

Mobile Rich Media Ad Interface
Definition (MRAID)
VERSION 3.0

JULY 2017

© 2016 IAB Technology Laboratory 2 MRAID_v3.0

Mobile Rich Media Ad Interface
Definition (MRAID) Version 3.0

MRAID Version 3.0 (MRAID 3.0) has important new features to improve the user’s

ad experience. The new MRAID enables the ad to measure viewability and

audibility, detect MRAID environment, and get location data to present user with

the best possible experience. In addition, there is guidance on pre-loading ads and

understanding of ad readiness to display an ad to the user. The Video Player Ad

Interface Definition (VPAID) addendum to MRAID is now fully included in the

MRAID specification.

This MRAID version has been developed by the IAB Tech Lab Mobile Rich Media

Ad Interface Definition (MRAID) Working Group.

ABOUT IAB TECH LAB

The IAB Technology Laboratory is an independent, international, research and

development consortium charged with producing and helping companies

implement global industry technical standards. Comprised of digital publishers and

ad technology firms, as well as marketers, agencies, and other companies with

interests in the interactive marketing arena, the IAB Tech Lab’s goal is to reduce

friction associated with the digital advertising and marketing supply chain, while

contributing to the safe and secure growth of the industry. Learn more about IAB

Tech Lab here.

This document is on the IAB website at: https://www.iab.com/mraid

https://www.iabtechlab.com/
https://www.iab.com/mraid

© 2016 IAB Technology Laboratory 3 MRAID_v3.0

The following IAB member companies participated in the above working group:

AccuWeather.com DoubleVerify Shazam

AdColony Flashtalking Sizmek

Adform FOX Networks Group Taboola

AdGear Technologies, Inc. FreeWheel The Media Trust
Company

Adobe Google The New York
Times Company

Adsiduous Media Gruuv Interactive Thinknear by
Telenav

ADTECH Hulu Time Inc.

AdTheorent IAB Tremor Video

ADVR Improve Digital
International B.V.

Turner Broadcasting
System

AerServ Innovid

Alliance for Audited Media
(AAM)

Integral Ad Science Vdopia

Amazon Leaf Group Vertebrae

AOL Liquidus Verve

BabyCenter LogoBar Enterprises ViralGains

Bazaarvoice MGID Visible Measures

Bonzai Microsoft Advertising Westwood One

Cedato Technologies Ltd MoPub/ Twitter Inc. White Ops

Celtra mPlatform Yahoo

Conversant Media NinthDecimal Yieldmo

Cyber Communications Inc. PadSquad YuMe

Digital Advertising
Consortium Inc.

Pixalate Zynga

Dominion Enterprises RhythmOne

© 2016 IAB Technology Laboratory 4 MRAID_v3.0

Table of Contents

Executive summary ... 7

Audience ... 7

1 Introduction .. 8

1.1 Definitions ... 8

1.2 Scope ... 9

1.3 How MRAID Works .. 9

1.4 Versions .. 10

1.4.1 Updates in MRAID 3.0 .. 11

2 Overview .. 12

2.1 Web Technologies Support .. 12

2.1.1 Ad Server .. 13
2.1.2 Ad Rendering .. 13

2.2 Ad Control ... 13

2.3 Interface .. 14

2.4 Offline Requests and Metrics ... 15

2.5 DAA Ad Marker Implementation .. 16

3 Initialization and Set-up .. 16

3.1 Initialization Overview ... 16

3.1.1 Checking that MRAID Ad is Loaded .. 17
3.1.2 Declaring MRAID Environment Details ... 17
3.1.3 Identification .. 19
3.1.4 Implementation of MRAID Events .. 20
3.1.5 Loading and Showing Interstitial Ads ... 24
3.1.6 Using iframes .. 24
3.1.7 Viewport and Default Container Set-Up .. 24
3.1.8 Standard Image for Initial Display .. 25
3.1.9 Event Handling .. 25

4 Features and Operation .. 25

4.1 Viewability .. 25

4.1.1 Polling Rates and Event Thresholds ... 26
4.1.2 Implementation Considerations ... 27

© 2016 IAB Technology Laboratory 5 MRAID_v3.0

4.2 Ad Controls for Display .. 29

4.2.1 Ad States and How They're Changed ... 29
4.2.2 Checking Position and Size of the Screen and Ad 30
4.2.3 Changing the Size of an Ad ... 31
4.2.4 Differences between open(), expand(), and resize() 31

5 MRAID Methods ... 34

5.1 getVersion() ... 34

5.2 addEventListener() .. 34

5.3 removeEventListener() .. 35

5.4 open() .. 35

5.5 close() .. 36

5.6 unload() ... 38

5.7 useCustomClose() (deprecated) ... 38

5.8 expand() .. 39

5.9 isViewable() (deprecated) .. 41

5.10 playVideo() .. 41

5.11 resize() .. 41

5.12 storePicture() .. 42

5.13 createCalendarEvent() ... 43

5.14 VPAID methods ... 44

5.14.1 initVpaid() ... 44
5.14.2 vpaidObject.subscribe() .. 44
5.14.3 vpaidObject.startAd() ... 44
5.14.4 vpaidObject.unsubscribe() ... 44
5.14.5 vpaidObject.getAdDuration() ... 44
5.14.6 vpaidObject.getAdRemainingTime() .. 45

6 Properties ... 46

6.1 supports .. 46

6.2 getPlacementType ... 47

6.3 get/set orientationProperties .. 47

6.4 getCurrentAppOrientation ... 49

6.5 getCurrentPosition .. 50

6.6 getDefaultPosition ... 50

6.7 getState ... 51

6.8 get/set expandProperties .. 51

6.9 getMaxSize .. 53

6.10 getScreenSize .. 53

6.11 get/set resizeProperties ... 54

© 2016 IAB Technology Laboratory 6 MRAID_v3.0

6.12 getLocation .. 56

7 Events ... 57

7.1 Error .. 57

7.2 ready ... 58

7.3 sizeChange ... 59

7.4 stateChange .. 59

7.5 exposureChange .. 60

7.6 audioVolumeChange ... 62

7.7 viewableChange (deprecated) ... 65

8 Working with Device Features ... 65

8.1 Device Orientation ... 65

8.2 Store a picture ... 66

8.3 Calendar Events ... 67

8.4 Video ... 68

9 VPAID Events and Methods ... 69

9.1 VPAID Interaction in MRAID Ads .. 69

9.1.1 Initializing VPAID in the MRAID Context .. 70
9.1.2 Sending and Receiving VPAID events ... 71
9.1.3 If VPAID Is Not Supported .. 71
9.1.4 VPAID AdClickThru Event .. 72
9.1.5 VPAID AdPaused, AdPlaying Events ... 72
9.1.6 Support for Auto-Start Video ... 72

9.2 Clickthrough Behavior and Viewability................................... 73

9.3 Counting Impressions .. 74

10 Glossary of Terminology 75

11 Appendix: W3C CalendarEvent Interface 77

© 2016 IAB Technology Laboratory 7 MRAID_v3.0

Executive summary

MRAID is an acronym for Mobile Rich Media Ad Interface Definition. It enables
indirect communication between an ad and the mobile app so the ad can execute
a rich, interactive experience.

Without MRAID, ad developers would have to design interactive ads specifically
for each proprietary system into which it would serve. The cost of such
development would be prohibitive for brands to effectively advertise in mobile
apps.

MRAID offers a library of calls that the ad can use to communicate with an
MRAID-compliant app. As more mobile apps are equipped to handle MRAID ads,
ad developers can count on a more predictable ad experience.

MRAID 3.0 offers updates that improve mobile ad execution with features that
help track viewability, deliver clarity on initialization and ad readiness, and
integrate with IAB VPAID (Video Player Ad Interface Definition) for ads with
interactive video, and other incremental upgrades.

To make use of these upgrades, ad developers must adopt the new features to
support relevant ad functions, and app developers must upgrade their mobile
apps to support these new features or look to their MRAID SDK providers for an
update.

As the use of mobile increases, so does the demand for higher quality ads.
Buyers want improved tracking, while app publishers want improved ad
experience. Implementing and/or upgrading to MRAID 3.0 offers support for both
improved tracking and better performance for higher quality ads.

Audience

MRAID is a protocol that ad designers and ad developers use to develop ads
capable of interacting with an MRAID-compliant app. App developers or their
SDK providers must provide a technical component to the app capable of setting
up a container and responding to MRAID calls the ad makes.

Though this specification offers technical guidance for ad developers and app
publishers or their SDK providers, anyone working in ad ops for mobile ad
campaigns should be familiar with this document.

© 2016 IAB Technology Laboratory 8 MRAID_v3.0

1 Introduction

MRAID specifies an API that enables interaction between a rich ad experience
and the native mobile app into which it is served. The MRAID implementation for
an app, usually offered as an SDK, initiates a container where the ad will display
and a controller that the ad uses to interface with the app container.

An MRAID-compliant ad calls functions, provides information, and behaves
according to this specification. An MRAID-compliant native app provides
information, responds to MRAID calls, and behaves as defined in this
specification.

1.1 Definitions

MRAID involves moving parts that work together to produce an interactive ad
experience. In order to clearly represent these moving parts, the following
keywords are defined as they are used in this document.

host: The component of a mobile app that provides the space (container)
to display ads and the services (controller) that ads can access via the
MRAID API. The host may be implemented as an SDK or it could be an
inherent feature of the app.

MRAID Implementation: The features of the host that provide MRAID
functionality to ads. This includes JavaScript properties through which the
ad can detect the presence of MRAID, enable MRAID, and invoke MRAID
services.

SDK: Acronym for Software Development Kit. In the case of MRAID, the
SDK refers to the implementation code and instructions that providers
offer to mobile app publishers.

SDK provider: For the purposes of this document, an SDK provider is a
mobile ad tech services provider that develops the MRAID implementation
code and instructions for mobile app publishers.

ad container: The constrained area in an app reserved for ad display.
App publishers might arrange the ad container within the app content
(inline) or reserve the container for display over the content (interstitial).
Multiple containers may be available in the app.

webview: Technology of a mobile OS that displays web content and
executes JavaScript. MRAID does not require the use of a webview, but in
a typical MRAID host, the ad container contains a webview, where the ad
is the top-level HTML document within the Webview.

