[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Exploring Microbial Contributions to Nutraceutical Production: From Natural to Designed Foods

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

For ages, societies throughout the world have used fermentation as a traditional method for food processing and preservation, helping to create a wide range of staple foods and delicacies. Due to its possible health advantages, mostly attributable to the inclusion of bioactive substances known as nutraceuticals, fermented foods have attracted a lot of interest recently. This in-depth analysis examines the wide range of nutraceuticals present in fermented foods, as well as how they are made, what health benefits they may have, and how they may be used in the nutraceutical and functional food businesses. By stressing how important fermented foods are as a source of beneficial bioactive components that support human health and well-being. Numerous bioactive substances found in fermented foods have been the subject of recent scientific studies. These molecules may find use in the pharmaceutical and nutraceutical sectors. Streptococcus thermophilus, Lactobacillus gasseri, Lactobacillus delbrueckii, Lactobacillus bulgaricus, and Lactobacillus johnsonii are just a few examples of the probiotic bacteria that live in fermented foods and formulas. This review elucidates the importance of microorganisms sourced from fermented foods as potent agents for diverse nutraceuticals and their potential role in preventing various diseases whilst serving as functional food supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Galanakis, C. M. (2021). Functionality of food components and emerging technologies. Foods, 10(1), 128. https://doi.org/10.3390/foods10010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Puri, V., Nagpal, M., Singh, I., Singh, M., Dhingra, G. A., Huanbutta, K., Dheer, D., Sharma , A., Sangnim, T.(2022). A comprehensive review on nutraceuticals: Therapy support and formulation challenges. Nutrients, 14(21), 4637. https://doi.org/10.3390/nu14214637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sachdeva, V., Roy, A., & Bharadvaja, N. (2020). Current prospects of nutraceuticals: A review. Current Pharmaceutical Biotechnology, 21(10), 884–896. https://doi.org/10.2174/1389201021666200130113441

    Article  CAS  PubMed  Google Scholar 

  4. Barve, K. H., Kulkarni, Y. A., & Gaikwad, A. B. (2016). Nutraceuticals as therapeutic agents for inflammation. Fruits, Vegetables, and Herbs. https://doi.org/10.1016/B978-0-12-802972-5.00007-X

    Article  Google Scholar 

  5. Ayivi, R. D., Gyawali, R., Krastanov, A., Aljaloud, S. O., Worku, M., Tahergorabi, R., da Silva, R. C., Ibrahim, S. (2020). Lactic acid bacteria: Food safety and human health applications. Dairy, 1(3), 202–232. https://doi.org/10.3390/dairy1030015

    Article  Google Scholar 

  6. Watson, R. R., Singh, R. B., & Takahashi, T. (Eds.). (2018). The role of functional food security in global health. Academic Press.

    Google Scholar 

  7. Wang, J., Guleria, S., Koffas, M. A., & Yan, Y. (2016). Microbial production of value-added nutraceuticals. Current Opinion in Biotechnology, 37, 97–104.

    Article  PubMed  Google Scholar 

  8. Damián, M. R., Cortes-Perez, N. G., Quintana, E. T., Ortiz-Moreno, A., Garfias Noguez, C., Cruceño-Casarrubias, C. E., Sánchez Pardo, M. E., & Bermúdez-Humarán, L. G. (2022). Functional foods, nutraceuticals and probiotics: A focus on human health. Microorganisms, 10(5), 1065. https://doi.org/10.3390/microorganisms10051065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caponio, G. R., Lippolis, T., Tutino, V., Gigante, I., De Nunzio, V., Milella, R. A., & Notarnicola, M. (2022). Nutraceuticals: Focus on anti-inflammatory, anti-cancer, and antioxidant properties in the gastrointestinal tract. Antioxidants, 11(7), 1274. https://doi.org/10.3390/antiox11071274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahore, K., & Rani, S. (2019). A review on medicinal importance, pharmacological activity and toxicology of “nutraceuticals.” Journal of Pharmaceutical Innovation, 8(2), 441–449.

