
How AWS Graviton helps Independent Software Vendors accelerate growth
and improve their margins on AWS

AWS Graviton2 for Independent Software
Vendors

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

AWS Graviton2 for Independent Software Vendors: How AWS
Graviton helps Independent Software Vendors accelerate growth and
improve their margins on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Table of Contents

AWS Graviton2 for ISVs .. 1
Abstract ... 1

Introduction ... 2
Background .. 3
Use case scenarios ... 4

SaaS distribution (as SaaS-based product or subscription) ... 5
Marketplace distribution (as AMI-based or Container-based product) .. 5
Direct distribution (as application binary) ... 6
Service dependencies ... 6

Planning checklist ... 7
Planning your transition ... 10

Operating system (OS) .. 10
Language and runtimes .. 11
Container services .. 11
Software agents ... 12
Build systems .. 12
Edge cases ... 13

Transitioning your service or application .. 14
Resolve code dependencies ... 14
Upgrade operating systems ... 14
Upgrade language runtimes .. 15
Transition codebase and packages ... 15
Test and benchmark your code ... 15
Tune and test .. 16
Additional considerations ... 16

Update Amazon Machine Images (AMI) or container registries ... 16
Update deployment scripts .. 16

Optimizing for performance ... 17
Understand key advantages .. 17
Use optimized compiler flags .. 17
Upgrade operating systems ... 18
Tune low level code ... 18
Test performance on multiple instance sizes ... 18

Reviewing your cost structure .. 19

iii

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Cost metrics and workload management ... 19
Instance fleets ... 19
Pricing model .. 20

Final considerations .. 21
Review Ramp-up and go-to-market activities ... 21
Update installation and configuration guidelines ... 21
Update product definitions in AWS Marketplace .. 21

Conclusion .. 23
Contributors ... 24
Document revisions ... 25
Notices .. 26

iv

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

AWS Graviton2 for ISVs

Publication Date: January 6, 2022

Abstract

Amazon Web Services (AWS) provides a broad and deep choice of Amazon Elastic Compute Cloud
(Amazon EC2) instances to match the wide spectrum of computing needs of our customers such
general purpose, compute optimized, memory optimized, storage optimized, and accelerated
computing workloads. This enables customers to choose the most cost-effective instance type
suitable for their particular workload. These instances are often based on the Intel architecture.
AWS recently introduced a new family of instance types based on the ARM architecture – AWS
Graviton2. These instance types provide up to 40% price performance improvement over
comparable Intel-based instances. For Independent Software Vendors (ISV), this translates to
lowering the Cost of goods sold (COGS) and improving margins.

This whitepaper provides a roadmap to help ISVs evaluate the suitability of Graviton 2 to their
workload and a checklist to help build a project plan for adoption for the most common ISV
use cases – Software-as-a-Service (SaaS), Marketplace AMI, and Direct. This paper also provides
instructions, resources and best practices for each step in the migration journey.

Abstract 1

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Introduction

ISVs run virtually any cloud workload and compute use case on AWS including general purpose,
compute optimized, memory optimized, storage optimized, and accelerated computing workloads.
AWS provides a portfolio of purpose-built compute instances covering 275 instance types across 7
categories to serve the needs of our customers. With the rising popularity of the ARM architecture
for server workloads, AWS introduced the first EC2 instances powered by the AWS Graviton
Processor in 2018 followed by AWS Graviton2 Processor in 2019. (IDC estimates worldwide
revenues for ARM-based servers grew 430.5% year over year in Q3/2020. For more information,
see Worldwide Server Market Revenue Growth.) Graviton instances provide up to 40% better
price performance than comparable Intel-based instances. For ISVs used to deploying on Intel-
based hardware, this means transitioning their software to ARM in order to tap into the price
performance benefits and cost savings potential of AWS Graviton.

This paper provides a checklist for software architects and developers working in the ISV sector
who want to adopt AWS Graviton2 to accelerate growth and optimize margin. Whether you
distribute your software offering via AWS Marketplace AMIs and container images, run a SaaS
service on AWS, or distribute your software directly to customers. In each scenario, AWS Graviton2
instances offer the best price performance in their respective Amazon EC2 instance family. You can
keep or reinvest cost savings and demonstrate higher margins to investors (important for ISVs with
a SaaS model).

This paper also offers key considerations you should make when planning your transition to AWS
Graviton2 and provides examples for popular tools, languages, and runtimes with 64-bit ARM
support. AWS Graviton2 is one of the first implementations of the 64-bit ARM architecture for
servers that meet the performance expectations of server workloads. ARM processors power most
end user computing devices including mobile phones today. They offer higher power efficiency
than x86 processors, making them cheaper to operate.

2

https://www.idc.com/getdoc.jsp?containerId=prUS47123620

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Background

This section provides background information on AWS Graviton2 and the benefits of a 64-bit ARM
architecture over traditional software architectures. This information will help you assess whether
AWS Graviton2 is a good fit for your application or service before moving on to a discussion of
benefits and transition planning.