© 2016 IAB Technology Laboratory 9 MRAID_v3.0

native layer: The technical layer in which communication and operation
takes place with regard to the native app.

ad: For the purpose of this document, an ad includes all the creative,
library references, code, and other files, including any MRAID functions,
used to display an MRAID ad in the mobile environment.

1.2 Scope

Each MRAID implementation offers unique feature sets to developers. This
document explains the setup, initiation, functions, properties, events, and
expected behaviors in response to these features. However, some operational
details are excluded. Examples of features that are out-of-scope for this
document include:

● Retrieving the ad from Ad Server, Ad Network, or local resources
● Reporting
● IDE integrations
● Security / Privacy
● Internationalization
● Error reporting
● Logging
● Billing and payments
● Ad dimensions and ad behavior
● Downloading of assets to the local file system for caching or off-line use

SDK providers must include the ability to render web content in the area intended
for the ad unit. For most environments, this capability is already available as a
webview but the developer may have to develop additional functions to support
these specifications.

MRAID is not limited to features described in this document. Developers are
encouraged to innovate and include features that differentiate them in the
marketplace. However, in order to maintain an interoperable baseline of features,
additional feature sets must be implemented outside the MRAID namespace.
Awareness of extra feature sets and integration may be required to support
functionality.

1.3 How MRAID Works

As a protocol between two systems, each system must be equipped to follow the
call and response expectations. In the most simplistic sense of MRAID, the two
systems involved are the ad and the mobile app. One system makes a call to the
other and the other responds. However, the ad and app don't actually
communicate directly.

© 2016 IAB Technology Laboratory 10 MRAID_v3.0

Mobile ad campaign services (vendors) build the components for interaction to
minimize the impact on mobile app developers. Ad technologist is a person or a
platform that can implement MRAID specific functionality. Ad technologist may
also help ad designer or ad developer use MRAID to implement interactive
features. An ad designer or ad developer produces the ad with all the intended
functionality, and the ad technologist uses scripts to standardize the functionality
to MRAID specifications. The vendor may also provide some recommendations
for technical designs that simplify the process.

Likewise, on the app side, a vendor develops the components for interaction
within a container that a simple JavaScript tag initiates. The container is where
the ad can be executed using standardized protocols for communication in a
browser-like environment, or webview. The app may initiate a "listener" in order
to track interactions or respond to certain events the ad sends.

The following image illustrates the working parts of an MRAID system.

1.4 Versions

Maintaining full backwards compatibility in MRAID is one of the goals of this
project. In the MRAID 3.0 update, the Working Group maintained the six key
goals established in version 2.0:

● High interoperability: ads developed to run in one MRAID container can
run on MRAID containers of multiple platforms and operating systems.

● Graceful degradation: ads developed to take advantage of all the MRAID
features also have the capacity to downgrade gracefully as needed. This
is especially important as MRAID continues to include device access in
version updates.

● Progressive complexity: ad design using the API should be simple,
adding complexity only as necessary.

● Consistent means for ad operation: MRAID provides ads a consistent
means of communication regarding their need to expand and open an

© 2016 IAB Technology Laboratory 11 MRAID_v3.0

app’s embedded browser (or browser if an embedded browser does not
exist).

● Consistent exit controls: MRAID ads will always have a consistent
control that allows users to exit the ad experience and return to the app or
content.

● Flexibility for publishers: although MRAID-compliant SDKs must
support all MRAID capabilities, app publishers or ad sellers are free to
allow or disallow ads that make use of the features MRAID enables. That
is, MRAID enables rich media ad features, but does not dictate that all
sellers of rich media ads must support all those features.

Version 1.0
The methods and events included in MRAID Version 1 provide a minimum level
of requirements for rich media ads, primarily to display HTML ads that can
change size in a fixed container (e.g., expand from banner to larger/full screen
size), and interstitial ads.

Version 2.0
MRAID 2.0 extended the capabilities of MRAID 1.0 to give ad designers more
control over expandable ads using the resize() method. Version 2.0 also

offered the supports() feature as a standard way to query a device regarding

certain capabilities. Other features included: consistent handling of video
creative, adding an entry to the device calendar, and storing an image in the
device photo roll.

MRAID Video Addendum
After the release of version 2.0, the working group drafted an addendum for
making use of IAB's Video Player-Ad Interface Definition (VPAID) in the MRAID
context. The Video Addendum provides guidance on how to initiate VPAID and
how the host can track those interactions using select VPAID events.

1.4.1 Updates in MRAID 3.0

MRAID 3.0 comes with an overhaul to the documentation, integration of the
VPAID addendum to MRAID 2.0, viewability changes, and other features
designed to enhance the rich mobile ad experience. The updates in MRAID 3.0
are as follows:

● Viewability: The measures of viewability must consider factors beyond
whether the current webview is in view. In MRAID 3.0, isViewable() is

deprecated but remains in this version for backward compatibility. Instead,
recommendations include practices that use exposureChange event to

better communicate the visibility of the ad.
● MRAID detection and initialization: Previous MRAID versions were

ambiguous about how the ad would initially detect whether it was running
in an MRAID-compliant webview. Updates in MRAID 3.0 introduce

© 2016 IAB Technology Laboratory 12 MRAID_v3.0

MRAID_ENV object to facilitate the early passing of version and other
relevant attributes at initialization time.

● Revised MRAID events implementation: This version provides guidance
for proper communication of states between the host and the ad and
unambiguous implementation of sequence of events.

● Audibility measurement: A new event introduced for detecting whether
audio can be heard and when volume changes.

● Location: A new addition to supports features to indicate whether

access to location is enabled, and if so, provide information about the
location.

● Pre-loading and ad readiness: Previous versions of MRAID lacked
guidance on communicating whether the ad's assets were loaded and
ready to display, sometimes causing blank screens to display and poor
user experience. MRAID 3.0 offers guidance for the host on how to check
for ad readiness before display and for how to pre-load interstitial ads
appropriately.

● unload method: A new method introduced to provide a graceful exit
mechanism for the ad in cases of runtime exceptions. It enables the ad to
indicate to host to dismiss the webview when ad does not want to continue
being shown to the user.

● Two-part ads deprecated: While two-part ads may still be used and
existing features from MRAID 2.0 continue to support these ads, new
features added to MRAID 3.0 are not designed to support two-part ads.

● VPAID Events: An addendum to MRAID 2.0 introduced support for
initiating VPAID and reporting certain events. MRAID 3.0 integrates this
addendum and offers optional compliance for the host to support ads
developed using both MRAID and VPAID.

● useCustomClose(): This method is being deprecated in MRAID 3.0.

2 Overview

MRAID is designed to take advantage of standardized web technologies for use
in native apps. This overview provides background information on how these
technologies are used in MRAID operations.

2.1 Web Technologies Support

For interoperability, MRAID should only use web-compatible languages for
markup and scripting languages. While MRAID is code-agnostic, the assumption
is that HTML, JavaScript, and CSS are used. The ad designer should be able to
develop and test the ad unit in a web browser. If designers use tags, styles, and
functions compatible with only one browser (such as CSS3 on WebKit), then the
ad should be targeted to compatible devices.

© 2016 IAB Technology Laboratory 13 MRAID_v3.0

When newer web standards provide consistency across browsers, ad designers
are encouraged to use them. Examples of such protocols may include sms: and
tel:

Since the publication of MRAID 2.0, HTML5 has been released and should be
used as much as possible. Ad designers should be aware that despite increased
consistency, expected protocols and implementations might still lack true
interoperability across all devices and platforms.

2.1.1 Ad Server

The ad server used to traffic mobile rich media ads should support HTML ads
with JavaScript.

2.1.2 Ad Rendering

An MRAID-compatible app must be capable of displaying any HTML ad. The
process involves invoking an HTML file that includes a JavaScript tag used to
initiate a rendering engine for executing ads. In this HTML file, that rendering
engine is the "webview".

Whenever possible, the webview should incorporate the capabilities of the device
web browser. For example, iOS developers may use WKWebView. Mobile apps

may initiate multiple webviews that each act independently of one another. An ad
may be built of multiple components that display in separate webviews.

2.2 Ad Control

Ad designers that expect ads to make use of MRAID must invoke the mraid.js

script before the ad is loaded (see section 3 on initialization). Once called, the ad
container can inject the MRAID JavaScript into the ad file.

The host then remains in the background, leaving the ad designer in control of ad
display. When the ad needs to interact with the app, the host is made available to
handle the interaction. This interaction between the ad and MRAID can be
managed with little to no impact on either the ad designer or the app developer.

An ad that does not use any device features does not need to use MRAID, but,
without MRAID, the host handles the ad as a simple display ad.

Some of the features an ad may take advantage of in the MRAID API include:

● Opening an embedded web browser
● Detecting exposure change and ad interaction
● Expanding an ad from a banner to a larger size
● Triggering an action in response to tapping, shaking, location, and other

user-engagement activities

© 2016 IAB Technology Laboratory 14 MRAID_v3.0

Ad designers are encouraged to rely on MRAID’s capabilities to achieve the
above effects. Even simple display ads must consider the use of MRAID for
consistent hyperlink behavior.