    CAS  Google Scholar 

  11. Nasri, H., Baradaran, A., Shirzad, H., & Kopaei, M. R. (2014). New concepts in nutraceuticals as an alternative to pharmaceuticals. International Journal of Preventive Medicine, 5(12), 1487–1499.

    PubMed  PubMed Central  Google Scholar 

  12. de Carvalho, N. M., Costa, E. M., Silva, S., Pimentel, L., Fernandes, T. H., & Pintado, M. E. (2018). Fermented foods and beverages in human diet and their influence on gut microbiota and health. Fermentation, 4(4), 90. https://doi.org/10.3390/fermentation4040090

    Article  CAS  Google Scholar 

  13. Kiczorowski, P., Kiczorowska, B., Samolińska, W., Szmigielski, M., & Winiarska-Mieczan, A. (2022). Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Scientific reports, 12(1), 13422. https://doi.org/10.1038/s41598-022-17782-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tamang, J. P., Thapa, N., Tamang, B., Rai, A., & Chettri, R. (2015). Microorganisms in fermented foods and beverages. Health Benefits of Fermented Foods and Beverages. https://doi.org/10.1201/b18279

    Article  Google Scholar 

  15. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, 1–19. https://doi.org/10.3389/fbioe.2021.612285

    Article  Google Scholar 

  16. Tamang, J. P., Holzapfel, W. H., Shin, D. H., & Felis, G. E. (2017). Editorial: Microbiology of ethnic fermented foods and alcoholic beverages of the world. Frontiers in Microbiology, 8(1377), 1–2. https://doi.org/10.3389/fmicb.2017.01377

    Article  Google Scholar 

  17. Keservani, R. K., Kesharwani, R. K., Sharma, A. K., Vyas, N., & Chadokar, A. (2010). Nutritional supplements: An overview. International Journal of Current Pharmaceutical Review and Research, 1(1A), 59–75.

    Google Scholar 

  18. Bera, S. (2020). Nutraceutical aspect of canthaxanthin in animal feed technology. European Journal of Molecular & Clinical Medicine, 7(07), 2020.

    Google Scholar 

  19. González Peña M. A., Ortega Regules, A. E., Anaya de Parrodi C., & Lozada-Ramírez J. D. (2023). Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids-A Review. Plants (Basel, Switzerland), 12(2), 313. https://doi.org/10.3390/plants12020313

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Z., Li, X., Sang, S., McClements, D. J., Chen, L., Long, J., Jiao, A., Jin, Z., & Qiu, C. (2022). Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application. Foods (Basel, Switzerland), 11(15), 2189. https://doi.org/10.3390/foods11152189

    Article  CAS  PubMed  Google Scholar 

  21. Aatif, M. (2023). Current understanding of polyphenols to enhance bioavailability for better therapies. Biomedicines, 11(7), 2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaudhary, D., Giri, S., & Lamichhane, G. (2023). Concise review on Asparagus racemosus and its role as nutraceuticals and functional foods. Herbs, Spices and their Roles in Nutraceuticals and Functional Foods. https://doi.org/10.1016/B978-0-323-90794-1.00004-1

    Article  Google Scholar 

  23. Arcusa, R., Carillo, J. Á., Cerdá, B., Durand, T., Gil-Izquierdo, Á., Medina, S., et al. (2023). Ability of a polyphenol-rich nutraceutical to reduce central nervous system lipid peroxidation by analysis of oxylipins in urine: A randomized, double-blind, placebo-controlled clinical trial. Antioxidants, 12(3), 721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voidarou, C., Antoniadou, Μ, Rozos, G., Tzora, A., Skoufos, I., Varzakas, T., Lagiou, A., & Bezirtzoglou, E. (2020). Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods (Basel, Switzerland), 10(1), 69. https://doi.org/10.3390/foods10010069

