
INTEGRATION OF DALI WITH TENSORRT ON XAVIER

Josh Park (joshp@nvidia.com), Manager - Automotive Deep Learning Solutions Architect at NVIDIA

Anurag Dixit(anuragd@nvidia.com), Deep Learning SW Engineer at NVIDIA

mailto:joshp@nvidia.com
mailto:anuragd@nvidia.com

2

Contents

Backgrounds

TensorRT

DALI

Integration

Performance

3

THE PROBLEM
Backgrounds

Backgrounds
Massive amount of computation in DNN GPU: High Performance

Computing Platform SW Libraries

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778. 2016.

Parameter layers in billions FLOPS (mul/add)

DL Applications

DL
Frameworks

TensorRT

DALI
cuDNN

CUDA

CUDA Driver

OS

HW with GPUs

5

NVIDIA DRIVE AGX Platform
Xavier - aarch64 based on SoC w/ CPU + GPU + MEM

iGPU

8 Volta SMs

512 CUDA cores

64 Tensor Cores

20 TOPS INT8, 10 TOPS FP16

CUDA Compute Capability 7.2

6

THE PROBLEM
NVIDIA TensorRT

7

NVIDIA TensorRT - Programmable Inference Accelerator
● Optimize and Deploy neural networks in production

environments

● Maximize throughput for latency critical apps with optimizer

and runtime

● Deploy responsive and memory efficient apps with INT8 &

FP16 optimizations

● Accelerate every framework with TensorFlow integration and

ONNX support

● Run multiple models on a node with containerized inference

server

8

TensorRT 5 supports Turing GPUs

● Optimized kernels for mixed precision

(FP32, FP16, INT8) workloads on Turing GPUs

● Control precision per-layer with new APIs

● Optimizations for depth-wise convolution operation

From Every Framework, Optimized For Each Target Platform Turing Tensor Core

9

How TensorRT Works?
● Layer & Tensor Fusion

● Auto-Tuning

● Precision Calibration

● Multi-Stream Execution

● Dynamic Tensor Memory

10

Layer & Tensor Fusion
TensorRT Optimized Network

e.g

Unoptimized Network

Networks Number of
layers (Before)

Number of
layers (After)

VGG19 43 27

Inception v3 309 113

ResNet-152 670 159

11

Kernel Auto-Tuning
● Maximize kernel performance

● Select the best performance

for target GPU

● Parameters
○ Input data size
○ Batch
○ Tensor layout
○ Input dimension
○ Memory
○ Etc.

Tesla V100 Jetson AGX Drive AGX

12

Lower precision - FP16
● FP16 matches the results quite closely to FP32

● TensorRT automatically converts FP32 weights to FP16 weights

builder->setFp16Mode(true);

● To enforce that 16-bit kernels will be used when building the engine

builder->setStrictTypeConstraints(true);

● Tensor Core kernels (HMMA) for FP16 (supported on Volta and Turing GPUs)

Lower Precision - INT8 Quantization
● Setting the builder flag enables INT8 precision inference.

○ builder->setInt8Mode(true);
○ IInt8Calibrator* calibrator;
○ builder->setInt8Calibrator(calibrator);

● Quantization of FP32 weights and activation tensors
○ (weights) Int8_weight = ROUND_To_Nearest (scaling_factor *

FP32_weight_in_the_filters)
■ * scaling_factor = 127.0 f / max (| all_FP32_weights |)

○ (activation) Int8_value = if (value > threshold): threshold; else scaling_factor *
FP32_value

■ * Activation range unknown (input dependent) => calibration is needed
● Dynamic range of each activation tensor => the appropriate quantization scale
● TensorRT: symmetric quantization with quantization scale calculated using

absolute maximum dynamic range values
● Control precision per-layer with new APIs
● Tensor Core kernel (IMMA) for INT8 (supported on Drive AGX Xavier iGPU and

Turing GPUs)

Lower Precision - INT8 Calibration
● Calibration Solutions in TensorRT

○ Run FP32 inference on Calibration

○ Per Layer:
■ Histograms of activations

■ Quantized distributions with different saturation thresholds.

○ Two ways to set saturation thresholds (dynamic ranges) :

■ manually set the dynamic range for each network tensor using

setDynamicRange API

● * Currently, only symmetric ranges are supported

■ use INT8 calibration to generate per tensor dynamic range

using the calibration dataset (i.e. ‘representative’ dataset)

● *pick threshold which minimizes KL_divergence

(entropy method)

* INT8 and FP16 mode, both if the platform supports. TensorRT will choose the most performance optimal kernel to perform inference.

15

Plugin for Custom OPs in TensorRT 5
● Custom op/layer: op/layer not supported by TensorRT => need to implement plugin for TensorRT

engine

● Plugin Registry

○ stores a pointer to all the registered Plugin Creators / look up a specific Plugin Creator

○ Built-in plugins: RPROI_TRT, Normalize_TRT, PriorBox_TRT, GridAnchor_TRT, NMS_TRT, LReLU_TRT,

Reorg_TRT, Region_TRT, Clip_TRT

● Register a plugin by calling REGISTER_TENSORRT_PLUGIN(pluginCreator) which statically

registers the Plugin Creator to the Plugin Registry

16

How can we further optimize end-to-end
inference pipeline on NVIDIA DRIVE Xavier?