2.3 Interface

Ad designers have access to the following methods, properties, and events:

Methods Description

getVersion ad checks the version of the MRAID
implementation that the host is using.

addEventListener ad registers a listener for a specified event

removeEventListener ad removes a listener for a specified event

open ad specifies a URL to be opened in a new webview

close ad calls to downgrade the state ad container

useCustomClose deprecated in MRAID 3.0. This method call will be
ignored by MRAID 3.0 compliant hosts

unload ad calls to dismiss or remove the webview
because it cannot load or render the assets. Host
can either remove the webview, replace with
another document or refresh with a new ad call

expand ad requests ad container expansion

isViewable (deprecated) ad queries the host about the on-screen status of
the ad container

playVideo ad requests video play in native player

resize ad requests ad container size change to
accommodate new ad size

storePicture ad requests prompt to user about storing a picture
on the device

createCalendarEvent ad request prompt to the user for adding an event
to the device calendar

VPAID Methods a collection of methods used to manage a VPAID
video ad in the context of MRAID

• initVpaid

• vpaidObject.subscribe

• vpaidObject.startAd

• vpaidObject.unsubscribe

• vpaidObject.getAdDuration

• vpaidObject.getAdRemainingTime

Properties

supports ad requests details on features the host supports

getPlacementType ad requests confirmation of either an inline or
interstitial placement

© 2016 IAB Technology Laboratory 15 MRAID_v3.0

getOrientationProperties ad requests details on landscape or portrait
orientation

setOrientationProperties ad specifies preferences for allowing or locking
orientation, if supported, for ad display

getCurrentAppOrientation ad requests current orientation of the app

getCurrentPosition ad requests current coordinates of the ad container

getDefaultPosition ad requests default coordinates of the ad container

getState ad requests current state of the ad container:
loading, default, expanded, resized, hidden

getExpandProperties ad requests current expand properties

setExpandProperties ad specifies new expand properties

getMaxSize ad request max ad container dimensions available

getScreenSize ad requests dimensions of device screen

getResizeProperties ad requests current dimensions of the ad container
in its resized state

setResizeProperties ad specifies dimensions for resizing the ad
container

getLocation ad requests current coordinates of the device

Events

error host reports an error

ready host reports that MRAID libraries are loaded

sizeChange host reports that ad container dimensions have
changed

stateChange host reports that the state of the ad container has
changed

exposureChange host reports that the percentage of ad container
exposure has changed

audioVolumeChange host reports a change in volume

viewableChange
(deprecated)

host reports a change in ad container viewability

2.4 Offline Requests and Metrics

Rich Media Ads that work while the device is without network connectivity need
the ability to store and later forward metrics about how and when users interact
with the ad.

MRAID has the potential to integrate with common APIs to facilitate storing and
forwarding ad metrics such as impressions, views, and other ad activity;
however, details for how these metrics are measured or how they are reported is
out of the scope for MRAID.

© 2016 IAB Technology Laboratory 16 MRAID_v3.0

2.5 DAA Ad Marker Implementation

The Digital Advertising Alliance (DAA) establishes principles for user privacy in
digital advertising. To align with these principles as they apply to the mobile
environment, the DAA has developed implementation guidelines that involve the
placement of a marker, which offers users information about the ad and the
option to opt out.

The DAA Ad Marker Implementation Guidelines for Mobile was released April
2014. Enforcement of privacy principles in the mobile environment began on
September 1, 2015.

While no updates have been added to MRAID 3.0, MRAID has always had the
ability to support the display of an icon overlay and open a window that can
provide users with more information about the ad. Ad developers and mobile
vendors should review Interest-Based Advertising (IBA) Principles for mobile ads
as part of the ad development and delivery strategy.

3 Initialization and Set-up

MRAID enables complex ad interactions in a native app environment. This
interaction requires that the host initiate a container where the ad executes and
displays. The following sections describe the initiation process.

3.1 Initialization Overview

MRAID governs interactions between the ad and app using an MRAID
implementation that initiates a container for ad display. Ad designers must
include a script request for mraid.js, but the host actually supplies the

JavaScript libraries using a webview.

The webview must ensure that the appropriate JavaScript libraries are made
available to the ad as soon as possible after the mraid.js reference is made.

The webview confirms that the libraries are ready by sending the ready event.

The following summarizes step-by-step the actions that the ad and MRAID
container take in the initial loading of the ad and the injection of MRAID API
libraries.

1. Host establishes webview for ad execution.

2. Host makes the MRAID_ENV object available before the ad is loaded so
that the ad can identify MRAID compliance.

3. Ad identifies MRAID compliance by invoking the MRAID script tag before
initial ad load is complete. See section 3.1.1 for details.

4. (Optional) Host detects the MRAID script call.

http://www.aboutads.info/resource/Ad_Marker_Guidelines_Mobile.pdf

© 2016 IAB Technology Laboratory 17 MRAID_v3.0

5. Host provides MRAID JavaScript bridge for ads.

6. Host provides limited MRAID object with MRAID state =’loading’ and the
ability to query state.

7. When ad uses createElement for mraid.js, ad must wait for mraid.js to
finish loading before accessing the mraid object. Ad is required to ensure
mraid.js is available. Ad must use the ready event to determine full

mraid.js availability.

8. Ad checks for mraid.getState()==’loading’, if true, then ad listens for

ready event using mraid.addEventListener('ready')

9. Host loads MRAID library into the webview
a. Changes MRAID state to "default" and send stateChange event.

b. Fires the MRAID ready event.

10. Event listener for the ad captures the ready event and can access MRAID
features as needed.

3.1.1 Checking that MRAID Ad is Loaded

The ad is considered loaded when the document inside the webview containing
the ad is parsed and all of its sub-resources (including ad assets) have finished
loading. At that time, document.readyState is set to complete and the load

event is emitted on the window object.

This check may not be required for all types of ads e.g. small size banner ads
may not require this. But this check must be performed for all large sized ads e.g.
interstitials or ads that require heavy assets to be loaded before rendering.

The host can detect when the webview and all of its components including all ad
assets has completely loaded by checking for the following:

● On Android, use the onPageFinished() handler

● On iOS* inspect the document within the webview by polling for the
document.readyState until it is set to complete and the load event is

emitted on the window object.

In iOS the host can also use webViewDidFinishLoad(), but this event can

sometimes be triggered too soon. The document.readyState must also be

checked to verify ad load on iOS.

When there is no ad loaded for any reason, it is required that the ad be able to
communicate to the SDK that there is no ad present. This must be done using
the mraid.unload() method

3.1.2 Declaring MRAID Environment Details

In previous versions of MRAID, guidance was given for the ad to identify as an
MRAID ad (using mraid.js) as soon as possible, but the ad had no access to

© 2016 IAB Technology Laboratory 18 MRAID_v3.0

information about the container into which it would load. In cases where the ad
vendor offers both an MRAID version and a non-MRAID version, the ad server
needs to gather details about the environment so that it doesn't waste valuable
resources trying to call mraid.js for an environment that can't support it.

An MRAID 3.0 ad container provides an MRAID_ENV object that enables the ad
to verify whether the container is MRAID-compliant along with other information
about the environment, such as MRAID version, SDK version, and other key
details the ad needs to operate more efficiently. The MRAID_ENV object is
available even when the ad does not request access to MRAID by loading the
mraid.js script.

The MRAID_ENV object declares specific information about the MRAID
environment and the SDK container and makes that information available to the
creative immediately upon load. The ad can use these details to deliver a better
user experience and improve analytics.

The following script is an example of what the MRAID_ENV might look like:
<script>
window.MRAID_ENV = {
 version: '3.0',
 sdk: 'SDK Name',
 sdkVersion: '1.0.0',
 appId: 'com.iab.myapp',
 ifa: '01234567-89ab-cdef-0123-456789abcdef',
 limitAdTracking: true,
 coppa: false
</script>

MRAID_ENV Attributes:
The following attributes are used in the MRAID_ENV object that the host
provides to the ad when requested.

Attribute Description

version* (string) The version of the MRAID spec implemented by this
SDK. It must equal the same value returned by the
getVersion method of mraid interface.

sdk* (string) The name of the SDK running this webview.

sdkVersion* (string) The SDK version string. String may be left empty if
no version is available.

appId (string) The package name or application ID of the app
running this ad. Usually referred to as the bundle id

ifa (string) The user identifier for advertising purposes. For iOS,
this must be the Identifier for Advertising (IDFA). For
Android, this must be the Google Advertising ID (AID).

© 2016 IAB Technology Laboratory 19 MRAID_v3.0

limitAdTracking (Boolean, required if IFA is set) true if limit ad tracking is

enabled, False otherwise

coppa (Boolean, required for ads intended for children) true for

child-directed, false otherwise

*required

For ease of implementation, unused optional fields may be omitted from the
object entirely, or provided with default values (empty string for string types, 0 for
number types).

The optional fields must be set to default values or unset, and must only be
provided given explicit opt-in from the app publisher. This opt-in may be global
for the app, or on an impression by impression basis (for example, if a publisher
supports both direct sold and anonymous inventory).

In the case of a 2-part ad, the host only makes the MRAID_ENV object available
to the initial ad. The second part of the 2-part ad must use details the ad received
in the first part if the second part needs those details.

3.1.3 Identification

To make use of MRAID, the ad must request the mraid.js script while the

HTML ad is being loaded as described in section 3.1.1.

Requesting mraid.js can be done in one of three ways:

● Use the tag <script src="mraid.js"></script> in the HTML of the

creative.
● Use document.write() of the script tag from JavaScript code placed in

the creative.
● Use DOM element insertion of the script tag from JavaScript code placed

in the creative.

In the above cases, the script tag can be injected dynamically using JavaScript
code. The script tag must be injected before ad load is complete. See section
3.1.1 regarding ad load details.

MRAID sample ads demonstrate where the script tag should be positioned. See
www.iab.com/mraid for resources on MRAID implementation.

Ad designers must avoid using the string mraid.js for any purpose other than to

identify the use of MRAID. Using mraid.js more than once may lead to multiple

injections of MRAID libraries, contributing to file size and slowing down ad
performance.

http://www.iab.com/mraid

© 2016 IAB Technology Laboratory 20 MRAID_v3.0

The following diagram illustrates the interval for when mraid.js may be

requested:

1. The host app loads the ad
into an ad container.

2. Within the ad container,
the host executes in-page
and synchronously loaded
JavaScript along with any
other page assets.

3. The ad must call
mraid.js before the ad

container is completely
loaded.

4. The ad should listen to
window.load()event

to confirm container load
is complete

Non-MRAID ads should be able to operate in an MRAID webview with or without
calling mraid.js. One reason a simple ad might use MRAID is to provide

consistent behavior for hyperlink interaction. When MRAID is used, all hyperlinks
must use mraid.open().

3.1.4 Implementation of MRAID Events

In MRAID, user interaction can trigger a series of events to happen. To ease the
burden of ad creation, MRAID 3.0 mandates that these chained events are fired
after container manipulation as a result of either user interaction or creative
action.

