transaction message (i.e., the transaction

digest to be signed), and 𝐻 is a cryptographic hash function.

The final signature is constructed as:

𝑠 = 𝑟𝑎 + 𝑟𝑘 + 𝑐 · (𝑝𝑎 + 𝑝𝑘)
which satisfies the Schnorr verification equation:

𝑠 ·𝐺 = 𝑅 + 𝑐 · 𝑃

Bitcoin UTXO Creation. Alice constructs and broadcasts a Bitcoin
transaction, denoted Tx0, that locks funds under the composite

public key 𝑃 . This transaction includes a Taproot output (or any

compatible script) that requires the above signature (𝑅, 𝑠) to unlock.
Importantly, this transaction appears on-chain as a standard

single-signer transaction, preserving privacy and indistinguishabil-

ity from typical Taproot outputs.

Committee Ledger Update. Once the transaction is confirmed

on-chain, the committee observes the blockchain and verifies that

the UTXO was created correctly with the expected public key 𝑃 .

Upon confirmation, the committee records Alice as the initial off-

chain owner of the UTXO in its local replicated state machine

(ledger). This off-chain state acts as the authoritative record for

future ownership transfers, ensuring that all signature generation

and delegation actions correspond to legitimate and valid UTXO

holders.

Security Responsibility. From this point forward, the committee

is responsible for:

• Ensuring that the UTXO exists and remains unspent.

• Refusing to sign with 𝑝𝑘 unless protocol rules are followed.

• Tracking ownership transitions and preventing double-

spending.

This step anchors the UTXO in Bitcoin while establishing the

cryptographic foundation for future asynchronous transfers. It

marks the beginning of Thunderbolt’s off-chain execution lifecycle,

enabling trust-minimized, liveness-free value transfer.

3.4 Phase 2: Transfer
After the initial UTXO is created and recorded as belonging to Alice,

she may transfer ownership off-chain to another user, Bob. The core

idea of this phase is to securely reassign the signing capability from

Alice to Bob without requiring synchronous communication or a

new on-chain transaction. This is achieved by leveraging the ho-

momorphic properties of Schnorr signatures and jointly computed

tweak secrets.

At a high level, the process involves two signature tweaks—one

performed by Alice, and the other by the committee. Each tweak

is constructed using a shared secret between the signer (Alice or

the committee) and Bob. These secrets are created using Diffie-

Hellman-style constructions from pre-committed public values.

Step 1: Alice’s Signature Tweak. Alice first computes a secret

offset known only to herself and Bob:

private𝑎,𝑏 = 𝑓 (𝑡𝑎 · 𝑡𝑏 ·𝐺)
This value is derived from the product of generator 𝐺 , Alice’s and

Bob’s tweak secrets. It is an indistinguishable scalar from a random

value to any third party. Alice then uses this to compute a tweaked

signature component:

𝑠′𝑎 = 𝑠𝑎 + private𝑎,𝑏 = 𝑟𝑎 + 𝑐 · 𝑝𝑎 + 𝑓 (𝑡𝑎 · 𝑡𝑏 ·𝐺)

Hongbo Wen, Hanzhi Liu, Jingyu Ke, Yanju Chen, Dahlia Malkhi, and Yu Feng

Here:

• 𝑟𝑎 is Alice’s original nonce,

• 𝑐 = 𝐻 (𝑅 ∥ 𝑃 ∥ 𝑚) is the Schnorr challenge as defined in

Phase 1,

• 𝑝𝑎 is Alice’s private key.

• 𝑓 is a cryptographic hash function for mapping a curve

point to a uniformly distributed scalar.

To convince the committee about the correctness of 𝑠′𝑎 , Alice
must prove:

𝐹 = (𝑠′𝑎 − 𝑠𝑎) ·𝐺 =? 𝑓 (𝑡𝑎 · 𝑡𝑏 ·𝐺) ·𝐺
Since 𝐹 is publicly known to the committee, verification can

be reformulated as follows: Given the public witnesses 𝐹 , 𝐺 , and

two commitments 𝑇𝑎 = 𝑡𝑎 ·𝐺 and 𝑇𝑏 = 𝑡𝑏 ·𝐺 , Alice is required to

demonstrate that 𝐹 was calculated correctly as 𝐹 = 𝑓 (𝑡𝑎 · 𝑡𝑏 ·𝐺) ·𝐺 .

This correctness can be proven by generating a Non-Interactive

Zero-Knowledge (NIZK) proof.
2
A cheaper alternative is requiring

Bob to be online during the transfer, since Bob knows 𝑡𝑏 and could

verify the correctness of 𝐹 directly.

If 𝑠′𝑎 and the proof are valid, the committee records this tweaked

signature component in its off-chain ledger (through a replicated

Byzantine committee) as Alice’s final contribution to the transfer.

Step 2: Committee’s Signature Tweak. Next, the committee per-

forms a similar tweak to its own signature component using another

shared secret with Bob:

private𝑘,𝑏 = 𝑓 (𝑡𝑘,1 · 𝑡2𝑏 ·𝐺)
This secret scalar is derived from the generator, committee’s tweak

secret 𝑡𝑘,1 and Bob’s second tweak value 𝑡2𝑏 . The committee then

updates its portion of the signature 𝑠𝑘 :

𝑠′
𝑘
= 𝑠𝑘 + private𝑘,𝑏 = 𝑟𝑘 + 𝑐 · 𝑝𝑘 + 𝑓 (𝑡𝑘,1 · 𝑡2𝑏 ·𝐺)

Where 𝑟𝑘 and 𝑝𝑘 are the committee’s nonce and private key, respec-

tively.

To allow Bob and other committee members to verify the tweak,

the committee provides the following relation with another NIZK

proof:

𝑠′
𝑘
·𝐺 = 𝑟𝑘 ·𝐺 + 𝑐 · 𝑝𝑘 ·𝐺 + 𝑓 (𝑡𝑘,1 · 𝑡2𝑏 ·𝐺) ·𝐺

After this update, the committee revokes access to the original

secret 𝑟𝑘 and commits to a new secret 𝑡𝑘,2 for future transfers. Reuse

of 𝑡𝑘,1 is forbidden to forward secrecy.

Final Reconstruction by Bob. By receiving both 𝑠′𝑎 and (later) 𝑠′
𝑘
,

Bob can recover the original valid Schnorr signature when needed.