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4), 106. https://doi.org/10.3390/fermentation6040106

    Article  CAS  Google Scholar 

  26. Mannaa, M., Han, G., Seo, Y. S., & Park, I. (2021). Evolution of food fermentation processes and the use of multi-omics in deciphering the roles of the microbiota. Foods, 10(11), 2861. https://doi.org/10.3390/foods10112861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rusu, A. V., Trif, M., & Rocha, J. M. (2023). Microbial secondary metabolites via fermentation approaches for dietary supplementation formulations. Molecules (Basel, Switzerland), 28(16), 6020. https://doi.org/10.3390/molecules28166020

    Article  CAS  PubMed  Google Scholar 

  29. Widyastuti, Y., Febrisiantosa, A., & Tidona, F. (2021). Health-promoting properties of lactobacilli in fermented dairy products. Frontiers in Microbiology, 12, 673890. https://doi.org/10.3389/fmicb.2021.673890

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  31. Biazzo, M., & Deidda, G. (2022). Fecal microbiota transplantation as new therapeutic avenue for human diseases. Journal of Clinical Medicine, 11(14), 4119. https://doi.org/10.3390/jcm11144119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ben Akacha, B., Michalak, M., Najar, B., Venturi, F., Taglieri, I., Kačániová, M., & Ben Hsouna, A. (2023). Recent advances in the incorporation of polysaccharides with antioxidant and antibacterial functions to preserve the quality and shelf life of meat products. Foods, 12(8), 1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song, Y., Li, S., Gong, H., Yip, R. C. S., & Chen, H. (2023). Biopharmaceutical applications of microbial polysaccharides as materials: A review. International Journal of Biological Macromolecules, 239, 124259.

    Article  CAS  PubMed  Google Scholar 

  34. Srivastava, N., & Choudhury, A. R. (2022). Microbial polysaccharide-based nanoformulations for nutraceutical delivery. ACS Omega, 7(45), 40724–40739. https://doi.org/10.1021/acsomega.2c06003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 2559.

    Article  Google Scholar 

  36. Numata, K. (2015). Poly(amino acid)s/polypeptides as potential functional and structural materials. Polymer Journal, 47(8), 537–545. https://doi.org/10.1038/pj.2015.35

    Article  CAS  Google Scholar 

  37. Thakur, M., Singh, K., & Khedkar, R. (2020). Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. Functional and Preservative Properties of Phytochemicals. https://doi.org/10.1016/B978-0-12-818593-3.00011-7

    Article  Google Scholar 

  38. Majrashi, T. A., Alshehri, S. A., Alsayari, A., Muhsinah, A. B., Alrouji, M., Alshahrani, A. M., & Atiya, A. (2023). Insight into the biological roles and mechanisms of phytochemicals in different types of cancer: Targeting cancer therapeutics. Nutrients, 15(7), 1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Speer, H., D’Cunha, N. M., Alexopoulos, N. I., McKune, A. J., & Naumovski, N. (2020). Anthocyanins and human health—A focus on oxidative stress, inflammation and disease. Antioxidants, 9(5), 366. https://doi.org/10.3390/antiox9050366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding, Y. Y., Zhou, H., Zhang, B. Q., Zhang, Z. J., Wang, G. H., Zhang, S. Y., & Liu, Y. Q. (2023). Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. European Journal of Medicinal Chemistry, 259, 115627.

    Article  CAS  PubMed  Google Scholar 

  41. Özgen, A., & Gürkan Aydın, S. (2023). Geometric modelling and analysis of the amino acid: Phenylalanine. International Journal of Advances in Scientific Research and Engineering., 9, 43–47.