In general, the container must perform all needed container size changes or
value changes before sending any event. This allows an ad to only need to watch
a single event instead of watching multiple events.

For example in the case of expandable ads, an ad would require stateChange,

exposureChange, and a sizeChange events to perform the expanded creative

execution. In previous versions of MRAID, an ad was forced to not only check
that the state has changed to "expanded" but was also required to check that the
container size actually changed with the sizeChange event.

In MRAID 3.0, the container must perform all the needed changes and then fire
chained events. In the expandable example, the events stateChange,

© 2016 IAB Technology Laboratory 21 MRAID_v3.0

exposureChange and sizeChange will all fire. This allows the ad to only need

to watch the event it expects and needs i.e. stateChange.

Expandable and interstitial examples are explained in more detail in this section.

Expandable Ad
In a typical use case for MRAID, the ad starts as a banner and expands to a full
screen experience upon user initiation.

© 2016 IAB Technology Laboratory 22 MRAID_v3.0

When the user taps the ad, the ad uses the MRAID javascript layer to request an
expansion by calling mraid.expand(). MRAID calls to request ad expansion.

The container notifies the app that the ad is expanding so that it can stop
anything that prevents user interaction. The container then resizes, and the
webview reserves a space at the top right corner for the close event region and
adds a close button.

When the user taps the close button or if the ad calls mraid.close(), the ad

resizes to its original size and the container notifies the app that it may resume
normal functionality.

The exposureChange event normally fires, but if the ad never registered a

listener, the SDK may opt to not fire the event to save on computational
resources.

© 2016 IAB Technology Laboratory 23 MRAID_v3.0

Interstitial Ad
Interstitial ads operate a lot like expandable ads except that instead of resizing
after the close function is tapped, an interstitial ad state is changed to 'hidden.'
Since the ad is not called upon again, any registered event listeners are
unregistered.

© 2016 IAB Technology Laboratory 24 MRAID_v3.0

3.1.5 Loading and Showing Interstitial Ads

Sometimes an interstitial ad is shown to the user before all the assets are fully
loaded. The result is a partially loaded or blank ad. In such instances, the poor
user experience may cause the user to dismiss the ad before it renders. To
prevent display of partially loaded ads, the host must wait for the ad to load
completely before display is initiated.

The ad must load in a webview that is off screen or hidden until all assets are
loaded. See section 3.1.1 for identifying when the ad is loaded.

The host must load and display the interstitial ad in the same webview. The host
must not load the ad into a temporary webview and then load it again inside a
new on-screen webview to show it. Doing so will cause the ad to be reloaded,
which may result in over-counting of ad requests and pixel trackers, and could
result in additional per-ad serving costs for dynamic ads.

3.1.6 Using iframes

Because of the potential use of multiple platforms used to serve an ad,
sometimes an MRAID ad is a container that serves another MRAID ad inside of
an iframe. The result is a series of nested iframes that may be generated before
the ad is delivered.

When an MRAID ad is contained within a nested iframe, accessing the native
MRAID implementation is technically difficult or impossible. MRAID cannot
directly support an ad within nested iframes. In cases where an ad wishes for
nested iframes to access MRAID functionality, the outermost frame of the ad will
need to provide its own mechanism for accessing MRAID through nested
iframes.

A solution for working in nested iframes is outside the scope of the MRAID
specification.

3.1.7 Viewport and Default Container Set-Up

An MRAID ad needs to know the default settings of the container set up for ad
execution and be able to override default settings to suit proper ad execution. To
find out about the container's default settings, the ad can query the container the
same way it would query a webpage. Default settings for MRAID include: width
and height of the container, scale, and whether the user can scale the container.

While MRAID does not establish any new parameters or controls over the
container, the ad must check and adjust the parameters for initial display as
needed.

© 2016 IAB Technology Laboratory 25 MRAID_v3.0

3.1.8 Standard Image for Initial Display

The ad designer is responsible for providing a standard image to use for initial
display. Access to this initial asset can be provided using an tag, which is

displayed while other assets are loaded in the background. Any interactive
elements of the ad can replace the simple image once all additional assets are
ready.

3.1.9 Event Handling

Event handling is key to MRAID functionality. Communicating between the web
layer and native layer is asynchronous by nature. Through event handling, the ad
is able to listen for particular events and respond to those events as needed.
MRAID advocates broadcast-style events to support the broadest range of
features and flexibility with the greatest consistency.

4 Features and Operation

MRAID enables rich media interactions for ads in mobile, allowing features such
as expansion, resizing, and rich metric tracking. In order for smooth operation for
all that MRAID has to offer, developers must understand the order of operation
for each interaction and expected responses in both the ad and the app.

Details on these features and their operation are described in this section.
Initialization and set-up are described in section 3. Specific methods, properties,
and events are described in detail in sections 5-7. Details on working with device
features at the native level, such as creating a calendar event and storing a
picture are described in section 8. Integration with IAB VPAID for operation and
tracking in the native video player is covered in section 9.

4.1 Viewability

When an ad is displayed in a web browser, JavaScript code in the ad inspects
properties of the DOM hierarchy and gathers geometric measurements to
determine the viewability of the ad. However, that technique does not work for
ads displayed in a native app container. The JavaScript code cannot determine
the measurements relative to the native UI, which is required when calculating
whether the webview is visible to the user.

A more complete report of viewability involves monitoring shifts in exposure
along with looking at user interaction. Instead of tracking viewability of the active
webview, MRAID 3.0 introduces the exposureChange events. See section 7.5 for

details on the use of this event.

© 2016 IAB Technology Laboratory 26 MRAID_v3.0

The update to viewability related changes in MRAID 3.0 are guided by the
following principles:

● Performance: minimize the impact of measurement on the end-user
experience, including animation smoothness and battery life.

● Minimal impact: make only additions required to provide better insight
into container viewability and nothing more.

● Future-proof: avoid specifying explicit thresholds in order to support
upcoming measurement standards and provide maximum creative
flexibility.

● Backwards compatible: containers that are currently MRAID compliant
must remain compliant, i.e. the meaning of existing APIs should not be
redefined.

Viewability is a measurement that determines whether the ad is in a position
where the user has the opportunity to see the ad on their device.

In 2016, the Media Rating Council (MRC) released guidelines for measuring
mobile ad viewability. These guidelines should be used to develop strategies for
tracking viewable ad impressions in mobile web and mobile in-app experiences.
Guidelines for using the MRAID 3.0 event for exposureChange are aligned with

MRC guidelines for mobile ad measurement.

The isViewable() method and viewableChange event are deprecated in

MRAID 3.0. These features are retained in this version for backward
compatibility.

4.1.1 Polling Rates and Event Thresholds

Consistent with the update principle to maintain performance, event processing
for the exposureChange event in MRAID 3.0 must not interfere with smooth UI

animations or reduce battery life.

The MRAID 3.0 implementation on the host platform must coalesce updates to
avoid excessive messaging to JavaScript. The combined updates must report the
exposureChange event no later than 200ms after a change in the exposed area

of the ad. Where polling is used, the view hierarchy must be viewed frequently
enough to catch changes in exposure. Polling must occur at least 5 times per
second (every 200 ms).

http://mediaratingcouncil.org/062816%20Mobile%20Viewable%20Guidelines%20Final.pdf

© 2016 IAB Technology Laboratory 27 MRAID_v3.0

Sample Usage

The following process represents a compliant execution of the exposureChange

event:

1. The ad container registers a listener for the exposureChange event.

For example:

mraid.addEventListener('exposureChange',

handleExposureChange);

2. The exposureChange event calls the ad’s event handler and compares

the container rectangle with the size of the ad creative.

For example,

function handleExposureChange(exposedPercentage,

visibleRectangle, occlusionRectangles
) {

if (exposedPercentage >= 50.0) {

// log visible time ...

}

}

3. When the ad has been sampled long enough with visible area to meet the
viewability threshold, the ad must be considered viewable. If no further
measurement is needed, remove the exposureChange listener.

For example:

mraid.removeEventListener('exposureChange',

handleExposureChange);

4.1.2 Implementation Considerations

Users and application developers want the best performance for their
applications. Ad measurement should not degrade the operation of an app.
MRAID implementations of viewability must take the following into consideration:

Avoid time-consuming JavaScript work
Applications with webviews that display ads run on two processor threads:
one thread for the native UI and a second thread for the JavaScript in the
webview. Avoid time-consuming JavaScript work while the native thread is
waiting.

© 2016 IAB Technology Laboratory 28 MRAID_v3.0

For example, the iOS WKWebview uses the Objective-C method:

evaluateJavaScript:completionHandler

This method does not have the side effect of blocking UI thread. This is
recommended to be used instead of webview.

Use low-latency APIs
Native platforms include APIs that provide low-latency notification of UI
changes that affect viewability. Implementations of MRAID's new
exposureChange event must use such notifications, particularly when low

polling rates or back-off are in effect. An example of such an event is use of
the ViewTreeObserver event on Android.

Prevent blocking operations
Do not perform blocking operations on the OS application lifecycle callbacks.

On iOS, these include the following UIApplicationDelegate methods:

● applicationWillResignActive

● applicationDidEnterBackground

● applicationWillEnterForeground

● applicationDidBecomeActive

The corresponding NSNotificationCenter events also add to blocking

operations.

On Android, blocking operations include the following Activity methods:

● onPause

● onStop

● onStart

● onResume

The OS will terminate an application that does not return in a few seconds
from these methods being called.

Enqueue events without blocking native operations
Sometimes the JavaScript of an ad can be buggy or even malicious. When
the code takes too long to execute, subsequent events can be delayed or
blocked. The MRAID implementation must avoid blocking the native thread
when enqueueing events. Whether in the native thread or in the webview,
enqueued events must only be passed when previous MRAID events
listeners have returned.

© 2016 IAB Technology Laboratory 29 MRAID_v3.0

4.2 Ad Controls for Display

Besides initial display, the ad designer may have a number of reasons to control
the display.

● An application may load views in the background to help with latency
issues so that an ad is requested, but not visible to the user.

● The ad may expand beyond the default size over the application content.

● The ad may return to the default size once user interaction is complete.

Sections 4.2.1 to 4.2.4 explain the controls available to the ad for advanced ad
display, such with expanding ads and interstitials.