For years, AWS has been designing custom chips that enable faster innovation, deliver increased
security, increase performance by offloading virtual functions, and reduce cost for our customers.
This has led to innovations in terms of how customers secure workloads (Nitro Security Chip and
Nitro Enclaves), benefit from enhanced throughput and latency for networking and storage I/
O (Nitro Card with high IOPS EBS storage and up to 100Gbps networking) and virtualization
technology (Nitro Hypervisor). The Nitro System protects hardware resources, improves monitoring
and security posture, and benefits from better memory and CPU allocation for bare metal-like
performance. All in a purpose-built, modular system.

AWS Graviton2 processors continue the tradition of silicon innovation and are custom-built by
Amazon Web Services using 64-bit ARM Neoverse cores. These processors are optimized across
AWS to deliver the best price-performance for cloud workloads running in Amazon EC2. AWS
Graviton2 processors provide even more choice to help customers optimize performance and cost
for their workloads.

AWS Graviton2 processors power different instance types. At the time of publication, these are the
M6g, C6g, R6g, and T4g instance types. The M6g instance type powers general purpose workloads
such as such as application servers, microservices, gaming servers, mid-size data stores, and
caching fleets. The C6g instance type is optimized for compute-bound applications that benefit
from high performance such as high-performance computing (HPC), batch processing, media
encoding, and CPU-based machine learning (ML). The R6g instance type offers a higher memory
footprint for applications that process large data sets in memory including databases, in-memory
caches, and real-time big data analytics. The T4g instance type is ideal for low-cost, burstable
general-purpose workloads. For more guidance on benchmarking and optimizing your application
or service on AWS Graviton2 instances, see Optimizing for Performance.

For more information about the benefits of AWS Graviton2 and the Amazon EC2 instances powered
by AWS Graviton processors, see AWS Graviton.

3

https://aws.amazon.com/ec2/instance-types/m6/
https://aws.amazon.com/ec2/instance-types/c6/
https://aws.amazon.com/ec2/instance-types/r6/
https://aws.amazon.com/ec2/instance-types/t4/
https://aws.amazon.com/ec2/graviton/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Use case scenarios

This section introduces four use cases for modernizing ISV applications and transitioning them to
AWS Graviton2. It also provides a short summary of each use case and outlines the benefits of AWS
Graviton2 before covering transition activities in the next section. Select the use case that is closest
to your situation to get started.

The benefits of using AWS Graviton-based instances for ISV applications differ slightly based
on how you distribute your software to end customers. Figure 1 illustrates the differences and
commonalities between three primary use cases (distribution model of your service or application)
and highlights service dependencies as another important consideration (fourth use case). It calls
attention to AWS account ownership, control over application source code, runtime, operating
system, as well as service dependencies the application requires to function. The components you
should consider during a transition to Graviton2 depend on how you distribute your software to
your customers.

Software distribution models and service dependencies

4

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

In the following sections, we describe in more detail each software distribution model and benefits
you can expect to derive from transitioning to AWS Graviton2.

SaaS distribution (as SaaS-based product or subscription)

The SaaS distribution model offers the greatest degree of flexibility for ISVs to distribute their
software. The ISV has full control over AWS account ownership, application deployment, runtime,
operating system, and compute resources. Customers procure subscriptions through AWS
Marketplace (SaaS-based product) or through the ISV directly.

Benefits of AWS Graviton2 in the SaaS distribution model:

• Up to 40% better price performance compared to current generation Intel instances in your
production and trial stacks.

• Growing ecosystem of open-source and commercial vendor support for the 64-bit ARM
architecture.

• Increased reliability by tapping into an additional capacity pool for your production
deployments.

• Develop, build, and test 64-bit ARM versions for your software on AWS Graviton2 using popular
tools such as Travis CI with AWS Graviton support.

Marketplace distribution (as AMI-based or Container-based
product)

The Marketplace distribution model enables ISVs to offer Amazon Machine Images (AMI-based)
or Container-based products to end customers. Customers can procure a license or subscription
through the AWS Marketplace and deploy the application in their AWS account. The ISV dictates
the fulfilment options of the offer such as the operating systems and EC2 instance types supported
by the application.

Benefits of AWS Graviton2 in the Marketplace distribution model:

• Extend your market reach by offering a 64-bit ARM architecture option in addition to your
existing x86 offering (this includes Marketplace AMIs or packages and software agents installed
on Linux servers or virtual machines).

SaaS distribution (as SaaS-based product or subscription) 5

https://docs.aws.amazon.com/marketplace/latest/userguide/saas-products.html
https://aws.amazon.com/blogs/opensource/getting-started-with-travis-ci-com-on-aws-graviton2/
https://aws.amazon.com/blogs/opensource/getting-started-with-travis-ci-com-on-aws-graviton2/
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-based-products.html

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

• Attract new customers looking for better price performance when deploying your software on
EC2 instances in their AWS account.