Because only Bob knows both tweak values 𝑡𝑏 and 𝑡2𝑏 , only he can

subtract the combined offset (private𝑎,𝑏 + private𝑘,𝑏) and recon-

struct:

𝑠 = 𝑠′𝑎 + 𝑠′
𝑘
− private𝑎,𝑏 − private𝑘,𝑏 = 𝑠𝑎 + 𝑠𝑘

This allows Bob to either spend the UTXO on-chain (in Phase 3) or

transfer it again off-chain (in Phase 4), completing the ownership

transition securely and asynchronously.

2
The zero-knowledge proof involves three standard, efficiently provable computations:

two elliptic curve scalar multiplications 𝑡 = 𝑡𝑎 ·𝑇𝐵 and 𝐹 = ℎ ·𝐺 , and one evaluation

of the cryptographic hash function ℎ = 𝑓 (𝑡) with 𝑇𝐵 , 𝐹 ,𝐺 publicly known and

𝑡𝑎, 𝑡, ℎ are private inputs. These computations correspond to standard, well-established

arithmetic circuits (or gates) commonly used in zero-knowledge proof systems, making

proof generation straightforward and uncontroversial.

Alice CommitteeBob Bitcoin

Alice Bob BitcoinCommittee

Send Tx𝟎(Unlock = 𝒔) where 𝒔 == 𝒔𝒂 + 𝒔𝒄

Tx𝟎(Unlock = 𝒔)

Prepare

Send 𝒔𝒂$ = 𝒔𝒂 + private𝒂,𝒃

Verify 𝒔𝒂$ ∗ 𝑮 and store it

Tweak 𝒔𝒄 to 𝒔𝒄$ = 𝒔𝒄 + private𝒄,𝒃

Succeed

Transfer

Request signature

𝒔𝒂, 𝒔𝒄

𝒔 = 𝒔𝒂$ + 𝒔𝒄$ − private𝒂,𝒃 − private𝒄,𝒃

Spend Tx𝟎 with the signature

Sign

Figure 2: Thunderbolt Phase 3: Signing the UTXO using
shifted secrets.

3.5 Phase 3: Reassign
After receiving ownership of a UTXO fromAlice, Bob may decide to

transfer it off-chain to a third party, Zenni, instead of redeeming it

on-chain. Thunderbolt supports such recursive off-chain ownership

transitions through a repeatable cryptographic tweak mechanism

that ensures only the next recipient can unlock the final valid

signature.

This phase mirrors the structure of Phase 2: Bob and the com-

mittee both adjust their existing (already tweaked) signature parts

so that only Zenni—who holds new, secret tweak values—can re-

construct the valid full signature required to spend the UTXO. The

design preserves forward secrecy: previous owners (e.g., Alice or

Bob) can no longer derive the signature after the transfer is com-

pleted. Figure 3 visualizes the process. It highlights the interaction

between Bob, Zenni, and the committee, and shows how the signa-

ture state is securely updated for the next ownership handoff.

Zenni’s Setup. In order to receive a transfer, Zenni generates and

publishes two public tweak commitments, 𝑡𝑧 ·𝐺, 𝑡2𝑧 ·𝐺 . These values

serve the same purpose as Bob’s tweak secrets in Phase 2. They are

used to derive shared secrets with both Bob and the committee for

the next round of tweaking.

Committee’s Signature Update. Recall that the current committee

partial signature is:

𝑠′
𝑘
= 𝑠𝑘 + private

k,b
= 𝑟𝑘 + 𝑐 · 𝑝𝑘 + 𝑓 (𝑡𝑘,1 · 𝑡2𝑏 ·𝐺)

Thunderbolt: A Formally Verified Protocol for Off-Chain Bitcoin Transfers

To transfer ownership to Zenni, the committee performs a new

tweak using its next round secret 𝑡𝑘,2 and Zenni’s 𝑡2𝑐 :

private
k,z

= 𝑓 (𝑡𝑘,2 · 𝑡2𝑧 ·𝐺)
𝑠′′
𝑘
= 𝑠′

𝑘
− private

k, b
+ private

k, z

= 𝑠′
𝑘
− 𝑓 (𝑡𝑘,1 · 𝑡2𝑏 ·𝐺) + 𝑓 (𝑡𝑘,2 · 𝑡2𝑧 ·𝐺)

After performing this update, the committee revokes and refuses

to release 𝑠′
𝑘
or any past secrets, ensuring one-time use of each

signature state.

Bob’s Signature Update. After generating a joint secret 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑏,𝑧
with Zenni, Bob updates his previously tweaked signature 𝑠′𝑎 (from

Alice) by subtracting the joint secret withAlice and then re-tweaking

for Zenni:

𝑠′′𝑎 = 𝑠′𝑎 − private𝑎,𝑏 + private𝑏,𝑧

Substituting in the known values:

𝑠′′𝑎 = 𝑠′𝑎 − 𝑓 (𝑡𝑎 · 𝑡𝑏 ·𝐺) + 𝑓 (𝑡𝑏 · 𝑡𝑧 ·𝐺)

This operation cancels the previous secret influence, then adds a

new one that only Zenni can resolve using her private tweak 𝑡𝑧 .

Zenni’s Reconstruction. With the updated values 𝑠′′𝑎 and 𝑠′′
𝑘
, Zenni

(and only Zenni) can compute:

𝑠 = 𝑠′′𝑎 + 𝑠′′
𝑘
− 𝑓 (𝑡𝑏 · 𝑡𝑧 ·𝐺) − 𝑓 (𝑡𝑘,2 · 𝑡2𝑧 ·𝐺)

This cancels the newly added secrets and yields:

𝑠 = 𝑠𝑎 + 𝑠𝑘 = 𝑟𝑎 + 𝑟𝑘 + 𝑐 · (𝑝𝑎 + 𝑝𝑘)

Zenni now possesses the valid signature on the original UTXO and

is the only party capable of spending it. She may either repeat this

process to transfer to another recipient or redeem it on-chain using

Phase 4.

Forward Secrecy and Security. As in all previous phases, once the

transfer is completed:

• Bob loses access to the valid signature and cannot spend

the UTXO.

• The committee commits to fresh secrets 𝑡𝑘,3 for any further

use.

• The old secret 𝑡𝑘,2 is retired and not reused.

This ensures that each ownership transfer introduces fresh en-

tropy and guarantees that only the current owner (Zenni) has the

ability to derive the spendable signature.