4.2.1 Ad States and How They're Changed

Each webview used to execute the ad has a state that is one of the following:

● loading: the webview is not yet ready for interactions with the MRAID
implementation

● default: the initial position and size of the ad container as placed by the
application and SDK

● expanded: the ad container has expanded to cover the application
content at the top of the view hierarchy

● resized: the ad container has changed size using the resize() method

● hidden: the state of an interstitial ad when closed. If supported, a banner
ad may also be hidden when closed

The webview state is changed when calling: expand(), resize(),close()or

unload(). The effect of calling these methods is outlined in the following table.

Initial
state

expand() resize() close() unload()

loading no change no change no change Not Applicable*

default
(banner)

state change
to
“expanded”

state change to
“resized”

state change to
“hidden”
(if supported)

Not Applicable

default
(interstitia
l)

no change no change state change to
"hidden"

Not Applicable

expanded no change
(state
remains
“expanded”)

triggers an
error; state
remains
“expanded”

state change to
“default”

Not Applicable

© 2016 IAB Technology Laboratory 30 MRAID_v3.0

resized state change
to
“expanded”

state remains
as "resized"
but with
updated value

state change to
“default”

Not Applicable

hidden no change no change no change Not Applicable

*Not Applicable since unload() method is used when the ad does not want to be shown to the

user. In this case the host can either dismiss or remove the webview, replace it with another

document or refresh it with another ad.

Ads with a two-part expansion and ads that are interstitials flow slightly different
state change paths:

Two-Part Expandable Ads

Two-part expandable ads use two different webviews where ad
components may expand independently of each other. Since MRAID ads
carry one state at a time, two-part expandable ads carry the state of
expanded for as long as the expanded view is onscreen.

The new, expanded webview starts in the “loading” state until MRAID is
available. When the “ready” event is fired, the state of the ad transitions to
“expanded.” The banner, the first part of the two-part ad also changes its
state, from “default” to “expanded.”

Interstitial Ads

For an interstitial ad, the webview goes from “loading” to “default,” and
when the interstitial is closed, the state changes to “hidden.”

The getState() method reports the current state that was last sent using the

stateChange event. These features are further described in sections 6.7 and

7.4, respectively.

4.2.2 Checking Position and Size of the Screen and Ad

MRAID includes several methods enabling an ad to check where and how large it
is, and the maximum size it can expand to. Ad designers can use these
capabilities to give their ads increased flexibility to behave differently on different
devices and/or differently sized screens.

See the following sections for details:

● 6.5 getCurrentPosition
● 6.6 getDefaultPosition
● 6.10 getScreenSize
● 6.9 getMaxSize
● 7.3 sizeChange

© 2016 IAB Technology Laboratory 31 MRAID_v3.0

4.2.3 Changing the Size of an Ad

MRAID v2 includes three distinct ways for an ad to change its size: open(),

expand(), or resize().

The simplest method for size change is to use the open() method. Intended for

opening hyperlinks, this method can also open a new webview to display a new
component of the ad in a different size. This format for an ad is called a two-part
expandable ad.

The expand() method is used to expand ads in a fairly simple, straightforward

way that covers the content of the application.

The resize() method is used for ads that grow or shrink in more subtle ways

that take place within a dialogue of app operation. This method offers designers
more freedom and control; however, additional methods and listeners are
required for both the ad and the app or webview to react appropriately in different
placements.

4.2.4 Differences between open(), expand(), and resize()

Although these methods are related, they promote an approach of progressive
complexity. Distinguishing between open(), expand() and resize() helps

ad designers choose the best method for their needs.

All these methods must be user initiated based on IAB New Ad Portfolio
definition. User initiation is defined as discrete user action e.g. click or tap.

Ad must ensure that these methods are called only when initiated by the user. Ad
must not initiate these requests without user action.

open()

● Lowest common denominator
● Used for advertiser landing pages or microsites
● Opens a new url in the device’s default browser
● Always full screen
● No additional properties

expand()

● Simple interface
● Maintains ad experience
● Full screen
● Few additional properties
● Support for one-part or two-part creative
● MRAID-enforced tap-to-close area in fixed (top right) location
● Relative alignment for creative
● Check screen size (getScreenSize) before expanding

© 2016 IAB Technology Laboratory 32 MRAID_v3.0

resize()

● Flexible interface
● Continuous, non-modal ad experience
● No default values, can change to larger or smaller sizes
● Additional properties and methods required
● One-part creative only
● MRAID-enforced tap-to-close area, but ad designer can change the

close area’s position within the creative area.
● Absolute positioning possible
● Supports direction of resizing
● Check max size allowed (getMaxSize) before resizing

● Host must not refuse resize() request from the ad

The following table summarizes key differences between these methods.

Property open() expand() resize()

Modal Y Y N

MRAID-enforced close control N Y Y

Viewer stays within ad experience N Y Y

Two-part creative n/a Y N

One-part creative n/a Y Y

Aligned to screen n/a Y N

Background provided for small creative n/a Y N

Size up n/a Y Y

Size down n/a N Y

App-defined max area n/a N Y

Callback required to complete n/a N Y

Supports directionality n/a N Y

Creative can control position of resized
ad

n/a N Y

App can return to default state n/a N Y

When the expanded creative is smaller than full screen, calling expand() causes
the webview to blank out, cover, or otherwise obscure the underlying app making

© 2016 IAB Technology Laboratory 33 MRAID_v3.0

it very clear that the expanded ad is modal in nature. Modal, partial-screen
expansions are not allowed in MRAID, but partial-screen, non-modal expansions
can be created using the resize() method.

 Modal Non-modal

Full Screen OK - Use expand() Not possible

Partial Screen Not possible OK - Use resize()

© 2016 IAB Technology Laboratory 34 MRAID_v3.0

5 MRAID Methods

MRAID methods initiate a function, usually having to do with ad operation that
requires some adjustment of the ad container or transfer of information. For
example, calling expand() prompts the SDK to stop app operation and expand

the ad container. Some methods involve checking or updating properties (section
6) and using an event (section 7) to report or confirm certain actions.

5.1 getVersion()

The ad calls the getVersion() method to query the host about which MRAID

version the host supports. The host returns a version number string ("3.0" for
MRAID 3.0). The version number indicates the version of MRAID that the host
supports (1.0, 2.0, or 3.0, etc.), NOT the version of the vendor's SDK.

Syntax getVersion()

Parameters None

Return Values A String that indicates the MRAID version with which the SDK
is compliant (not the version of the SDK). For example, if
version 5.2 of the SDK is compliant with MRAID 3.0, then
getVersion() returns "3.0."

Related Event None

Note: the MRAID and SDK versions are offered in the MRAID_ENV object
discussed in section 3.1.1.

5.2 addEventListener()

The ad calls addEventListener() to register a specific listener for a specific

event. The ad may register more than one listener, each to support listening for
separate event. The host dispatches an event to all registered listeners for each
specific event that occurs. The ad may also register a single listener to multiple
events instead of a listener for each event.

The events supported in MRAID 3.0 are:

● ready: report initialize complete
● error: report error has occurred
● stateChange: report state changes
● exposureChange: report change in exposure
● viewableChange (deprecated): report viewable changes
● sizeChange: report viewable changes

© 2016 IAB Technology Laboratory 35 MRAID_v3.0

Syntax addEventListener(event, listener)

Parameters event: a string for the name of the event to listen for
listener: function to execute

Return Values None

Related Event None

5.3 removeEventListener()

When the ad no longer needs notification of a particular event,
removeEventListener() is used to unregister to that event. To avoid errors,

event listeners must always be removed when they are no longer needed. If no
listener function is specified in the in the listener attribute for the call, then all

functions listening to the event will be removed.

Syntax removeEventListener(event, listener)

Parameters event: a string for the name of the event to remove
listener: function to be removed

Return Values None

Related Event None

5.4 open()

The ad can call the open() method to prompt the host to open an external

mobile website in a browser window that is the default browser on the user’s
device The purpose of this method is to handle clickthroughs in the ad. All
MRAID ads must handle clickthroughs using the open() method.

General
Implementation
Note

The open() method must only be used for external web pages that are

not MRAID ads. The displayed page resulting from calling open() cannot

load a second instance of the MRAID implementation, which means that
the close() method is inoperable in the opened browser. The opened

window can only be closed using whatever close control is implemented as
part of the opened browser.

© 2016 IAB Technology Laboratory 36 MRAID_v3.0

The native browser controls – back, forward, refresh, close – are always present
in the opened window. SDK providers consider the open() function as a

reportable event.

Syntax open(URL)

Parameters URL: a string for the URL of the webpage to be opened

Return Values None

Related Event None

Hyperlinks
When the user clicks on an HTML hyperlink (defined by an tag) in

an MRAID ad, there are two possibilities: the linked page could load in the
existing webview, or the content could open a separate browser window and load
the indicated HTML link there.

The open method must always use the native device or OS behavior or user
setting for opening a URL from an MRAID ad. This will ensure experience that
the user expects and enable necessary device controls user needs to navigate to
and away from the external links.

5.5 close()

The ad uses close() to downgrade the container state. The host responds by

changing the state depending on the current state using the stateChange event

described in section 7.4.

For ads in an expanded or resized state, the close() method moves the ad to a

default state. For interstitial ads in a default state, the close() method moves to

a hidden state. These ad states and the state that results from calling close()

are described in section 4.2.1.

For ads in a default state, ad developers must avoid using mraid.close() . To

inform the container that the ad needs to be dismissed, use mraid.unload().

If an ad uses multiple resize() calls or a resize() followed by the expand()

call, close() returns the container state to 'default.' Calling close() in these

instances does NOT simply undo the most recently called resize() or

expand().

Syntax close()

Parameters None

© 2016 IAB Technology Laboratory 37 MRAID_v3.0

Return Values None

Related Event StateChange (section 7.4)

Close Control for Resized Ads
As with expandable ads, resized ads must have a way for the person viewing the
ad to return the ad to its default state. MRAID differentiates two aspects to a
“close” feature:

● Close event region: The close event region is an area on the ad creative
that users can tap to close the ad or collapse it back to its default state.
The host provides the required close event region in a creative-specified
location for all MRAID resizable ads.