• Develop, build, and test 64-bit ARM versions for your software on AWS Graviton2 using popular
tools such as Travis CI with AWS Graviton support.

Direct distribution (as application binary)

The direct distribution model requires ISVs to consider the deployment environment in which the
ISV application runs. Customers download the application binary from the ISV’s website or via their
operating system’s package manager. The ISV has to ensure that the application supports different
combinations of operating systems, runtime, and platforms in order to reach a broad market.

Benefits of AWS Graviton2 in the Direct distribution model:

• Tap into the growing demand for commercial 64-bit ARM software for servers (this includes
packages and software agents installed on Linux servers or virtual machines).

• Develop, build, and test 64-bit ARM versions for your software on AWS Graviton2 using popular
tools such as Travis CI with AWS Graviton support.

Service dependencies

Service dependencies include open-source workloads such as web servers, caching fleets, container
clusters, and open-source databases on which your application relies to properly function.
Depending on your distribution model, you either manage these dependencies in your environment
or rely on customers to deploy them alongside your application in their target AWS account.

Benefits of AWS Graviton2 for service dependencies:

• Improve price performance of common infrastructure components such as open-source
databases, container clusters, and caching fleets by running them on AWS Graviton-based
instances.

• Eliminate undifferentiated heavy-lifting by transitioning EC2-based dependencies to a managed
service model using services such as the Amazon Relational Database Service (Amazon RDS),
Amazon Elastic Container Service (Amazon ECS), Amazon Elastic Kubernetes Service (Amazon
EKS), and Amazon ElastiCache that support AWS Graviton-based instances today.

Direct distribution (as application binary) 6

https://aws.amazon.com/blogs/opensource/getting-started-with-travis-ci-com-on-aws-graviton2/
https://aws.amazon.com/blogs/opensource/getting-started-with-travis-ci-com-on-aws-graviton2/
https://aws.amazon.com/blogs/opensource/getting-started-with-travis-ci-com-on-aws-graviton2/
https://aws.amazon.com/blogs/opensource/getting-started-with-travis-ci-com-on-aws-graviton2/
https://aws.amazon.com/blogs/aws/new-amazon-rds-on-graviton2-processors/
https://aws.amazon.com/about-aws/whats-new/2020/10/amazon-elasticache-now-supports-m6g-and-r6g-graviton2-based-instances/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Planning checklist

This section provides an overview of transition activities before moving on to a detailed discussion
of each activity and its associated technical and architecture considerations in subsequent sections.
Use this section as a reference to plan your approach.

Table 1 introduces transition activities as a planning checklist. This checklist is based on the
definition of software distribution models introduced in the previous section. It enables you to
identify relevant transition activities based on which of the distribution models most closely
resembles the way you distribute software to customers. You can use this checklist as a reference
when planning and executing your transition to identify constraints and opportunities for quick
wins. For example, you may be able to gain experience with Graviton2 by configuring your build
environments to build and test your application on Graviton2. You may also start by transitioning
service dependencies such as open-source databases or caching servers before transitioning your
application.

Table 1 – Transition Activities Planning Checklist

Model Plan Transition Optimize Review

SaaS Identify and
resolve all
software
dependencies

Pay attention
to architect
ure dependent
and proprieta
ry commercial
software

Consider control
plane and data
plane artifacts

Build and test
source code on
64-bit ARM

Update build
scripts to
support 64-bit
ARM

Build multi-arc
hitecture AMIs
and container
images

Update
container
registry

Baseline
performance
on x86 and
Graviton2
instances

Upgrade host
operating
system and
container
runtime

Tune and
optimize
compiler
settings

Budgeting and
approval for test
fleets

Reservations
and other cost
optimization
strategies

7

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Model Plan Transition Optimize Review

Consider data
plane artifacts
only if using
managed
services

Use deploymen
t procedures
such as canary
deployments
or blue/ green
cutover

Benchmark
performance
on different
instance sizes

Marketplace Identify and
resolve all
software
dependencies

Pay attention
to architect
ure dependent
and proprieta
ry commercial
software

Packaging of
Marketplace
AMI or container
images

Build and test
source code on
64-bit ARM

Update build
scripts to
support 64-bit
ARM in addition
to x86

Build multi-arc
hitecture AMIs
and container
images

Update
container
registry

Baseline
performance
on x86 and
Graviton2
instances

Upgrade host
operating
system and
container
runtime

Tune and
optimize
compiler
settings

Benchmark
performance
on different
instance sizes

Budgeting and
approval for test
fleets

8

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Model Plan Transition Optimize Review

Direct Identify and
resolve all
software
dependencies

Pay attention
to architect
ure dependent
and proprieta
ry commercial
software

Build and test
source code on
64-bit ARM

Update build
scripts to
support 64-bit
ARM

Installation and
configuration
guidelines

Baseline
performance
on x86 and
Graviton2
instances

Tune and
optimize
compiler
settings

Budgeting and
approval for test
fleets

Dependencies N/A if using
managed
services on AWS

Cut over
managed service
to 64-bit ARM in
production

N/A if using
managed
services on AWS

Reservations
and other cost
optimization
strategies

9

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Planning your transition

This section will help you prepare your transition project and highlights things to consider. In most
cases, your application or service consists of multiple components and their dependencies. Being
aware of what these dependencies are will help you identify constraints and opportunities for
quick wins. If you are primarily interested in the technical activities associated with transitioning to
AWS Graviton2, see Transitioning Your Service or Application.