    Article  Google Scholar 

  42. Ryu, E. H., & Chang, H. C. (2013). In vitro study of potentially probiotic lactic acid bacteria strains isolated from kimchi. Annals of Microbiology, 63(4), 1387–1395. https://doi.org/10.1007/s13213-013-0599-8

    Article  CAS  Google Scholar 

  43. Das, D. D., Sharma, N., Chawla, V., & Chawla, P. A. (2023). Current trends of analytical techniques for bioactive terpenoids: A review. Critical Reviews in Analytical Chemistry. https://doi.org/10.1080/10408347.2023.2219757

    Article  PubMed  Google Scholar 

  44. Benameur, T., Porro, C., Twfieg, M. E., Benameur, N., Panaro, M. A., Filannino, F. M., & Hasan, A. (2023). Emerging paradigms in inflammatory disease management: Exploring bioactive compounds and the gut microbiota. Brain Sciences, 13(8), 1226. https://doi.org/10.3390/brainsci13081226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benevenuto, R. F., Venter, H. J., Zanatta, C. B., Nodari, R. O., & Agapito-Tenfen, S. Z. (2022). Alterations in genetically modified crops assessed by omics studies: Systematic review and meta-analysis. Trends in Food Science & Technology, 120, 325–337.

    Article  CAS  Google Scholar 

  46. Simó, C., Ibáñez, C., Valdés, A., Cifuentes, A., & García-Cañas, V. (2014). Metabolomics of genetically modified crops. International Journal of Molecular Sciences, 15(10), 18941–18966. https://doi.org/10.3390/ijms151018941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, W., Ren, M., Duo, L., Li, J., Wang, S., Sun, Y., Li, M., Ren, W., Hou, Q., Yu, J., Sun, Z., & Sun, T. (2020). Fermentation characteristics of Lactococcus lactis subsp. lactis isolated from naturally fermented dairy products and screening of potential starter isolates. Frontiers in Microbiology, 11, 1–12. https://doi.org/10.3389/fmicb.2020.01794

    Article  Google Scholar 

  48. Kang, H., Park, Y. K., & Lee, J. Y. (2021). Nicotinamide riboside, an NAD+ precursor, attenuates inflammation and oxidative stress by activating sirtuin 1 in alcohol-stimulated macrophages. Laboratory Investigation, 101(9), 1225–1237.

    Article  CAS  PubMed  Google Scholar 

  49. Portieles, R., Xu, H., Chen, F., Gao, J., Du, C., Gao, X. & Borras-Hidalgo, O. (2023). Bioengineering of a Lactococcus lactis subsp. lactis strain enhances nisin production and bioactivity. bioRxiv, 2023–01.

  50. Pannerchelvan, S., Rios-Solis, L., Wong, F. W. F., Zaidan, U. H., Wasoh, H., Mohamed, M. S., & Halim, M. (2023). Strategies for improvement of gamma-aminobutyric acid (GABA) biosynthesis via lactic acid bacteria (LAB) fermentation. Food & Function, 14, 3929–3948.

    Article  CAS  Google Scholar 

  51. Hu, W., Yang, X., Ji, Y., & Guan, Y. (2021). Effect of starter cultures mixed with different autochthonous lactic acid bacteria on microbial, metabolome and sensory properties of Chinese northeast sauerkraut. Food Research International, 148, 110605.

    Article  CAS  PubMed  Google Scholar 

  52. Petriccione, M., De Sanctis, F., Pasquariello, M. S., Mastrobuoni, F., Rega, P., Scortichini, M., & Mencarelli, F. (2015). The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during postharvest life. Food and Bioprocess Technology, 8(2), 394–408. https://doi.org/10.1007/s11947-014-1411-x

    Article  CAS  Google Scholar 

  53. Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I. N., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203–243. https://doi.org/10.1016/j.fshw.2019.08.003

    Article  Google Scholar 

  54. Dimidi, E., Cox, S., Rossi, M., & Whelan, K. (2019). Fermented foods: Definitions and characteristics, gastrointestinal health and disease. Nutrients, 11(1806), 1–26.