● Close Indicator: The close indicator is the visual cue that identifies the
close event region for the user. For resized ads, the ad supplies a close
indicator graphic, while the host provides the close event region.

The host must always include a 50x50 density independent pixel close event
region. Recommended position is the top right corner of the container provided
for the ad. When a user taps this indicator, the ad returns to its default state. The
recommended format is a “X” button for the close indicator.

useCustomClose() method is being deprecated and the ad must not provide its

own custom close indicator. The close indicator is always provided by the host.
This ensures consistent experience across apps for expanded or resized ads.

The host may also decide to follow the native app experience for closing or
dismissing an ad. This may be done to preserve the native user experience of
navigating content in a specific app – e.g. in some apps content navigation is
done by using swipes across full screen content or by tapping on left or right of
the ad. The same behavior may be used for ads that appear in between content
for closing the ads. This does not apply to expandable ads or resize ads. They
must have host provided close indicator.

For MRAID 2.0 or older version ads in MRAID 3.0 containers,
useCustomClose() requests will be ignored by the host

A resized ad must position itself such that the entire close event region appears
onscreen. If the host detects that resizing will result in the close event region
being off screen, the host must return an error and ignore the resize call, leaving
the ad in its current state. This requirement also means that a resized ad must be
at least 50x50 density independent pixels, to ensure there is room on the resized
creative for the close event region.

The close control is mandatory and provided by the host in all cases.

© 2016 IAB Technology Laboratory 38 MRAID_v3.0

On Android OS, user action for ‘back’ button must be interpreted as close
method by the ad.

5.6 unload()

The key purpose of this method is to allow the ad to communicate to the host that
the ad must no longer be shown to the user. The ad can request the host to
completely dismiss the ad by using the unload() method. The host responds by

dismissing the ad and then either removing the webview or replacing it with
another document or refreshing it with a new ad.

The ad may use this method anytime in its lifecycle when it determines it no
longer wants to continue being shown to the user and it is not desirable to return
to default state.

The ad should use this method when it encounters errors or runtime exception
that will not allow it to render properly to the user. Some examples of situations
when an ad may decide to use unload() method:

• During initialization, it can encounter communication error with the ad server
or it is not able to load all required assets properly or it determines that it does
not want to be shown in the environment it is being served

• During later stages in the lifecycle, it may encounter errors in loading a
required asset or resource and determine that it does not want to continue
being shown to the user

• A pre-loaded ad may determine it does not want to be shown to the user.

Syntax unload()

Parameters None

Return Values None

Related Event StateChange (section 7.4)

unload() provides a graceful exit mechanism for the ad and the host without

causing errors on screen or blank screen being shown to the user.

5.7 useCustomClose() (deprecated)

This method is being deprecated in MRAID 3.0

© 2016 IAB Technology Laboratory 39 MRAID_v3.0

5.8 expand()

The ad uses expand() to request support for an ad expansion experience, either

by changing the width and height of the current webview (one-part creative) or by
opening a new webview at the highest level in an expanded size (two-part
creative). The expanded view can either contain a new HTML document if a URL
is specified, or it can reuse the same document that was in the default position.

This option enables the ad designer to provide expandable ads as either a one-
part ad (banner and panel as one creative) or a two part ad (banner and panel
are separate HTML creative).

One-Part Creative (no URL specified)
When the ad calls expand() without specifying a URL, the host expands

within the existing webview. This approach simplifies ad design and
reporting because the original creative is not reloaded and no additional
impressions are recorded.

Two-Part Creative (URL specified)
When the ad calls expand() with a URL specified, the host opens a new

webview. The URL supplied must be a complete HTML page not a snippet
or fragment. If the second-part ad creative requires the use of MRAID, the
ad must request mraid.js for the new webview. Whether or not the
expanded part of the ad requests mraid.js, the host must supply the close
event region. If ad specifies a close indicator graphic in
expandProperties, then the host will use the supplied graphic to indicate

close. Otherwise, the host also provides the close indicator graphic.

While an ad is in an expanded state, the default position is obscured or
inaccessible to the viewer, so the default position must take no action while the
expanded state is available

Host response
The host responds to an expand() call by changing the state from 'default' to

'expanded' using the stateChange event described in section 7.4. The host

ignores multiple calls to expand and retains the state status of 'expand.'

The host also expands the container to cover all available screen area even
though the expanded creative may be smaller than the screen area. Any area of
the ad container not filled with ad creative may be transparent or opaque.
Expanded ads are always modal, and the container must prevent new ads from
loading during the expanded state.

Potential Issues
Complications possible with an expanded ad may involve multiple window
objects that prevent operation in the expanded state, or a timer that changes the
content z-order (layer position). These complex app environments may interfere

© 2016 IAB Technology Laboratory 40 MRAID_v3.0

with the user’s ability to close the ad. The SDK developers must consider these
complications and adjust accordingly for specific MRAID implementations.

Placement of the Expanded Creative
The ad designer decides where to place the expanded ad creative on screen,
especially when the expanded view can be placed in multiple locations. For full-
screen expands, all MRAID implementations offer full screen view for the ad and
position the ad so it is fully visible.

When the expanded creative size is greater or smaller than the screen size of the
device, the host adjusts the container to the maximum size the app and device
allow. The host may not scale the ad to fit the screen. Instead, the ad may
position the expanded creative as desired within the expanded container using
CSS.

Syntax expand([URL])

Parameters URL(optional): The URL for the document to be displayed in a
new overlay view. If null or a non-URL parameter is used, the
body of the current ad will be used in the current webview.

Return Values None

Related Event StateChange

© 2016 IAB Technology Laboratory 41 MRAID_v3.0

5.9 isViewable() (deprecated)

The isViewable() method is deprecated in MRAID 3.0 and will be removed in

future versions of MRAID. This feature remains in MRAID 3.0 for the purposes of
backward compatibility.

The isViewable() method returns whether the ad container is currently on or off

the screen. The viewableChange event fires when the ad moves from on-screen

to off-screen and vice versa.

For a two-piece expandable ad, when the ad state is expanded, isViewable()

returns an answer based on the viewability of the expanded ad.

In any situation where an ad may be loaded off screen, the ad must check on its
viewable state and/or register for viewableChange before taking any action.

Note that MRAID does not define a minimum threshold percentage or number of
pixels of the ad that must be onscreen to constitute “viewable.”

Syntax isViewable()

Parameters None

Return Values true: container is on-screen and viewable by the user
according to established values
false: container is off-screen and not viewable

Related Event viewableChange

5.10 playVideo()

The ad uses playVideo() when a video component of the creative needs to

play in the device's native player. To play the video inline rather than in the native
player, the ad designer must use HTML5 video tags instead.

Syntax playVideo(URI)

Parameters URI: String, the URI of the video or video stream

Return Values None

Related Event None

5.11 resize()

Calling resize() is a request for a container size change that accommodates

the creative size change. Resize is used for a succession of changes or a size

© 2016 IAB Technology Laboratory 42 MRAID_v3.0

change that is less than full screen size and that doesn't interfere with app
operation.

Before calling resize(), the ad must specify the desired width and height of the

resize using setResizeProperties(). Calling resize() before

setResizeProperties will result in an error.

After calling resize, the host responds by adjusting the ad container to the ad's
desired size.

Resize operates at a higher z-index than the app content so that it does not push
or reposition app content. If an app wishes to support content-shifting ads, like
"push-downs," the app must implement app repositioning features to support
such functionality.

Resulting Events
If the action is executed successfully, the host sends two events: stateChange

(section 7.4) and sizeChange (section 7.3). The stateChange is updated from

'default' to 'resized.' If the ad state was 'expanded' before calling resize(), the

host sends the error event discussed in section 7.1. The sizeChange event is

sent with the new width and height of the resized container.

General
Implementation
Note

Use expand() instead of resize() for ad creative that expands to full-

screen (or larger) size. Since a full-screen or larger expansion covers app
content, the modal nature of expand() prompts stopping other app

operations. Resize always results in a non-modal size change, and some
portion of the app must always remain visible to the end user.

Syntax resize()

Parameters None

Return Values None

Related Event sizeChange
stateChange

5.12 storePicture()

An ad that offers users the option to store an image, storePicture() can be

used (if supported), to place an image in the device's photo album. The image
may be part of the ad or retrieved from a server.

© 2016 IAB Technology Laboratory 43 MRAID_v3.0

The ad can query the host for device support of storePicture using the

supports method described in section 6.1. If storePicture is not supported,

the ad must refrain from calling storePicture().

If supported, the host responds by initiating a control to ask the user's permission
to store the image. The control is a modal OS-level handler that offers a
confirm/cancel option for the user. If the device lacks such a handler, the host
reports a false value in the supports object for the storePicture feature.

The MRAID implementation must support adding a picture using an HTTP
redirect (for tracking purposes); however, the implementation is not required to
support meta-redirects.

If the attempt to add the picture fails for any reason or is cancelled by the user,
the host sends an error.

Syntax storePicture(URI)

Parameters String: the URI to the image or other media asset

Return Values None

Related Event None

5.13 createCalendarEvent()

If supported, the ad can use createCalendarEvent() to open the device

calendar UI for adding an event. The host responds by populating the create
calendar event sheet on the native device. If no event sheet is found, the host
reports a value of 'false' for the calendar feature in the supports object.

Any ad operation is suspended while the calendar UI is open. Calendar event
data must be delivered in the form of a JavaScript object written to the W3Cs
calendar specification. See the appendix for details on the W3Cs calendar
specification.

If the attempt to create the calendar event fails or is cancelled by the user, the
host sends an error.

Syntax createCalendarEvent(parameters)

Parameters URI: String: the URI to the image or other media asset

Return Values None

Related Event None

© 2016 IAB Technology Laboratory 44 MRAID_v3.0

5.14 VPAID methods

An MRAID ad may include video designed to report VPAID events. The following
MRAID methods are used to setup VPAID events in an MRAID context, as well
as obtain minimal information about the video ad being shown. See section 9 for
additional details on working with VPAID in an MRAID app implementation.