The following figure illustrates the typical components of an application stack. Your application
may differ or you may not have full control over some components depending on your software
distribution model. For example, you may have full control over all components of the stack if you
are distribution software as a SaaS-based product. However, you may have less control over some
aspects such as operating systems and software agents if you distribute your software directly to
customers (and customers are responsible for deploying and configuring your software).

Typical components of your application stack

The following sections provide additional details around each application component and the
specific issues you may encounter when transitioning to AWS Graviton2.

Operating system (OS)

Most popular Linux distributions offer out-of-the-box support for AWS Graviton2 include Amazon
Linux 2, Red Hat Enterprise Linux, Ubuntu, and SUSE Linux Enterprise Server. Use the latest version
of these operating systems to benefit from performance enhancements. Consider which operating

Operating system (OS) 10

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

systems and versions you or your customers are running in their production environment. Verify
that the operating system offers 64-bit ARM support using the AWS console and CLI. Filter by
owner, region, platform and architecture to check whether a combination is supported today. At
the time of publication, Windows is not available for AWS Graviton2. For an up-to-date-list of
supported operating systems, see the AWS Graviton Getting Started Guide.

Language and runtimes

Verify which languages and runtimes make up your codebase and whether your code dependencies
include native language extensions (such as Java JNI's) or artifacts (such as x86 shared objects
where equivalent ARM versions should be created). Interpreted and bytecode-compiled languages
such as Python, Java, Node.js, and .NET Core on Linux mostly run without modifications. This
means you should be able to run these applications on AWS Graviton2 by simply installing the
corresponding runtime.

For example, the Java Virtual Machine (JVM) runtime added 64-bit ARM support in version 8 and
above. (Java has been available in multiple forms for ARM for a long time. OpenJDK and Oracle
JDK added support for 64-bit ARM in JDK8 and above. Servers and cloud workloads typically
adopt LTS versions of Java which include JDK8, 11, and 15 which all have 64-bit ARM support and
later versions provide more 64-bit ARM specific optimizations for best performance.) Check the
Getting Started Guide to identify exceptions (such as platform-specific artifacts) that apply to your
language and how to work around them. Applications written in compiled languages such as C/C
++ and Go will need to be recompiled these languages provide mature and optimized support for
both 64-bit ARM and x86. For example, this includes the GCC and LLVM for C/C++ and the golang/
go compiler for Go. (Some languages provide a built-in cross compiler (like Go), some do support
multiple architecture in the sense that you can compile a compiler for a target but not a compiler
for multiple targets at the same time.)

Container services

If your application is deployed using container services, check for multi-architecture support for
containers and infrastructure dependencies. Containers are architecture specific and you will need
to build new container images to support 64-bit ARM. Multi-architecture support helps simplify
the consumption of container images across x86 and ARM. For example, Docker supports multi-
architecture images transparently via the Buildx tool and the majority of Docker official images are
now multi-architecture enabled.

Language and runtimes 11

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started
https://docs.docker.com/buildx/working-with-buildx/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

You can deploy multi-architecture container images in Amazon Elastic Container Service (Amazon
ECS) and Amazon Elastic Kubernetes Service (Amazon EKS). This enables you to optimize your
clusters by offering support for both x86 and Graviton2 hosts. Other considerations include specific
infrastructure dependencies such as proxies or service mesh components. For more information
about the status of open-source projects and their 64-bit ARM and Graviton2 support, see the
Getting Started Guide.

Software agents

If you distribute your application as SaaS, work with your operations team to identify your
dependencies on software agents. Most security, monitoring, and logging use cases require
operations teams to install software agents on virtual machines and container hosts. Lack of
support for 64-bit ARM can be a blocker if your security and application performance monitoring
processes rely on these agents. Most first-party software agents on the AWS platform provide 64-
bit ARM support. This includes the Amazon CloudWatch, Amazon Inspector, and AWS Systems
Manager agents. A growing ecosystem of third-party vendors offer a 64-bit ARM version of
their software agents. Examples include security solutions (CrowdStrike, Qualys, Rapid7, Snyk,
and Tenable) and observability and monitoring solutions (Splunk, New Relic, Datadog, and
Honeycomb).