3.6 Phase 4: Finalize
This phase completes the Thunderbolt transfer cycle by enabling

the final off-chain owner—Zenni—to redeem the original UTXO on

the Bitcoin network. Upon receiving ownership (via Phase 3), Zenni

may either continue transferring the UTXO off-chain or finalize it

on-chain. We focus on the latter case, which involves two layers: (1)

a cryptographic finalization step, where Zenni reconstructs the full

Schnorr signature originally committed by Alice and the committee,

and (2) an on-chain realization via an atomic swap, since Zenni

cannot directly spend the output due to the fixed structure of the

original transaction. Together, these two components ensure that

Thunderbolt transfers can be securely and asynchronously finalized

without requiring prior coordination or script introspection.

Bob CommitteeZenni Bitcoin

Bob Zenni BitcoinCommittee

Transfer Again

Send 𝒔𝒂"" = 𝒔𝒂" − private𝒂,𝒃 + private𝒃,𝒛

Verify 𝒔𝒂"" and store it

Tweak 𝒔𝒄" to 𝒔𝒄"" = 𝒔𝒄" − private𝒄,𝒃 + private𝒄,𝒛

Succeed

Sign

Request signature

𝒔𝒂"", 𝒔𝒄""

𝒔 = 𝒔𝒂"" + 𝒔𝒄"" − private𝒃,𝒛 − private𝒄,𝒛

Spend Tx𝟎 with the signature

Figure 3: Thunderbolt Phase 4: Signature reconstruction and
optional finalization by the recipient.

Requesting the Final Signature. To finalize the UTXO, Zenni must

reconstruct the original Schnorr signature associated with the Tap-

root output locked by Alice and the committee. Alice’s (tweaked)

partial signature share 𝑠′′𝑎 was published earlier in the delegation

chain; Zenni now requests the committee’s corresponding tweaked

share 𝑠′′
𝑘
, which is released only once for security and liveness. The

committee checks its ledger to confirm Zenni’s current ownership

and replies with:

𝑠′′
𝑘
= 𝑟𝑘 + 𝑓 (𝑡𝑘,2 · 𝑡2𝑧 ·𝐺) + 𝑐 · 𝑝𝑘

Zenni produces the full signature as described in Section 3, under

“Zenni’s Reconstruction”.

This yields a valid Schnorr signature (𝑅, 𝑠) where:
𝑅 = 𝑅𝑎 + 𝑅𝑘 , 𝑃 = 𝑃𝑎 + 𝑃𝑘 , 𝑐 = 𝐻 (𝑅 ∥ 𝑃 ∥ 𝑚)

Recipient Authorization. Although both 𝑠′′𝑎 and 𝑠′′
𝑘
may be pub-

licly visible, only Zenni—who knows both tweak scalars 𝑡𝑧 and

𝑡2𝑧—can cancel the delegated components and recover the correct

signature. Thus, control of the UTXO is cryptographically tied to

knowledge of these secrets, not to secrecy of the signature shares

themselves.

3.6.1 Phase 4.1: Atomic Swap Realization. While Zenni can recon-

struct a valid signature for the original UTXO (as described above),

he cannot directly redeem the funds from the original output, as

the transaction𝑇1 that spends𝑇0 was prepared and partially signed

at the time of the initial transfer (e.g., from Alice to Bob). Conse-

quently, Zenni’s address could not have been included in the output

script of𝑇1, and he is not authorized to spend the output directly. To

resolve this, Thunderbolt uses an Atomic Swap procedure in which

the committee temporarily fronts the funds and ensures settlement

through a sequence of verifiable Bitcoin transactions.

Hongbo Wen, Hanzhi Liu, Jingyu Ke, Yanju Chen, Dahlia Malkhi, and Yu Feng

Alice + Committee

𝑇!

𝑇"

(All)

(0)

Zenni + Committee
(Joint Escrow)

(All)

𝑇# Zenni
(All)

Committee

Committee

Committee

step 1

step 2

step 3

Figure 4: Overview of the atomic swap procedure.

Swap Construction. As shown in Figure 4, the atomic swap in-

volves three Bitcoin transactions, each fulfilling a specific role in

the handoff between the original UTXO and Zenni’s final receipt.

• 𝑇1: A transaction from Alice and the committee to the committee

This transaction spends the original UTXO 𝑇0. Its input requires

the original full signature from Alice and the committee. The

transaction has two outputs:

– Output[0]: Transfers the full monetary value to the commit-

tee’s wallet.

– Output[1]: A dummy output sending zero BTC to the com-

mittee, used only as a placeholder to encode dependency in

subsequent transactions.

Including this dummy output allows the committee to verify that

𝑇1 has been posted and confirmed on-chain, as it becomes an

input in the later transaction 𝑇3 which fronts money from the

Committee to Zenni.

• 𝑇2:A transaction from the committee to a joint Zenni+Committee

escrow address. This transaction locks funds from the commit-

tee’s own wallet into a 2-of-2 multisig output shared with Zenni.

This serves as a temporary escrow that ensures the funds will

only move if both Zenni and the committee cooperate. It does

not rely on any prior Thunderbolt logic and can be prepared

independently on Bitcoin.

• 𝑇3: A transaction from the Zenni+Committee escrow to Zenni.

This transaction completes the atomic swap. It has two inputs:

– Input[0]: Spends 𝑇1’s dummy output, requiring a signature

by the committee. This acts as a proof that 𝑇1 has been

finalized on-chain.

– Input[1]: Spends the escrow output from 𝑇2, requiring both

Zenni and the committee to sign.

The sole output sends the full value to Zenni, completing the

swap securely.

Swap Protocol. The atomic swap proceeds in the following steps,

illustrated in Figure 4:

(1) Escrow initialization. The committee first posts 𝑇2 on the

Bitcoin network, creating a joint 2-of-2 escrow between itself

and Zenni. This ensures the funds are temporarily reserved for

Zenni pending the completion of 𝑇1.

(2) Partial signature distribution.The committee provides Zenni

with its partial signature on the input of 𝑇1. Now Zenni alone

has the power to unlock 𝑇1 and release the funds to the Com-

mittee.

(3) Settlement witness preparation. The committee provides

Zenni with its signature on the first (dummy) input of 𝑇3, au-

thorizing "spending" of input[0], using SIGHASH_ALL to bind

the signature to the exact structure of 𝑇3. This signature will

allow Zenni to later prove on-chain that 𝑇1 was indeed settled

before claiming the funds from escrow.
3

(4) Triggering 𝑇1 finalization. Zenni sends the committee his

partial signature on the input of 𝑇1. With both parts now avail-

able, the committee can complete 𝑇1 and claim the funds from

the original UTXO T0.

(5) Final redemption. Once𝑇1 is confirmed on-chain, Zenni com-

pletes and broadcasts 𝑇3 using his knowledge of the multisig

escrow (from𝑇2) and the proof of settlement (from𝑇1’s dummy

output). As a result, Zenni receives through the escrow the

funds initially committed in T0.