5.14.1 initVpaid()

Once the ad has checked for VPAID support in the mraid.supports() method,

it needs to give the container a vpaidObject that the container uses to

communicate events and information about the video playback. The VPAID
object enables the host to subscribe to VPAID events, start the ad, and call a
limited set of VPAID methods. After initVpaid() is called, in order for video

playback to begin, the container must call vpaidObject.startAd(). The ad

must not begin video playback until videoObject.startAd() is called.

Syntax initVpaid(vpaidObject)

Parameters vpaidObject – a reference to the JavaScript VPAID object
present in the ad

Return Values None

Related Event None

5.14.2 vpaidObject.subscribe()

After the ad calls initVpaid(), the host can subscribe to select VPAID events

using vpaidObject.subscribe(). For a list of supported and unsupported

VPAID events, see section 9.1.3.

5.14.3 vpaidObject.startAd()

When the host has determined that the app is ready to play the video ad, it can
call vpaidObject.startAd() to notify the MRAID ad that the VPAID creative

may now play.

5.14.4 vpaidObject.unsubscribe()

When the host no longer needs to listen for an event to which it is subscribed, it
can call vpaidObject.unsubscribe(), using the event name to specify which

event it no longer needs.

5.14.5 vpaidObject.getAdDuration()

The host uses vpaidObject.getAdDuration() to query the ad for total ad

duration of the video ad. The ad returns the number of seconds for total duration
of the ad.

© 2016 IAB Technology Laboratory 45 MRAID_v3.0

5.14.6 vpaidObject.getAdRemainingTime()

The host uses vpaidObject.getAdRemainingTime() to query the ad for total

play time remaining at the time of the query. The ad returns the number of
seconds remaining for ad play at the time of request.

© 2016 IAB Technology Laboratory 46 MRAID_v3.0

6 Properties

The methods covered in this section enable the ad to query the host about
certain container properties. In some cases, the ad can set certain properties to
instruct the host on how to update the container to accommodate ad operation.
For example, the ad must first set resize properties before calling the resize
method. The host then uses the set properties to adjust the container
accordingly.

6.1 supports

The ad can use the supports feature to query the host about which device-

native features the app can access. Awareness of supported native features
helps the ad compensate in environments where certain features are not
supported.

The ad can query the host for support of the following native features:

Feature Description

sms the device supports using the sms: protocol to send an SMS
message

tel the device supports initiating calls using the tel: protocol

calendar the device can create a calendar entry

storePicture the device supports the MRAID storePicture method

inlineVideo the device can playback HTML5 video files using the <video> tag
and honors the size (width and height) specified in the video tag.
This does not require the video to be played in full screen.

vpaid the device container supports VPAID handshake with ad to
communicate VPAID events discussed in section 9

location the device supports access to GPS coordinates

© 2016 IAB Technology Laboratory 47 MRAID_v3.0

The MRAID implementation on the app must be able to deliver all of these
functionalities on any device that is capable of them, except where app
publishers have deactivated features that conflict with publisher policies.

Syntax supports(feature)

Parameters feature: String, name of feature as listed in the above table

Return Values true: the feature is supported and getter and events are
available
false: the feature is not supported on this device

Related Event None

6.2 getPlacementType

The ad calls getPlacementType() to determine whether it's being loaded in an

inline placement or an interstitial.

For efficiency, ad vendors sometimes flight a single creative in both banner
(inline) and interstitial placements. These ads may be designed to behave
differently depending on how it's placed.

In the case of a two-part expandable ad, the second part expansion creative
must also query the host about placement type.

The host returns either 'inline' or 'interstitial' as defined in the table below.

Syntax getPlacementType()

Parameters None

Return Values inline: the default ad placement is inline with content in the
display (banner)
interstitial: the ad placement is over laid on top of content

Related Event None

6.3 get/set orientationProperties

The ad uses the orientationProperties to query the host about the current

orientation of the device and set orientationProperties to accommodate ad

display for expansions and interstitials. A banner in its default state cannot use
orientationProperties. Resizeable ads can use orientationProperties,

but they won’t have any effect.

© 2016 IAB Technology Laboratory 48 MRAID_v3.0

The following code snippet is an example of the orientationProperties

object:

orientationProperties object = {

 "allowOrientationChange" : boolean,
 "forceOrientation" : "portrait|landscape|none"

}

The two properties offered in the orientation object are as follows:

● allowOrientationChange : boolean
Set to “true,” the container will permit device-based orientation changes;
set to false, the container will ignore device-based orientation changes
(e.g., the webview will not change even if the orientation of the device
changes). Default is “true.” At any time, the ad may request a change of
its orientation by setting the forceOrientation variable, regardless of how
allowOrientationChange is set.

● forceOrientation : string
Set to a value of “portrait,” landscape,” or “none.” If forceOrientation is

set then a view must open in the specified orientation, regardless of the
orientation of the device. That is, when a user taps to expand an ad in
landscape mode and the forceOrientation property is set to 'portrait,'

then the ad will open in portrait orientation regardless of the orientation of
the device or previous orientation of the ad. Default is “none.”

To enable finer control over ad behavior, the ad can change the setting of either
property in the orientation object after the ad is in an expanded state. This way
an ad may start in portrait but instruct the user to change orientation to play a
game. The game requires tilting so no orientation changes must be allowed until
the user is done. The host must be able to accept changes to expand properties
throughout a user’s interaction with an expandable ad.

The ad must set both properties together to ensure proper control of the
orientation of the ad. E.g. to force change to landscape orientation, set
allowOrientationChange to ‘false and set forceOrientation to ‘landscape’

For example:

mraid.setOrientationProperties ({"allowOrientationChange":true}

);
mraid.expand()

/* user changes to landscape, starts game */
mraid.setOrientationProperties ({"allowOrientationChange": false

});

/* user is done with game */

© 2016 IAB Technology Laboratory 49 MRAID_v3.0

mraid.setOrientationProperties ({"allowOrientationChange":true}

);

The getOrientationProperties method prompts the host to return the whole

orientationProperties object.

Syntax getOrientationProperties()

Parameters None

Return Values JavaScript object: contains the orientation properties

Related Event None

The setOrientationProperties method sets properties in the

orientationProperties object.

Syntax setOrientationProperties(properties)

Parameters Properties: a JavaScript object that contains the values for
allowOrientationChange and forceOrientation.

Return Values None

Related Event None

6.4 getCurrentAppOrientation

The ad calls getCurrentAppOrientation to query the host about the current

orientation of the app.

The host returns the current orientation of the app as either "portrait" or
"landscape" and whether or not the given orientation is locked. If locked, then the
forceOrientation option in setOrientationProperties is not supported.

Syntax getCurrentAppOrientation()

Parameters None

Return Values JavaScript object: {orientation, locked} where:
● orientation: value may be either "portrait" or

"landscape"
● locked: Boolean value indicating whether orientation is

locked in current position. If "true" then
forceOrientation in setOrientationProperties is

not supported.

Related Event None

© 2016 IAB Technology Laboratory 50 MRAID_v3.0

6.5 getCurrentPosition

The ad calls getCurrentPosition to query the host for the current position of

the ad container.

The host returns the current position and size of the ad container, measured in
density-independent pixels.

Syntax getCurrentPosition()

Parameters None

Return Values JavaScript object: {x, y, width, height} where:
● x=number of density-independent pixels offset from left

edge of the rectangle defining getMaxSize()

● y=number of density-independent pixels offset from top
of the rectangle defining getMaxSize();

● width=current width of container in density-independent
pixels

● height=current height of container in density-
independent pixels)

Related Event None

6.6 getDefaultPosition

The ad calls getDefaultPosition query the host about the position and size of

the default ad container, measured in density-independent pixels.

The host returns values for the default position and size of the ad container
regardless of what state the calling view is in.

Syntax getDefaultPosition()

Parameters None

Return Values JavaScript object: {x, y, width, height} where:
● x=number of density-independent pixels offset from left

edge of the rectangle defining getMaxSize()

● y=number of density-independent pixels offset from top
of the rectangle defining getMaxSize();

● width=current width of container in density-independent
pixels

● height=current height of container in density-
independent pixels)

© 2016 IAB Technology Laboratory 51 MRAID_v3.0

Related Event None

6.7 getState

At any time, the ad may use getState to query the host about the state of the ad

container and make requests accordingly.

The host returns the current state of the ad container using values that describe
whether the ad container is in its default and fixed position, in an expanded or
resized state, a larger position, or hidden.

Syntax getState()

Parameters None

Return Values String: "loading", "default", "expanded”, “resized,” or “hidden”

Related Event stateChange

6.8 get/set expandProperties

The ad uses getExpandProperties to query the host on the current expand

settings, and setExpandProperties to set the width and height for an

expansion along with optionally specifying the use of a custom close indicator.

Before the ad calls expand(), the ad needs to identify the desired width and

height for the expansion using setExpandProperties. The ad may also specify

a custom close indicator graphic instead of using the hosts default indicator. The
host ignores any expand properties set after expand() is called.

The following is an example of an expandProperties object:

expandProperties object = {

 “width” : integer,
 “height” : integer,
 “useCustomClose” : boolean,
 “isModal” : boolean (read only)
}

Property Description

width integer – width of creative, default is full screen width.

height integer – height of creative, default is full screen height.
Note that when getting the expand properties before setting

© 2016 IAB Technology Laboratory 52 MRAID_v3.0

them, the values for width and height will reflect the actual
values of the screen. This will allow ad designers who want
to use application or device values to adjust as necessary.

useCustomClose This is deprecated. In MRAID 3.0 host will ignore this
request

boolean – true, container will stop showing default close
graphic and rely on ad creative’s custom close indicator;
false (default), container will display the default close
graphic. This property has exactly the same function as the
useCustomClose method (section 5.6), and is provided as

a convenience for creators of expandable ads.

isModal boolean – true, the container is modal for the expanded ad
and other operations must be halted during expansion;
false, the container is not modal for the expanded ad and
other operations may continue during the expansion. This
property is read-only for the ad and cannot be set.

When the ad calls getExpandProperties, the host returns the whole

expandProperties object.

Syntax getExpandProperties()

Parameters None

Return Values JavaScript object: contains the expand properties for the ad
expansion described in the table above.