Build systems

Consider the state of multi-architecture support for continuous integration/continuous delivery
(CI/CD) pipelines and build systems. Maintaining multiple versions of compilers, libraries, and
support binaries for different architectures has traditionally been a cumbersome, time-consuming,
and an error-prone process. Modern CI/CD tools offer facilities to build and test code submitted to
code repositories with minimal manual intervention.

First party CI/CD tools on the AWS platform such as AWS CodeCommit, AWS CodeBuild, AWS
CodePipeline, and AWS CodeDeploy provide out-of-the box support for 64-bit ARM. There is a
growing ecosystem of third-party CI/CD vendors that are adding 64-bit ARM support to their
software offerings. These include Jenkins, GitLab, CircleCI, and TravisCI. For example, GitLab now
offers first class support for AWS Graviton and the ARM architecture in its CI/CD tooling.

Software agents 12

https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://github.com/aws/aws-graviton-getting-started/blob/master/containers.md
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/inspector/
https://aws.amazon.com/systems-manager/
https://aws.amazon.com/systems-manager/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codedeploy/
https://about.gitlab.com/blog/2020/05/15/gitlab-arm-aws-graviton2-solution/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Edge cases

You may encounter edge cases in older, monolithic applications. While these are rare, they may
impact on your ability to transition to AWS Graviton2. Examples for edge cases include proprietary
legacy applications, hand-tuned code written for x86 in low-level languages, or workloads that
depend on specific features of the x86 architecture. If this is the case, consider whether AMD-
backed instance types such as the M5a, C5a, and R5a are a better choice for your application. While
AMD-backed instance types do not provide the same price performance advantages compared to
AWS Graviton2, they offer a seamless transition and potential cost savings.

Edge cases 13

https://aws.amazon.com/ec2/amd/
https://aws.amazon.com/ec2/amd/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Transitioning your service or application

This section provides more details regarding the individual steps involved in transitioning an
application to Graviton2. In the interest of simplicity, we assume this application is written in
a bytecode-compiled language (e.g., Java or .NET Core) and deployed as one or more virtual
machines in AWS. Some of the concepts described in the following may differ when the application
is deployed via a different method (such as container services) or distributed to users to be run in
their own cloud environments (AWS Marketplace AMIs). However, the high-level sequence of steps
will not change.

Resolve code dependencies

Start with code dependencies such as software libraries and determine whether you are able to
run them in a 64-bit ARM environment. This includes questions such as how current is your code
base and which version of languages and runtime do you currently use. Work with your engineering
team to identify code ownership (which can often be a problem for older codebases) and figure
out external dependencies (with teams inside your company as well as any dependencies on third
parties). For example, Java virtual machines (VMs) typically support ARM64 from JDK8 versions
onward. Application code and packages that were developed and built against older versions may
need to be upgraded first. Do not forget other components such as Software Development Kits
(SDKs), OS agents, and control plane artifacts in this inventory. This inventory will help you identify
which parts of your application are easier to transition.

Upgrade operating systems

Upgrade your operating system to a version that supports the Graviton2 processor and offer the
full performance entitlement. Your production environment may be running an outdated version
of your operating system. This means you may not have access to the latest drivers and platform-
specific fixes and optimizations. Build and test your software on the newest x86 version of your
operating system before attempting a transition to 64-bit ARM. For example, Amazon Linux AMI
is nearing its end-of-life date and no 64-bit ARM support is available for this version of Amazon
Linux. Upgrade to a higher version of Amazon Linux 2 and test your application on an Intel or AMD-
backed instance first (e.g., M5 or M5a). Then transition your application to AWS Graviton2 (M6g) to
retest. This ensures that older versions of your operating system do not become a bottleneck.

Resolve code dependencies 14

https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-2/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Upgrade language runtimes

Perform a runtime upgrade to the most recent version of your programming language to get the
best performance. For example, JDK11 and higher offers many optimizations for 64-bit ARM.
Consider upgrading to the latest stable JDK release to gain access to these optimizations when
running your code on Graviton2. Additionally, .NET 5 has significantly improved performance by
adding 64-bit ARM-specific optimizations in .NET libraries, providing you with access to the full
performance entitlement on Graviton2.

While prior 64-bit ARM runtime versions for your programming language may exist, they do not
always offer optimal performance. For example, consider the changes in garbage collection (GC)
algorithms between Java versions and their impact on variables such as throughput. Upgrading to
a higher version of your programming language may require an incremental process of refactoring
and testing. Older application code may rely on interfaces and methods that are deprecated
by a higher version of the programming language. If an upgrade to a higher version is not an
option, then prior versions of your runtime can serve as a temporary stop gap solution for test and
evaluation purposes.