This protocol ensures that neither party can gain unfair advan-

tage. Zenni only signs 𝑇1 after the committee commits its liquidity

to the escrow (via 𝑇2), and the committee only finalizes 𝑇1 once

Zenni commits to 𝑇3. The dummy output in 𝑇1 serves as a crypto-

graphic anchor, proving that the transaction chain progressed as

expected. While the committee could technically spend𝑇1’s dummy

output prematurely, doing so would break the atomicity of the pro-

tocol and provide no financial gain. Hence, a rational or honest

committee has no incentive to deviate.

3.7 Security Considerations
Thunderbolt relies on a consensus-based committee to mediate off-

chain ownership and partial signature generation. To ensure safety

and consistency across all phases of the protocol, the committee

must uphold a set of integrity-preserving rules. Below, we outline

the key safeness properties, explain why they are necessary, and

demonstrate how they can be enforced under a Byzantine fault-

tolerant (BFT) consensus framework such as PBFT.

Safety Properties. Each phase of the protocol imposes specific

obligations on the committee to preserve correctness, soundness,

and non-repudiation. The committee must enforce the following:

(1) Prepare Phase: Accept only UTXOs that are valid and

confirmed on the Bitcoin blockchain.

(2) Transfer Phase (Sender): Accept and record the sender’s

partial signature 𝑠′𝑎 only if it passes cryptographic verifica-

tion.

(3) Transfer Phase (Committee): Provide a correct and veri-

fiable partial signature 𝑠′
𝑘
consistent with the committee’s

ledger.

(4) SignPhase:Once the full signature is generated and handed
out, mark the corresponding UTXO as spent.

These checks ensure that: (1) only confirmed UTXOs are ac-

cepted, (2) ownership is transferred based on valid cryptographic

input, (3) the committee cannot produce inconsistent or conflicting

signatures, and (4) each UTXO is spent exactly once.

Enforcing Safeness via PBFT.. Tomaintain a consistent and tamper-

resistant off-chain ledger, Thunderbolt uses a PBFT-style consensus

protocol to replicate state across committee nodes. This ensures

3
Requiring the committee’s signature on the dummy output prevents frivolously

"spending" this output and blocking Zenni from redeeming her funds through𝑇3 .

Thunderbolt: A Formally Verified Protocol for Off-Chain Bitcoin Transfers

deterministic agreement even when up to 𝑓 out of 3𝑓 + 1 members

are faulty.

Property 1 (UTXO Confirmation). In the prepare phase, com-

mittee nodes independently validate that the referenced UTXO

exists on the Bitcoin chain and is unspent. This check is straightfor-

ward when all nodes follow the longest-chain rule and run trusted

Bitcoin full nodes. Once 2𝑓 + 1 members confirm the UTXO’s pres-

ence, the committee can safely record Alice as the initial owner.

Property 2 (Verification of 𝑠′𝑎). During a transfer, Alice pro-

vides a tweaked partial signature 𝑠′𝑎 . Each committee member veri-

fies:

𝑠′𝑎 ·𝐺 =? 𝑟𝑎 ·𝐺 + 𝑐 · 𝑝𝑎 ·𝐺 + 𝑓 (𝑡𝑎 · 𝑡𝑏 ·𝐺)

This is a standard Schnorr verification adjusted for the protocol’s

use of tweaks. Verification is local and deterministic, so honest

nodes will all agree whether the signature is valid.

Property 3 (Marking UTXO as Spent). Once Bob invokes the
sign phase to redeem the UTXO on-chain, the committee generates

and releases 𝑠′
𝑘
. At that point, all honest nodes update their local

state to mark the UTXO as spent. The PBFT protocol guarantees

that all non-faulty nodes reach this conclusion consistently.

The Challenge: Ensuring Signature Correctness. Property 3—en-

suring that the committee always produces the correct 𝑠′
𝑘
—is the

most subtle and security-critical requirement. Thunderbolt uses

threshold Schnorr signatures, where the private key 𝑝𝑘 and nonce

𝑟𝑘 are distributed among committee members. This means signa-

ture generation must be both robust (tolerating partial faults) and
sound (always yielding a valid signature).

Recent asynchronous Schnorr threshold signing protocols, such

as ROAST [3, 22], have demonstrated how to achieve these goals.

In such schemes, nodes commit to nonce values, compute a shared

challenge 𝑐 , and then locally generate responses that are linearly

aggregated. As long as 2𝑓 +1 out of 3𝑓 +1 nodes follow the protocol,

the aggregated signature will be valid and verifiable.

In Thunderbolt, the committee executes such a protocol inter-

nally during transfer and sign phases. It ensures that:

• All partial signatures are consistent with the agreed public

key and challenge.

• Any malicious or incorrect shares can be detected and ex-

cluded.

• Each resulting 𝑠′
𝑘
is consistent with the committee’s state

and ledger.

Summary. Together, the use of a BFT consensus protocol and a

threshold Schnorr signing scheme enables Thunderbolt to maintain:

• Correctness: Every signature is valid and attributable.

• Non-repudiation:Ownership transitions are cryptograph-
ically verifiable.

• Robustness: The system tolerates faults while ensuring

liveness.

• One-time spendability: Each UTXO is tracked and cannot

be spent twice.

These properties are central to Thunderbolt’s ability to provide

secure, asynchronous off-chain Bitcoin transfers with auditability

and minimal trust.

4 Formal Verification of Thunderbolt Protocol
To formally validate the correctness and security guarantees of

Thunderbolt, wemodel the protocol using theTamarinProver [15],
a symbolic analysis tool specialized for reasoning about crypto-

graphic protocols under adversarial conditions. Tamarin has been

successfully applied to verify protocols like the Signal messaging

protocol [?], TLS 1.3 [?], and the Messaging Layer Security (MLS)

group protocol [2]. It supports reasoning about stateful protocol

logic, algebraic properties (e.g., for Diffie-Hellman and Schnorr sig-

natures), and unbounded adversaries within the Dolev-Yao model.

We develop a rigorous formal model of Thunderbolt in Tamarin,

encompassing its key mechanisms: off-chain Schnorr signature

tweaking, asynchronous delegation, committee-based authoriza-

tion, and recursive ownership updates. This model enables us to

prove key security properties—such as signature unforgeability,

single-spend soundness, and protocol liveness—even in the pres-

ence of network asynchrony and malicious committee members.