    Google Scholar 

  55. Śliżewska, K., Markowiak-Kopeć, P., & Śliżewska, W. (2020). The role of probiotics in cancer prevention. Cancers, 13(1), 20. https://doi.org/10.3390/cancers13010020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tasdemir, S. S., & Sanlier, N. (2020). An insight into the anticancer effects of fermented foods: A review. Journal of Functional Foods, 75, 104281. https://doi.org/10.1016/j.jff.2020.104281

    Article  CAS  Google Scholar 

  57. Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules (Basel, Switzerland), 24(6), 1076. https://doi.org/10.3390/molecules24061076

    Article  CAS  PubMed  Google Scholar 

  58. Tuli, H. S., Tuorkey, M. J., Thakral, F., Sak, K., Kumar, M., Sharma, A. K., Sharma, U., Jain, A., Aggarwal, V., & Bishayee, A. (2019). Molecular mechanisms of action of genistein in cancer: Recent advances. Frontiers in Pharmacology, 10, 1336. https://doi.org/10.3389/fphar.2019.01336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zaheer, K., & Humayoun Akhtar, M. (2017). An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Critical Reviews in Food Science and Nutrition, 57(6), 1280–1293. https://doi.org/10.1080/10408398.2014.989958

    Article  CAS  PubMed  Google Scholar 

  60. Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. https://doi.org/10.3390/molecules25173809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Das, G., Paramithiotis, S., Sundaram Sivamaruthi, B., Wijaya, C. H., Suharta, S., Sanlier, N., Shin, H. S., & Patra, J. K. (2020). Traditional fermented foods with anti-ageing effect: A concentric review. Food Research International, 134, 109269. https://doi.org/10.1016/j.foodres.2020.109269

    Article  CAS  PubMed  Google Scholar 

  62. Kumar, M. R., Azizi, N. F., Yeap, S. K., Abdullah, J. O., Khalid, M., Omar, A. R., Osman, M. A., Leow, A. T. C., Mortadza, S. A. S., & Alitheen, N. B. (2022). Clinical and preclinical studies of fermented foods and their effects on Alzheimer’s disease. Antioxidants, 11(5), 883. https://doi.org/10.3390/antiox11050883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., et al. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sosnowska, B., Penson, P., & Banach, M. (2017). The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovascular Diagnosis and Therapy, 7(1), S21–S31. https://doi.org/10.21037/cdt.2017.03.20

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tomé-Carneiro, J., & Visioli, F. (2016). Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. Phytomedicine, 23(11), 1145–1174.

    Article  PubMed  Google Scholar 

  66. Sarkar, S., Panda, S., Yadav, K. K., & Kandasamy, P. (2020). Pigeon pea (Cajanus cajan) is an important food legume in the Indian scenario—A review. Legume Research, 43(5), 601–610. https://doi.org/10.18805/LR-4021

    Article  Google Scholar 

  67. Vuyyuru, S. K., Kedia, S., Sahu, P., & Ahuja, V. (2022). Immune-mediated inflammatory diseases of the gastrointestinal tract: Beyond Crohn’s disease and ulcerative colitis. JGH Open, 6(2), 100–111.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Radziszewska, M., Smarkusz-zarzecka, J., Ostrowska, L., & Pogodziński, D. (2022). Nutrition and supplementation in ulcerative colitis. Nutrients, 14(12), 2469. https://doi.org/10.3390/nu14122469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh, R. P., Shadan, A., & Ma, Y. (2022). Biotechnological applications of probiotics: A multifarious weapon to disease and metabolic abnormality. Probiotics and Antimicrobial Proteins, 14(6), 1184–1210.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Duche, R. T., Singh, A., Wandhare, A. G., Sangwan, V., Sihag, M. K., Nwagu, T. N., & Ezeogu, L. I. (2023). Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. BMC Microbiology, 23(1), 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lordan, R. (2021). Dietary supplements and nutraceuticals market growth during the coronavirus pandemic—Implications for consumers and regulatory oversight. PharmaNutrition, 18, 100282. https://doi.org/10.1016/j.phanu.2021.100282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoo, A. Y., Alnaeeli, M., & Park, J. K. (2016). Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01. Process Biochemistry, 51, 463–473.