Transition codebase and packages

Review your codebase and begin the transition to Graviton2. This includes your application
code and any other software dependencies defined in metadata files, container manifests, or
Infrastructure-as-Code templates. Start by upgrading old code dependencies to new versions.
For example, you may need to upgrade Java libraries with native language extensions to their
latest versions for your code to build and run on 64-bit ARM. Repeat this process until your code
successfully builds and runs in your new target environment. Identify very old dependencies and
decide whether you can retire them. This may require refactoring and retesting your code in case
the dependency is not working as expected.

Test and benchmark your code

Test and benchmark your code on multiple architectures to verify that your build is correct. This
often involves running shadow test fleets (of both 64-bit ARM and x86-based instance types).
Update your deployment scripts and Infrastructure-as-Code template to account for different
instance types, 64-bit ARM compatible AMIs, and other differences between your environments.
Upgrade your build pipeline to build on 64-bit ARM and benchmark performance metrics

Upgrade language runtimes 15

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

(throughput, latency) of your code running on AWS Graviton2 against x86 builds. Consider stress
testing your deployments to establish how your workload performs under peak and above peak
loads. This ensures that your code is making effective use of the Graviton2 performance advantage.
For more information about compiler flags in languages such as C/C++, see the Getting Started
Guide.

Tune and test

Tune your software, test again, and repeat the process of iterative refactoring, testing,
benchmarking, and tuning until all remaining dependencies have been completed. This might
involve micro benchmarking and profiling your application code. You may also want to consider
special optimizations for cryptographic or machine learning workloads. For more details on how
to optimized for performance and details such as optimized compiler flags, see Optimizing for
Performance.

Additional considerations

Update Amazon Machine Images (AMI) or container registries

Other considerations to make after you transition your service or application to 64-bit ARM include
updating build scripts, machine or container images, and container registries. Whether you follow
the SaaS model or distribute your software directly to customers, you must update your CI/CD
pipelines to add support for building on 64-bit ARM machines. Other issues include building
Amazon Machine Images (AMI) and Docker containers for the 64-bit ARM architecture in addition
to your existing x86 artifacts. If you follow the Marketplace model, update your AWS Marketplace
listings and container registries so customers find the right image for their use case.

Update deployment scripts

If you follow the SaaS distribution model, you also need to think about operational concerns as
you transition your application or service to support 64-bit ARM. For example, this might mean
updating your deployment scripts to weight in Graviton2 instances in parallel to your Intel or
AMD instances. While out of the scope of this paper, consider using deployment strategies such
as Canary Deployments or Blue/Green Deployments. For more information, see the Deployment
Strategies section of the Introduction to DevOps on AWS white paper. AWS recommends you start
with test and staging accounts before moving to production accounts, and to keep the changes
limited to a small percentage of customers at a time.

Tune and test 16

https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/deployment-strategies.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/deployment-strategies.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/welcome.html

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Optimizing for performance

This section offers guidance for optimizing your source code to run on AWS Graviton2 instances.
Due to the difference in CPU architecture, running code that is not optimized for the AWS
Graviton2 processor may result in suboptimal performance. At the end of this section, you should
be able to identify these differences and understand how to remediate them so you can make the
most of AWS Graviton2.

Understand key advantages

One of the major differences between AWS Graviton2 instance types and other instance types is
their vCPU to physical processor core mapping. Every vCPU on a Graviton2 processor is a physical
core. This means there is no Simultaneous Multi-Threading (SMT) and more isolation between
vCPUs. By contrast, every vCPU on a 5th generation instance type with Intel processor (such as M5,
C5, and R5) is a hyper-thread. This means vCPUs share resources and there is less isolation than in
the case of Graviton2.

Key advantages of the AWS Graviton2 processor:

• Feature sets optimized for cloud workloads, reducing the overheads of interrupts and context
switching.

• Large L1 and L2 caches for every vCPU which means a large portion of your workload will fit in
cache without having to go to memory.

• Every vCPU is a physical core, meaning more isolation between vCPUs and no resource sharing
except the last level cache and memory system.

• Cores connected together in a mesh with ~2TB/s of bisection bandwidth, allowing applications
to move very quickly from core to core when sharing data.

• No NUMA concerns, meaning every core sees the same latency to every other core and to DRAM.

Use optimized compiler flags

When targeting modern processors, the right compiler flags can lead to considerably better
performance. New versions of compilers will begin emitting instructions specific to the CPU
architecture by default. However, until they do, specific compiler flags allow you to enable new
features to obtain higher performance for tasks handled by the CPU such as managing a mutex.

Understand key advantages 17

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

For example, AWS Graviton2 processors implement new atomic instructions (referred to as large-
system extensions or LSE) to support scalable performance on larger instance sizes for applications
implementing synchronization locks (e.g., databases). In this specific case using the outline-atomics
flag will yield almost the same benefits, but results in code that is backward compatible (i.e., will
run on older ARM CPUs like Graviton1-based Amazon EC2 A1 instances). For more information on
using compiler flags, see the AWS Graviton Getting Started Guide.