4.1 Tamarin Prover in a Nutshell
Tamarin encodes protocols as multiset rewriting systems where

each state is a multiset of facts, and each transition is defined by

a rule that consumes and produces facts. Protocol executions are

sequences of rule applications called traces. Properties—such as

authentication or secrecy—are specified as temporal logic formulas

over all possible traces.

Facts. Facts represent pieces of state. They may be persistent

(e.g., Honest(c) indicating that committee member 𝑐 is honest) or

linear (e.g., Locked(utxo), which must be consumed exactly once).

Rules. A rule defines a protocol step. For instance, below is a

simplified rule where a user locks a UTXO:

rule LockUTXO: [Fr(r), Fr(p)] --> [Locked(utxo), Nonce(r), Key(p)]

Listing 1: Toy rule: UTXO locking

Here, Fr(x) means 𝑥 is freshly generated, and the rule outputs

facts indicating the UTXO is now locked under (𝑟, 𝑝).

Traces. A trace is a sequence of rule applications. For example,

one trace might be:

LockUTXO → Transfer→ Finalize

Each application transforms the system state by updating the mul-

tiset of facts.

Security Properties. Properties are written as first-order temporal

logic lemmas. For example, the following lemma enforces that any

revealed secret nonce must have been explicitly released:

lemma NoImplicitLeak:
"All r #i. Out(r)@i ==> Exists #j. Leak(r)@j"

Listing 2: Example lemma: no silent leakage

This states that for any trace where the adversary learns 𝑟

(Out(r)), there must exist an earlier or concurrent point where

the protocol intentionally released it (Leak(r)).

Hongbo Wen, Hanzhi Liu, Jingyu Ke, Yanju Chen, Dahlia Malkhi, and Yu Feng

Algebra and AdversaryModel. Tamarin operates in the Dolev-Yao

model: the adversary controls the network and can intercept, replay,

delay, or reorder messages. Tamarin also supports reasoning over

algebraic structures like cyclic groups, modular exponentiation, and

homomorphic operations—critical for modeling Schnorr signatures

and key tweaks.

Summary. The Tamarin Prover allows us to symbolically simu-

late the Thunderbolt protocol, apply adversarial actions, and verify

whether our protocol guarantees continue to hold across all possible

traces. The following sections describe how we encode Thunder-

bolt’s protocol logic into Tamarin and how we formally verify its

key correctness properties.

4.2 Symbolic Modeling of Thunderbolt
We formalize Thunderbolt using Tamarin’s multiset rewriting rules

and algebraic term system. Our model captures users, the threshold

committee, off-chain ownership, Schnorr signatures, and tweakable

signature shifts.

4.2.1 Entities and Objects.

• Users: Alice, Bob, Carol, etc., participate in UTXO transfer.

• Committee: A set {𝑐1, . . . , 𝑐𝑛} with 𝑛 = 3𝑓 + 1 signers.

• Adversary: A Dolev-Yao attacker who can delay, replay,

and reorder messages, and statically corrupt up to 𝑓 com-

mittee nodes.

UTXO Identifiers. Unique symbolic terms for each off-chain UTXO.

Schnorr Signature.

𝑠 = 𝑟𝑎 + 𝑟𝑘 + 𝑐 · (𝑝𝑎 + 𝑝𝑘), 𝑐 = 𝐻 (𝑅 ∥ 𝑃 ∥ 𝑚)

Tweaked Signatures.

𝑠′ = 𝑠 +𝑇1 +𝑇2, 𝑇1 = 𝑡𝑎 · 𝑡𝑏 ·𝐺, 𝑇2 = 𝑡𝑘 · 𝑡𝑏2 ·𝐺

4.2.2 Rules and State Transitions.

Prepare. Before Alice transfers a UTXO, she must first lock it on-

chain under a 2-of-2 signaturewith the committee. The PrepareUTXO
rule (Listing 3) emits all the secret values and registers the initial

Locked(utxo) state.

rule PrepareUTXO: [Fr(id), Fr(sender)]
--> [Locked(id), !OwnerState(sender, id, 'Pending'), !UTXO(id)]

Listing 3: Tamarin rule for preparing a UTXO

Transfer. To transfer ownership from Alice to Bob off-chain,

Thunderbolt shifts the signature using two tweaks known only

to Bob. The Transfer rule (Listing 4) rule updates the owner and
records the new tweaked signature state.

rule Transfer:
[!Committee(committee), !OwnerState(sender, id, 'Approved'),
!TweakFor(sender, receiver, t_sr),
!TweakFor(committee, receiver, t_cr), Fr(sig), !UTXO(id)]

-->
[!OwnerState(receiver, id, 'Pending'),
TweakedSig(receiver, sig), ValidSignature(sig),
HasTweakSecret(receiver),
TransferEvent(committee, sender, receiver, id)]

Listing 4: Tamarin rule for off-chain ownership transfer

Finalize. Once Bob wants to spend the UTXO on-chain, he re-

quests the committee’s signature. The Finalize rule (Listing 5)

rule consumes the locked state and emits the finalized signature.

rule Finalize: [!OwnerState(receiver, id, 'Approved'), Locked(id)]
--> [Finalized(id), TransferFinalized(receiver, id), Spent(id)]

Listing 5: Tamarin rule for finalizing a UTXO

Reassign. Bob can recursively transfer the UTXO to Carol by

applying a new tweak. The Reassign rule (Listing 6) rule shifts

ownership again and updates the ledger.

rule Reassign:
[!Committee(committee), !OwnerState(sender, id, 'Approved'),

!TweakFor(sender, receiver, t_sr),
!TweakFor(committee, receiver, t_cr), Fr(sig), !UTXO(id)]

-->
[!OwnerState(receiver, id, 'Pending'),

TweakedSig(receiver, sig),
ValidSignature(sig), HasTweakSecret(receiver),
TransferEvent(committee, sender, receiver, id)]

Listing 6: Tamarin rule for reassignment to next user

4.3 Verified Properties and Logical Definitions
We now present the five core security and liveness properties that

Thunderbolt enforces via its Tamarin model. Table 1 summarizes

each property and its corresponding logical form.

Ownership Soundness. This property ensures that only the in-

tended recipient (e.g., Bob) can reconstruct a valid Schnorr signature

from the tweaked signature share 𝑠′. The adversary cannot guess

or forge tweak values to impersonate recipients. This guarantees

secure, exclusive ownership.

lemma OwnershipSoundness: all-traces "All sig #i.
ValidSignature(sig)@#i ==> Exists u #j. HasTweakSecret(u)@#j"

Listing 7: Lemma for ownership soundness

Unforgeability. This lemma shows that no party can produce

a valid Schnorr signature unless a quorum of the committee has

contributed honestly. It captures the essential threshold assumption:

with fewer than 2𝑓 + 1 honest nodes, signature generation cannot

succeed.

lemma Unforgeability: all-traces "All sig #i.
ValidSignature(sig)@#i ==>
Exists committee sender receiver id #j #k.