17

THE PROBLEM
NVIDIA DALI

18

Motivation: CPU BOTTLENECK OF DL TRAINING
• Operations are performed mainly on CPUs before the input data is ready for

inference/training
• Half precision arithmetic, multi-GPU, dense systems are now common (e.g., DGX1V, DGX2)
• Can’t easily scale CPU cores (expensive, technically challenging)
• Falling CPU to GPU ratio:

• DGX1: 40 cores, 8 GPUs, 5 cores/ GPU

• DGX2: 48 cores , 16 GPUs , 3 cores/ GPU

CPU ops and CPU to GPU ratio

Complexity of I/O pipeline

19

Data Loading Library (DALI)
A collection of:

a. highly optimized building blocks
b. an execution engine

Accelerates input data pre-processing for deep learning applications

Provides performance and flexibility of accelerating different pipelines.

High Performance Data Processing Library

“Originally on X86_64”

20

● Running DNN models requires input data pre-processing

● Pre-processing involves

○ Decoding, Resize, Crop, Spatial augmentation, Format conversions

● DALI supports

○ the feature to accelerate pre-processing on GPUs

○ configurable graphs and custom operators

○ multiple input formats (e.g. JPEG, LMDB, RecordIO, TFRecord)

○ serializing a whole graph (portable graph)

● Easily integrates with framework plugins and open source bindings

Why DALI?

(NCHW NHWC)

21

Integration: Our Effort on DALI
Extension to aarch64 and Inference engine

Beyond x86_64

● Extension of targeted platform to “aarch64”: Drive AGX Platform

High level TensorRT runtime within DALI

● TensorRTInfer op via a plugin

22

Dependency
Components On x86_64 On aarch64

gcc 4.9.2 or later 5.4

Boost 1.66 or later N/A

Nvidia CUDA 9.0 or later 10.0 or later

protobuf version 2.0 or later version 2.0

cmake 3.5 or later 3.5 later

libnvjpeg Included in cuda toolkit Included in cuda toolkit

opencv version 3.4 (recommended)
2.x (unofficial)

version 3.4

TensorRT 5.0 / 5.1 5.0 / 5.1

23

How we Integrate TensorRT with DALI?

● DALI supports custom operator in C++

● Custom operator library can be loaded in the runtime

● TensorRT inference is treated as a custom operator

● TensorRT Infer schema

○ serialized engine

○ TensorRT plugins

○ input/output binding names

○ batch size for inference

24

Pipeline Example of TensorRT within DALI

Image Decoder Resize NormalizePermute TensorRTInfer

Newly accelerated nodes in an end-to-end inference pipeline on GPU

Decoded
image

Resized
Image

Normalized
Image

25

Use Cases
Single Input,
Multi Outputs

Multi Inputs,
Multi Outputs

Multi Inputs, Multi Output
with Post processing

iGPU + DLA pipeline

Input

Pre-process

TensorRTInfer

Output 1 Output 2

Input 1

Pre-process

TensorRTInfer

Output 1 Output 2

Input 2 Input 1

Pre-process

TensorRTInfer

Post-process

Input 2

Output 1

Post-process

Output 2

Input 1

Pre-process

TensorRTInfer
(iGPU)

Post-process

Output

Input 2

TensorRTInfer
(DLA)

26

Parallel Inference Pipeline

iGPU + DLA pipeline

Input

Pre-process

TensorRTInfer
(iGPU)

Post-process

Output

TensorRTInfer
(DLA)

SSD Object Detection
(iGPU)

DeepLab Segmentation (DLA)

Input

Output

27

THE PROBLEM
Performance

28

Object Detection Model on DALI
● Model Name: SSD (Backbone ResNet18)
● Input Resolution: 3x1024x1024
● Batch: 1
● HW Platform: TensorRT Inference on Xavier (iGPU)
● OS: QNX 7.0
● CUDA: 10.0
● cuDNN: 7.3.0
● TensorRT: 5.1.1
● Preprocessing: jpeg decoding, resizing, normalizing

CPU
Preprocessing

DALI Pipeline

Host Decoder Resize NormalizePermute TensorRTInfer

CPU

Decoded
image

Resized
Image

Normalized
Image

GPU

Host Decoder Resize NormalizePermute TensorRTInfer

CPU

Decoded
image

Resized
Image

Normalized
Image

GPU

GPU
Preprocessing

29

Performance of DALI + TensorRT on Xavier

Preprocessing Speedup via DALI TensorRT Speedup per Precision (resnet-18)

30

Stay Tuned!
NVIDIA DALI github: https://github.com/NVIDIA/DALI

[PR] Extend DALI for aarch64 platform: https://github.com/NVIDIA/DALI/pull/522

https://github.com/NVIDIA/DALI
https://github.com/NVIDIA/DALI/pull/522

31

Acknowledgement
Special Thanks to

- NVIDIA DALI Team
- @Janusz Lisiecki, @Przemek Tredak, @Joaquin Anton Guirao, @Michal Zientkiewicz

- NVIDIA TSE/ADLSA
- @Muni Anda, @Joohoon Lee, @Naren Sivagnanadasan, @Le An, @Jeff Hetherly, @Yu-Te Cheng

- NVIDIA Developer Marketing
- @Siddarth Sharma

Thank You