Upgrade operating systems

Use the most recent 64-bit ARM release of your operating system whenever possible (such
as Amazon Linux 2 and Ubuntu 20.04). The latest release of your operating system offers
libraries that were built with optimized compiler flags (as previously mentioned, this can lead to
considerable differences in performance). For example, the latest 64-bit ARM release for Amazon
Linux 2 ships with libraries such as libc that are optimized for AWS Graviton2. This leads to better
performance in more scenarios.

Tune low level code

Identify and tune any low-level code that includes architecture-specific CPU instructions. While
uncommon in application programming, some source code or libraries may use highly optimized
inline assembly code to achieve maximum performance from a particular CPU architecture. Due to
different instruction sets implemented by different CPU architectures, source code that offers only
one optimized implementation (such as x86) will not perform well on Graviton2 (which is ARM-
based) so the application may fall back to a generic, slower implementation which means you will
not see the full performance entitlement of AWS Graviton2 instances. Identifying such source code
highlights performance critical routines that should also be implemented for AWS Graviton2.

Test performance on multiple instance sizes

When doing performance benchmarking, evaluate both ends of the instance size spectrum to
detect performance bottlenecks that may occur only on the small or very large instance sizes of
an instance family. For example, performance bottlenecks may only occur on the larger sizes of
an instance family while your software performs well on the smaller instance sizes of the family.
Benchmark multiple instance sizes in a systematic fashion to detect such bottlenecks and provide
sizing guidance to your cloud operations team or end customers to help guide their instance size
selection criteria.

Upgrade operating systems 18

https://github.com/aws/aws-graviton-getting-started

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Reviewing your cost structure

AWS provides a number of options for you to balance the need for instance flexibility and cost
savings. This section summarizes common recommendations to help you gain visibility and manage
cost. For a deep dive on cost optimization best practices, see the links provided in each of the
subsections.

Cost metrics and workload management

Talk to your finance team about the need to run small test fleets during the testing and
benchmarking stage. Look at flexible pricing options such as Spot Instances to reduce the cost of
research and development. For more information, see the Leveraging Amazon EC2 Spot Instances
at Scale white paper. Develop specific cost-related metrics that allow you to measure resource
utilization, instances turned off daily, and instances to which cost tags have been applied. Other
measures include workload management and the ability to turn off development, test, and staging
workloads when not in use. This enables you to keep cost low while enabling development teams
to perform test and benchmarking tasks on multiple instance types and architectures.

Instance fleets

Phasing in AWS Graviton-backed instances into your production fleets may require you to run
multiple instance types and support different architectures. Consider optimizing your production
fleets for instance type flexibility by making use of constructs such as Amazon EC2 Fleets and
Compute Savings Plans. With Amazon EC2 Fleet, you provision capacity across EC2 instance types
and across purchase models to achieve your desired scale, performance and cost. You can combine
On-Demand and Spot purchasing options and specify an unlimited number of instance types.
With Amazon EC2 Compute Savings Plans, you gain the greatest flexibility in terms of instance
family, size, Availability Zone (AZ), region, operating system or tenancy at an up to 66% lower
cost compared to On-Demand rates. Use Compute Savings Plans to maximize cost savings across
parameters such as instance type, architecture, operating system, tenancy model, and region.
Additional capabilities include multi-architecture support in Auto-Scaling Groups (ASG), which
enables you to configure both Graviton2 and x86-based Amazon EC2 Instances in the same Auto-
Scaling group with different AMIs.

Cost metrics and workload management 19

https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-leveraging-ec2-spot-instances/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-leveraging-ec2-spot-instances/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-leveraging-ec2-spot-instances/introduction.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/monitor-cost-and-usage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-fleet.html
https://aws.amazon.com/savingsplans/pricing/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Pricing model

Select the right pricing model for your workload as you ramp up your AWS Graviton usage. Amazon
EC2 On Demand allows you to pay for compute capacity by the hour or the second (depending on
which instances you run) without longer-term commitments or upfront payments. Amazon EC2
Spot Instances allow you to request spare Amazon EC2 computing capacity to run fault-tolerant
(interruptible) workloads for up to 90% off the On-Demand price. Amazon EC2 Reserved Instances
provide deep discounts (up to 72% lower compared to On Demand prices) when you commit to a
1- or 3-year term and instance type. Finally, Amazon Savings Plans offer significant savings over On
Demand, just like EC2 Reserved Instances, in exchange for a commitment to use a specific amount
of compute power. Compute Savings Plans automatically apply to EC2 instance usage regardless of
instance family, size, AZ, region, OS, or tenancy.

Pricing model 20

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://aws.amazon.com/savingsplans/

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Final considerations

Once you have successfully completed the transition of your application of service to AWS
Graviton2, consider performing the following activities.