TweakedSig(receiver, sig)@#j & HasTweakSecret(receiver)@#j &
CommitteeApproved(committee, id, sender)@#k & #k<#j & #j=#i"

Listing 8: Lemma for unforgeabilitywith committee approval

One-Time Spendability. A UTXO can only be finalized once. This

lemma prevents double-spending in the finalize phase. Tamarin

enforces this via linear logic: once a fact like Finalized(utxo) can
only occur once for any given UTXO.

lemma OneTimeSpendability: all-traces "All utxo #i #j.
Finalized(utxo)@i & Finalized(utxo)@j ==> i = j"

Listing 9: Lemma for one-time spendability

Thunderbolt: A Formally Verified Protocol for Off-Chain Bitcoin Transfers

Table 1: Summary of verified Thunderbolt protocol properties and their verification steps in Tamarin.

Property Description # of verification steps
Ownership Soundness Only the recipient can reconstruct the signature from shared tweaks 2

Unforgeability No valid signature can be generated without 2𝑓 + 1 committee shares 2

One-Time Spendability A UTXO may only be finalized once 12

Liveness (transfer) Any honest user with a responsive quorum can complete transfer 43

Liveness (finalize) Any honest user with a responsive quorum can complete finalization 225

Liveness. Provided the user is honest and at least 2𝑓 +1 committee

members respond, either a transfer or finalization will eventually

succeed. We split this into three concrete lemmas capturing increas-

ingly minimal paths to finality:

lemma CanFinalize: exists-trace
"Exists id committee sender receiver #i #ij #j #k #l.

Prepared(id)@#i &
CommitteeApproved(committee, id, sender)@#ij &
TransferEvent(committee, sender, receiver, id)@#j &
CommitteeApproved(committee, id, receiver)@#k &
Finalized(id)@#l & #i < #ij & #ij < #j & #j < #k & #k < #l"

Listing 10: Liveness: full finalize path with approvals

lemma TransferCompletionPossible: exists-trace
"Exists id committee sender receiver #i #j #k #l.

Prepared(id)@#i &
CommitteeApproved(committee, id, sender)@#j &
TransferEvent(committee, sender, receiver, id)@#k &
Finalized(id)@#l & #i < #j & #j < #k & #k < #l"

Listing 11: Liveness: transfer completion path

lemma FinalizationSuccessPossible: exists-trace
"Exists id committee sender receiver #i #j #k #l.

Prepared(id)@#i &
TransferEvent(committee, sender, receiver, id)@#j &
CommitteeApproved(committee, id, receiver)@#k &
Finalized(id)@#l & #i < #j & #j < #k & #k < #l"

Listing 12: Liveness: receiver finalized after approval

Adversarial Trace Simulation and Security Intuition. To validate

that the model rejects unsafe executions, we simulate adversarial

traces where an attacker attempts to double-spend a UTXO by is-

suing multiple Finalize actions. Due to the linear consumption of

the Locked(utxo) fact in Rule 5, Tamarin correctly blocks any such

replays, confirming the one-time spendability property (Lemma 9).

We further simulate equivocation attacks, vote replays, and off-

path tweak applications, all of which are rejected by our symbolic

constraints and consistency lemmas.

Beyond formal proofs, Thunderbolt’s defenses also hold under

intuitive adversarial scenarios. As shown in Table 2, a malicious

committee cannot front-run the recipient, since the final Schnorr

signature includes tweak terms 𝑇1 = 𝑡𝑎 · 𝑡𝑏 ·𝐺 and 𝑇2 = 𝑡𝑘 · 𝑡𝑏2 ·𝐺 ,

known only to the recipient. Similarly, vote reuse or signature equiv-

ocation is blocked by quorum tracking per-UTXO, enforced both

in the replicated ledger and in the symbolic model. The protocol

remains live under partial committee failures thanks to its asyn-

chronous threshold signature design, which tolerates up to 𝑓 faulty

nodes. Finally, forgery attempts fail cryptographically: without

knowledge of the tweak scalars, adversaries cannot derive a valid

signature due to the hardness of the discrete logarithm problem.

These intuitive defenses align directly with our formal properties,

reinforcing Thunderbolt’s robustness in real-world adversarial set-

tings.

4.4 Results and Summary
We formally verified the Thunderbolt protocol using the Tamarin

Prover, modeling all key protocol transitions and security prop-

erties at the symbolic level. Our formalization includes 513 lines

of Tamarin code, capturing the core behavioral rules of Thunder-

bolt—initial setup, signature tweaking, off-chain transfers, commit-

tee authorization, and on-chain finalization.

Across this model, we verify five safety properties and three

liveness properties, covering both universal and existential guar-

antees. The partial verification results are summarized in Table 1,

with complexity measured by the number of symbolic proof steps

required.

As expected, safety properties such as one-time spendability

and unforgeability are efficiently discharged by Tamarin’s built-in

SMT solver. These properties encode local invariants and ledger

consistency checks that are straightforward to verify in the multiset

rewriting model.

In contrast, liveness properties—particularly those involving

finalization under partial quorum responsiveness—require signifi-

cantly more effort. These lemmas involve reasoning about asynchro-

nous traces, committee coordination, and progress under eventual

message delivery. For example, the finalizationSuccessPossible
lemma (lemma 12) requires 225 symbolic steps, including interac-

tive guidance to construct viable execution paths and instantiate

existential variables.

These results confirm that Thunderbolt achieves strong sym-

bolic correctness guarantees across adversarial conditions. Even in

the presence of delayed communication, reordering, and Byzantine

committee behavior, the protocol provably ensures that delegated

UTXOs are non-replayable, unforgeable, and eventually redeemable

on-chain. Future extensions may incorporate finer-grained crypto-

graphic modeling (e.g., explicit signature composition and tweak

arithmetic), though this would increase both symbolic complexity

and proof effort.

5 Deployment
We conclude with a brief discussion of the practical steps required

to deploy Thunderbolt on Bitcoin main-net.

5.1 Committee and Incentives
A Thunderbolt committee must (i) hold long-lived threshold key

material, (ii) run a Byzantine-fault-tolerant replication layer (e.g.