    Article  CAS  Google Scholar 

  73. Ambati, R. R., Phang, S. M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine Drugs, 12(1), 128–152. https://doi.org/10.3390/md12010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marino, T., Casella, P., Sangiorgio, P., Verardi, A., Ferraro, A., Hristoforou, E., & Musmarra, D. (2020). Natural beta-carotene: A microalgae derivate for nutraceutical applications. Chemical Engineering Transactions, 79, 103–108.

    Google Scholar 

  75. Xiao, X., Si, X., Yuan, Z., Xu, X., & Li, G. (2012). Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed counter-current chromatography. Journal of Separation Science, 35(17), 2313–2317. https://doi.org/10.1002/jssc.201200231

    Article  CAS  PubMed  Google Scholar 

  76. Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology, 595, 105–125. https://doi.org/10.1007/978-0-387-46401-5_3

    Article  PubMed  Google Scholar 

  77. Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as anticancer agents. Nutrients, 12(2), 1–24. https://doi.org/10.3390/nu12020457

    Article  CAS  Google Scholar 

  78. Soundararajan, P., & Kim, J. S. (2018). Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules, 23(11), 2983. https://doi.org/10.3390/molecules23112983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miadoková, E. (2009). Isoflavonoids—An overview of their biological activities and potential health benefits. Interdisciplinary Toxicology, 2(4), 211–218. https://doi.org/10.2478/v10102-009-0021-3

    Article  PubMed  PubMed Central  Google Scholar 

  80. Soleymani, S., Habtemariam, S., Rahimi, R., & Nabavi, S. M. (2020). The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends in Food Science & Technology, 106, 382–390. https://doi.org/10.1016/j.tifs.2020.10.015

    Article  CAS  Google Scholar 

  81. Nam, Y. D., Yi, S. H., & Lim, S. I. (2012). Bacterial diversity of cheonggukjang, a traditional Korean fermented food, analyzed by barcoded pyrosequencing. Food Control, 28(1), 135–142. https://doi.org/10.1016/j.foodcont.2012.04.028

    Article  Google Scholar 

  82. Kharnaior, P., & Tamang, J. P. (2022). Metagenomic-metabolomic mining of kinema, a naturally fermented soybean food of the eastern Himalayas. Frontiers in Microbiology, 13(April), 1–20. https://doi.org/10.3389/fmicb.2022.868383

    Article  Google Scholar 

  83. Mishra, B. K., Hati, S., & Das, S. (2019). Bio-nutritional aspects of Tungrymbai, an ethnic functional fermented soy food of Khasi Hills, Meghalaya, India. Clinical Nutrition Experimental, 26, 8–22. https://doi.org/10.1016/j.yclnex.2019.05.004

    Article  Google Scholar 

  84. Silva, M., Kadam, M. R., Munasinghe, D., Shanmugam, A., & Chandrapala, J. (2022). Encapsulation of nutraceuticals in yoghurt and beverage products using the ultrasound and high-pressure processing technologies. Foods, 11(19), 2999. https://doi.org/10.3390/foods11192999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Enwa, F. O. (2014). A mini review of the microbiochemical properties of sauerkraut. African Journal of Science and Research, 3(1), 15–16.

    Google Scholar 

  86. Patra, J. K., Das, G., Paramithiotis, S., & Shin, H. S. (2016). Kimchi and other widely consumed traditional fermented foods of Korea: A review. Frontiers in Microbiology, 7, 1–15. https://doi.org/10.3389/fmicb.2016.01493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sukhminderjit Kaur or Manikant Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, B., Kaur, S., Rani, N. et al. Exploring Microbial Contributions to Nutraceutical Production: From Natural to Designed Foods. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00937-2

Keywords

Navigation