Review Ramp-up and go-to-market activities

Consider the ramp-up and go-to-market activities that go along with introducing 64-bit ARM
support for your application. This includes activities around creating customer awareness and
field enablement to make sure your field is in a position to respond to customer questions
regarding AWS Graviton2 support. It may also include briefing systems integrators and consulting
partners to ensure adequate capacity exists in the field to support customer projects. Briefing
systems integrators and consulting partners primarily applies to the AWS Marketplace and Direct
distribution models.

If you are providing a SaaS-based product, evaluate whether customers should have the option to
choose the platform on which their instance of an application is deployed and whether you intend
to pass on or reinvest the cost savings realized by running customer stacks on AWS Graviton2
instances.

Update installation and configuration guidelines

If you follow the AWS Marketplace or Direct distribution model, your customer is likely to expect
guidance when deploying your software on AWS Graviton2. You may need to rewrite sections
of your installation and configuration guidelines to cover issues such as sizing considerations
and instance type selection. This may include highlighting differences between Graviton2-based
instance and other EC2 instance types such as the absence of hyperthreading. It may also include
guidance concerning the operating systems the 64-bit ARM version of your application supports
and the AWS Regions in which customers can deploy it (as container image or Marketplace AMI).

Update product definitions in AWS Marketplace

If you are using AWS Marketplace to distribute your application as an AMI-based or Container-
based product, you should plan to update product definitions. For example, this includes building
64-bit ARM AMIs that can be deployed onto Graviton2 instances in a customer account. This
could also include packaging multi-architecture container images and updating your container

Review Ramp-up and go-to-market activities 21

https://docs.aws.amazon.com/marketplace/latest/userguide/best-practices-for-building-your-amis.html
https://docs.aws.amazon.com/marketplace/latest/userguide/best-practices-for-building-your-amis.html

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

registry so customers can find the right container image for their architecture. You may also
need to update product metadata such as the supported regions, instance types, or container
environments in which customers can deploy your application. For more information, guidelines,
and documentation, see Submitting your Product.

Update product definitions in AWS Marketplace 22

https://docs.aws.amazon.com/marketplace/latest/userguide/product-submission.html

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Conclusion

This document provided you with a checklist to accelerate your transition to AWS Graviton2. It
summarized the key reasons ISVs with SaaS-based, Marketplace-based, and direct distribution
models make this transition. It highlighted benefits such as extending your market reach by
offering 64-bit ARM versions of your software and benefiting from an improved price performance
ratio when using Graviton2 to run your SaaS workloads. It discussed typical components of an
application stack you should consider when planning this transition and offered guidance in the
form of transition process and checklist for ISVs. It concluded by offering guidance for reviewing
your cost structure and other considerations such as ramp-up and go-to-market activities for your
offering.

The document covered the most common cases based on our experience working with ISVs. The
ecosystem around 64-bit ARM support for popular operating systems, open-source technologies,
and language or runtime is constantly evolving. Please reach out to your AWS account team if you
need further guidance.

23

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Contributors

Contributors to this document include:

• Karsten Ploesser, Senior ISV Solutions Architect, Amazon Web Services

• Jeff Underhill, Principal Compute GTM Specialist, AWS Business Development

• Arthur Petitpierre, Senior Specialist Solutions Architect, Amazon Web Services

• Csaba Csoma, Software Development Manager, Annapurna Labs

• Zi Shen Lim, EC2 Graviton Specialist, AWS Business Development

• Tyler Lynch, Senior ISV Solutions Architect, Amazon Web Services

24

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Minor updates Edits for accuracy January 6, 2022

Initial Publication First Publication March 2, 2021

25

AWS Graviton2 for Independent Software Vendors How AWS Graviton helps Independent Software Vendors accelerate
growth and improve their margins on AWS

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

26

	AWS Graviton2 for Independent Software Vendors
	Table of Contents
	AWS Graviton2 for ISVs
	Abstract

	Introduction
	Background
	Use case scenarios
	SaaS distribution (as SaaS-based product or subscription)
	Marketplace distribution (as AMI-based or Container-based product)
	Direct distribution (as application binary)
	Service dependencies

	Planning checklist
	Planning your transition
	Operating system (OS)
	Language and runtimes
	Container services
	Software agents
	Build systems
	Edge cases

	Transitioning your service or application
	Resolve code dependencies
	Upgrade operating systems
	Upgrade language runtimes
	Transition codebase and packages
	Test and benchmark your code
	Tune and test
	Additional considerations
	Update Amazon Machine Images (AMI) or container registries
	Update deployment scripts

	Optimizing for performance
	Understand key advantages
	Use optimized compiler flags
	Upgrade operating systems
	Tune low level code
	Test performance on multiple instance sizes

	Reviewing your cost structure
	Cost metrics and workload management
	Instance fleets
	Pricing model

	Final considerations
	Review Ramp-up and go-to-market activities
	Update installation and configuration guidelines
	Update product definitions in AWS Marketplace

	Conclusion
	Contributors
	Document revisions
	Notices