PBFT), and (iii) expose two authenticated API calls—Transfer and

Finalize. Three deployment models are immediately available:

Hongbo Wen, Hanzhi Liu, Jingyu Ke, Yanju Chen, Dahlia Malkhi, and Yu Feng

Table 2: Adversarial strategies and corresponding Thunderbolt defenses.

Threat Scenario Defense Mechanism
Double-spend or replay Linear UTXO state and consensus ledger

Committee front-running Tweak secrets known only to recipient

Signature equivocation or vote reuse Quorum binding per UTXO and state consistency

Committee denial-of-service Asynchronous threshold signatures tolerating 𝑓 faults

Tweak extraction or forgery Hardness of discrete logarithm in the Schnorr group

(1) Side-chain federation. Existing multisignature custodial fed-

erations (e.g. Liquid or RSK) already operate with 𝑛! =!11–15

signers and an on-chain watchtower infrastructure. Reusing

those operators as committee nodes merely requires adding the

ROAST signing wrapper and the replicated ownership ledger.

(2) Stake-weighted service DAO. A new set of operators can

register Taproot public keys on-chain and bond stake via the

outputs of a specific opcode
4
. A slashable log (similar to watch-

towers) penalizes nodes that refuse to sign after a service re-

quest, aligning incentives with liveness guarantees.

(3) Infrastructure-as-a-service. Cloud HSM providers already

expose threshold-ECDSA endpoints; exposing FROST-Schnorr

shares is a minor software extension. Users can mix indepen-

dent vendors to reach 3𝑓 + 1 diversity.

In all three settings, fee revenue is straightforward: the Finalize

API can deduct a small service-fee output in the redemption trans-

action, payable to a fee-collector key controlled by the committee.

Because Thunderbolt’s on-chain footprint is a single Taproot spend,

the fee can be priced competitively against Lightning channel clo-

sures or adaptor-signature swaps.

5.2 Taproot Policy Template
Thunderbolt requires only a standard BIP-340 Schnorr key and thus

fits natively into the existing Taproot commitment structure. A

recommended output template is:

scriptPubKey = OP_1 <P_agg>

where 𝑃agg = 𝑃𝑎 + 𝑃𝑘 is the aggregated 2-of-2 public key. No

script path is needed, preserving indistinguishability from ordi-

nary single-party Taproot spends and avoiding extra witness bytes.

Wallet-side changes are limited to recognising Thunderbolt outputs

(by prior out-of-band metadata) and invoking the Finalize RPC

instead of generating a local signature.

5.3 Handling Chain Re-organisations
Because ownership is tracked off-chain, a deep chain re-organisation

that removes the funding transaction would invalidate all derived

transfer records. We adopt the standard practice from side-chains

and coin-join wallets: the committee waits for 𝑘 Bitcoin confir-

mations (default 𝑘! =!6) before accepting a Prepare request. If a

re-org nevertheless occurs, the ledger entry is rolled back automat-

ically—no security violation arises because the UTXO no longer

exists on-chain, and any subsequent Finalize call will fail Bitcoin

consensus validation.

4
OP_CHECKLOCKTIMEVERIFY

6 Discussion and Future Work
Thunderbolt is designed to be practical, formally analyzable, and

minimally invasive to Bitcoin’s consensus layer. While our pro-

tocol introduces a novel delegation model with strong security

guarantees, several aspects of its current formulation open fruitful

directions for future exploration.

Static Committee Configuration. Our protocol assumes a stati-

cally defined committee whose public keys are known to all partic-

ipants. This simplifies threshold coordination and security analysis.

In practice, many deployments may prefer a dynamic or rotating

committee, especially in federated or DAO-like settings. Support-

ing committee reconfiguration without compromising ownership

continuity or threshold guarantees is a promising extension, and

could be achieved via re-keying protocols or verifiable resharing

mechanisms, both of which are orthogonal to the core design of

Thunderbolt.

Limited Privacy Guarantees. Thunderbolt, by design, prioritizes

correctness, usability, and verifiability over privacy. Transfer com-

mitments and on-chain settlement signatures are observable, which

may leak limited metadata over time. This limitation stems from the

inherent transparency of Bitcoin’s base layer rather than any aspect

of our protocol design. Nevertheless, integrating well-established

privacy-preserving primitives—such as key blinding, zero-knowledge

proofs, or adaptor signatures—could enhance confidentiality in a

modular and composable fashion.

Quorum Responsiveness Assumption. Our liveness guarantees
require at least 2𝑓 + 1 responsive committee members during a

transfer or finalization attempt. This reflects a standard assumption

in threshold cryptographic systems and is not unique to Thun-

derbolt. In scenarios with extended downtime or partial outages,

availability may be temporarily degraded. However, committee se-

lection and incentive mechanisms (e.g., staking, slashing, or relay

fallback) can be incorporated at the deployment level to mitigate

this risk without altering the core protocol semantics.

Lack of Explicit Incentive Layer. Thunderbolt abstracts away the

incentive mechanics for committee operation, focusing instead on

the correctness of the protocol’s core logic. This design decision

follows prior work in threshold signing and multi-party compu-

tation, where incentive compatibility is treated as an orthogonal

systems layer. Incorporating native fee mechanisms, committee

rotation policies, or proof-of-participation could further strengthen

protocol robustness without requiring changes to Thunderbolt’s

cryptographic foundation.

Bitcoin Layer Constraints. Because Thunderbolt operates entirely
within the constraints of Bitcoin’s scripting and signature model,

Thunderbolt: A Formally Verified Protocol for Off-Chain Bitcoin Transfers

it inherits certain expressiveness and fee model limitations from

the base chain. Notably, the absence of covenant-style constructs

or introspective opcodes limits our ability to enforce recursive

constraints purely on-chain. However, this design choice ensures

maximal compatibility with existing infrastructure and aligns with

Bitcoin’s conservative consensus philosophy. Future soft forks (e.g.,

‘OP_CAT‘, ‘OP_TXHASH‘) may enable more expressive construc-

tions that extend Thunderbolt’s capabilities even further.

7 Conclusion
We presented Thunderbolt, a formally verified protocol for secure,

asynchronous off-chain transfer of Bitcoin UTXOs. Thunderbolt

enables non-interactive ownership delegation by combining the

linearity of Schnorr signatures with a quorum-based committee

that tracks off-chain state under Byzantine fault tolerance. Through

recursive signature tweaking, the protocol supportsmulti-hop trans-

fers without requiring prior coordination, online presence, or pre-

established channels, and guarantees that only the designated re-

cipient can reconstruct the final signature.

To validate security, we modeled Thunderbolt in the Tamarin

Prover and verified key safety and liveness properties, including

ownership soundness, unforgeability, single-spend finality, and

progress under quorum delays. Our results demonstrate that Thun-

derbolt remains robust even under asynchronous network condi-

tions and partial committee compromise.

References
[1] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory

Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille.

2014. Enabling blockchain innovations with pegged sidechains. URL:
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains 72 (2014), 201–224.

[2] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad

Omara, and Katriel Cohn-Gordon. 2023. The Messaging Layer Security (MLS)

Protocol. RFC 9420. doi:10.17487/RFC9420

[3] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin.

2023. SPRINT: High-Throughput Robust Distributed Schnorr Signatures. Cryp-

tology ePrint Archive, Paper 2023/427. https://eprint.iacr.org/2023/427

[4] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2018. ProVerif

2.00: automatic cryptographic protocol verifier, user manual and tutorial. Version
from 16 (2018), 05–16.

[5] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

OSDI.
[6] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der

Merwe. 2017. A Comprehensive Symbolic Analysis of TLS 1.3. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,

NY, USA, 1773–1788. doi:10.1145/3133956.3134063

[7] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter,

and Michael Bæksvang Østergård. 2020. Fast Threshold ECDSA with Honest

Majority. Cryptology ePrint Archive, Paper 2020/501. https://eprint.iacr.org/

2020/501

[8] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2022. Practi-

cal Asynchronous High-threshold Distributed Key Generation and Distributed

Polynomial Sampling. Cryptology ePrint Archive, Paper 2022/1389. https:

//eprint.iacr.org/2022/1389

[9] Christian Decker and Roger Wattenhofer. 2015. A fast and scalable payment

network with bitcoin duplex micropayment channels. In Stabilization, Safety, and
Security of Distributed Systems: 17th International Symposium, SSS 2015, Edmonton,
AB, Canada, August 18-21, 2015, Proceedings 17. Springer, 3–18.

[10] Joseph Dryja and Tadge Poon. 2016. The Bitcoin Lightning Network: Scalable off-

chain instant payments. https://lightning.network/lightning-network-paper.pdf.

[11] Rosario Gennaro, Steven Goldfeder, and Seny Kamara. 2020. One Round Thresh-

old ECDSA with Identifiable Abort. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT). Springer,
520–550.

[12] Chelsea Komlo and Ian Goldberg. 2020. FROST: Flexible Round-Optimized

Schnorr Threshold Signatures. In USENIX Security Symposium.

[13] Lightning Labs. n.d.. Taproot Assets. https://docs.lightning.engineering/the-

lightning-network/taproot-assets Builder’s Guide to the LND Galaxy.

[14] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-

vatsan Ravi. 2019. Concurrency and Privacy with Payment-Channel Networks.

arXiv:1911.09148 [cs.CR] https://arxiv.org/abs/1911.09148

[15] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The

Tamarin Prover for the Symbolic Analysis of Security Protocols. In International
Conference on Computer Aided Verification (CAV).

[16] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

https://bitcoin.org/bitcoin.pdf (2008).

[17] Charmaine Ndolo and Florian Tschorsch. 2023. On the (Not So) Surprising Impact

of Multi-Path Payments on Performance and Privacy in the Lightning Network.

Cryptology ePrint Archive, Paper 2023/1624. https://eprint.iacr.org/2023/1624

[18] Jonas Nick, Tim Ruffing, and Yannick Seurin. 2020. MuSig2: Simple Two-Round

Schnorr Multi-Signatures. Cryptology ePrint Archive, Paper 2020/1261. doi:10.

1007/978-3-030-84242-0_8

[19] Andrew Poelstra. 2017. Scriptless Scripts. Presented at BPASE ’17. https:

//diyhpl.us/wiki/transcripts/bpase/2017/scriptless-scripts/.

[20] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable

Off-Chain Instant Payments. https://lightning.network/lightning-network-

paper.pdf.

[21] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2017.

Settling payments fast and private: Efficient decentralized routing for path-based

transactions. arXiv preprint arXiv:1709.05748 (2017).
[22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique

Schröder. 2022. ROAST: Robust Asynchronous Schnorr Threshold Signatures.

Cryptology ePrint Archive, Paper 2022/550. doi:10.1145/3548606.3560583

[23] Benedikt Schmidt, Simon Meier, and Cas Cremers. 2012. Automated analysis of

Diffie-Hellman protocols and advanced security properties. In 25th IEEE Computer
Security Foundations Symposium (CSF). IEEE, 78–94.

[24] Pieter Wuille and et al. 2020. BIP340: Schnorr Signatures for secp256k1. (2020).

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki.

[25] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Gueta, and Ittai Abraham.

2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In Proceedings
of the ACM Symposium on Principles of Distributed Computing (PODC).

https://doi.org/10.17487/RFC9420
https://eprint.iacr.org/2023/427
https://doi.org/10.1145/3133956.3134063
https://eprint.iacr.org/2020/501
https://eprint.iacr.org/2020/501
https://eprint.iacr.org/2022/1389
https://eprint.iacr.org/2022/1389
https://docs.lightning.engineering/the-lightning-network/taproot-assets
https://docs.lightning.engineering/the-lightning-network/taproot-assets
https://arxiv.org/abs/1911.09148
https://arxiv.org/abs/1911.09148
https://eprint.iacr.org/2023/1624
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://diyhpl.us/wiki/transcripts/bpase/2017/scriptless-scripts/
https://diyhpl.us/wiki/transcripts/bpase/2017/scriptless-scripts/
https://doi.org/10.1145/3548606.3560583

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Off-Chain Transaction Mechanisms
	2.2 Threshold Schnorr Signatures
	2.3 Consensus-Based Committees
	2.4 Adapter Signatures and Scriptless Contracts
	2.5 Formal Verification of Crypto Protocols
	2.6 Threat Model and Assumptions

	3 Thunderbolt Protocol Design
	3.1 Protocol Overview
	3.2 Crypto Primitives: Schnorr Signatures
	3.3 Phase 1: Prepare
	3.4 Phase 2: Transfer
	3.5 Phase 3: Reassign
	3.6 Phase 4: Finalize
	3.7 Security Considerations

	4 Formal Verification of Thunderbolt Protocol
	4.1 Tamarin Prover in a Nutshell
	4.2 Symbolic Modeling of Thunderbolt
	4.3 Verified Properties and Logical Definitions
	4.4 Results and Summary

	5 Deployment
	5.1 Committee and Incentives
	5.2 Taproot Policy Template
	5.3 Handling Chain Re‑organisations

	6 Discussion and Future Work
	7 Conclusion
	References