Related Event None

The ad uses setExpandProperties to set properties of the expandProperties

object prior to initiating an ad expansion using expand().

Syntax setExpandProperties(properties)

Parameters JavaScript object: {width, height, useCustomClose} contains
the width and height of the expanded ad.

Return Values None

Related Event None

© 2016 IAB Technology Laboratory 53 MRAID_v3.0

6.9 getMaxSize

The ad calls getMaxSize to query the host about the maximum size (in density-

independent pixels) to which the ad may resize.

If the app runs full-screen on the device (covering the status bar), the host
returns the full-screen dimensions. If the app runs at less than full screen on the
device, usually to leave room for a status bar or other elements outside the app,
then the host returns the size for the view that contains the app.

Syntax getMaxSize()

Parameters None

Return Values JavaScript object: {width, height} contains the maximum width
and height of the webview (webview can resize to no larger
than given width and height).

Related Event None

6.10 getScreenSize

The ad calls getScreenSize to query the host about the dimensions of the

device screen size, especially before expanding an ad (for resizing use
getMaxSize). The host returns current device screen width and height, in

density-independent pixels.

This size changes when the device orientation changes. For example, a screen
that is 640x960 in portrait mode changes to 960x640 when reoriented to
landscape mode.

The entire screen size is returned, including any area reserved for status or
system bars and other functional space that the app cannot override. To find out
how much usable size is available on the app for ad display, the ad must call
getMaxSize() described in section 6.9.

Syntax getScreenSize()

Parameters None

Return Values JavaScript object: {width, height} contains the width and
height of the device screen, depending on its orientation

Related Event None

© 2016 IAB Technology Laboratory 54 MRAID_v3.0

6.11 get/set resizeProperties

Before the ad executes a resize, it can call getResizeProperties to query the

host about current settings for resizing the ad container. Then the ad can call
setResizeProperties to update the resizeProperties object. The host uses

the properties set in this object to adjust the ad container when the ad calls
resize().

The following is an example of the resizeProperties object:
resizeProperties object = {

 “width” : integer,

 “height” : integer,
 “offsetX” : integer,

 “offsetY” : integer,

 “customClosePosition” : string,

 “allowOffscreen” : boolean

}

Properties available in the resizeProperties object are as follows:

Property Description

width* integer: width, in density independent pixels, to which
the ad container must be resized

height* integer: height, in density independent pixels, to which
the ad container must be resized

offsetX* integer: the horizontal delta from the current upper-left
position to the desired resize upper-left position of the
ad container. Positive integers move right; negative
integers move left.

offsetY* integer: the vertical delta from the current upper-left
position to the desired resize upper-left position of the
ad container. Positive integers move down; negative
integers move up.

customClosePosition this is deprecated in MRAID 3.0. The host will always
add close indicator in top right corner.

allowOffscreen boolean: indicates whether the resized ad container
must be allowed to be drawn partially or fully
offscreen.
● true: offscreen positioning is allowed; host must

refrain from repositioning ad container despite
resulting in offscreen placement.

● false: offscreen positioning must be avoid and the
host must attempt to reposition the ad container

© 2016 IAB Technology Laboratory 55 MRAID_v3.0

Property Description

so that it displays within the area specified in the
maxSize property.

*required; if no value is provided using setResizeProperties before the ad

calls resize(), then the host retains the original settings and sends an error.

When Resize Results in Repositioning Offscreen
When the allowOffscreen property is set to 'false,' the host attempts to

reposition the resized creative with in the dimensions define in the maxSize

object. For example, if ad is positioned the top of the screen, and ad wants to
resize upwards by 50 pixels, the host moves the ad 50 pixels down before
executing the resize.

When allowOffscreen is set to 'true' in the same operation, the resized portion

of the ad extends out of view 50 pixels beyond the top of the screen.

The allowOffscreen property cannot solve all positioning issues. For example,

if an ad successfully resizes in landscape orientation followed by an orientation
change that results in a larger ad, a 'false' allowOffscreen is ineffective.

Resize ads must be tested for quality before serving to the app for display. If the
ad provides resize values that the host cannot successfully execute, the host
sends an error.

Checking and Setting Resize Properties
The ad uses getResizeProperties to query the host for current resize

properties. The host returns the resizeProperties object.

Syntax getResizeProperties()

Parameters None

Return Values JavaScript object: {width, height} contains the resize
properties

Related Event None

The ad uses setResizeProperties to change the values in the

resizeProperties object. The host replaces the values in the

resizeProperties object with the values the ad provides.

Syntax setResizeProperties(properties)

Parameters JavaScript object: contains the width and height of the resized
ad, close position, offset direction (all in density-independent
pixels), and whether the ad can resize off screen.

Return Values None

© 2016 IAB Technology Laboratory 56 MRAID_v3.0

Related Event None

6.12 getLocation

Knowing the location of the device when an ad is active can enhance the creative
possibilities for an ad, but not all apps support access to location details. The
supports feature in MRAID 3.0 (see section 6.1) identifies whether "location" is

supported.

If supported, location values are provided using the location object with the
following properties:

Property Description

lat the latitude coordinate for the device

lon the longitudinal coordinate of the device

type source of location data; recommended when passing lat/lon
1: GPS/Location service
2: IP Address
3: User Provided (e.g. registration data)

accuracy

estimated location accuracy in meters; recommended when
lat/lon are specified and derived from a device’s location
services (i.e., type = 1). Note that this is the accuracy as
reported from the device. Consult OS specific documentation
(e.g., Android, iOS) for exact interpretation

lastfix

number of seconds since this geolocation fix was established.
Note that devices may cache location data across multiple
fetches. Ideally, this value must be from the time the actual fix
was taken

ipservice service or provider used to determine geolocation from IP
address if applicable (i.e., type = 2).

If supported, the ad uses getLocation to query the host about the location of

the device. The host returns the location object with details about device location
data and where the data came from.

Syntax getLocation()

Parameters None

Return Values JavaScript object: the location object described in the table
above.

Related Event None

© 2016 IAB Technology Laboratory 57 MRAID_v3.0

HTML5 API for location must not be used to replace the above.

When lat and lon properties are not available or not allowed as per user
permission, then error message of “-1” must be communicated for
getLocation() method.

7 Events

Events are used to report that an action has occurred or to confirm a change in
the state of the webview. The host sends events to communicate activity to the
ad. The ad must create listeners for specific events to be informed on when they
occur.

7.1 Error

When the host cannot execute a function that the ad calls, the host sends an
error that describes the action attempted when the error occurred. The ad must
register a listener in order to receive error events. Any number of listeners can
monitor for errors of different types so that the ad can respond as needed.

An error event offers two parameters: one for an error message and one for the

action being attempted at the time the error occurred. Both parameters are
optional and the message option is typically used for debugging pre-flight
creative.

Any of the following MRAID actions could potentially result in error:

• addEventListener

• createCalendarEvent

• close

• expand

• getCurrentPosition

• getDefaultPosition

• getExpandProperties

• getLocation

• getMaxSize

• getPlacementType

• getResizeProperties

• getScreenSize

• getState

• getVersion

• isViewable

• open

• playVideo

• removeEventListener

• resize

• setExpandProperties

• setResizeProperties

• storePicture

• supports

• useCustomClose

© 2016 IAB Technology Laboratory 58 MRAID_v3.0

While the ad may register for errors that result from any of the above actions, the
three most common errors result from using resize(), storePhoto(), and

createCalendarEvent(). The ad must register listeners for these errors and be

prepared to react accordingly.

Since the host can handle errors either synchronously (in real-time) or
asynchronously (time-shifted), the ad developer must consider how error details
must be handled when received.

Syntax "error" function(message, action)

Parameters message: String, description of the error that occurred
action: String, name of MRAID action attempted when the
error occurred

Triggered by anything that goes wrong

7.2 ready

Before the ad is loaded, the host must make the MRAID library available to the
ad so that the ad can make calls and register for listeners on host-sent events. At
a minimum, the ad container must support getState(),and

addEventListener() as soon as possible. Without at least these two functions,

the ad cannot register a listener for the host ready event.

Ideally, the ready event is sent only after all MRAID functions are supported in
the container and the host is ready to receive any MRAID call from the ad.

The ad must wait for the host to send the ready event check showing the
container is ready before executing any rich media operations. In cases where
the host has sent the ready event before the ad has registered to listen, the ad
must use getState() in conjunction with the ready event as demonstrated in the

following example:

function showMyAd() {
 ...
}

if (mraid.getState() === 'loading') {
 mraid.addEventListener('ready', showMyAd);
} else {
 showMyAd();
}

The host sends the ready event when the ad container is loaded, initialized, and

ready to receive calls from the ad. As a result, the MRAID JavaScript library is
made available to the ad.

© 2016 IAB Technology Laboratory 59 MRAID_v3.0

Syntax "ready"

Parameters None

Triggered by The container is fully loaded, initialized, and ready for any
calls from the ad

7.3 sizeChange

The host sends the sizeChange event whenever the ad container dimensions

change in response to orientation, an ad resize request, or ad expand request.
The event includes the new width and height in density-independent pixels.

Syntax "sizeChange" function(width, height)

Parameters width: number, the width of the view
height: number, the height of the view

Triggered by a change in the ad container width and height dimensions
resulting from resize, expand, close, orientation, or the app
registering a "size" event listener.

7.4 stateChange

The host sends the stateChange event along with the updated state whenever

the ad container state is changed in response to an ad call or a change in
environment.

At any time the ad container may be in a state of:

● loading
● default
● expanded
● resized
● hidden

The ad container state may change as a result of: host initiation (loading), user-
initiated close or other app interactions like window resize and orientation
change, and ad calls for expand(), resize(), or close(). See section 4.2.1 for

details on ad container states and how they're changed.

The ad can use getState, discussed in section 6.6, to query the host about the

current state of the ad container.

Syntax "stateChange" function(state)

© 2016 IAB Technology Laboratory 60 MRAID_v3.0

Parameters state: String indicating either "loading", "default", "expanded",
“resized”, or “hidden”

Triggered by expand(), close(), or the app does something that changes

the state of the webview

7.5 exposureChange

The exposureChange event was introduced in MRAID 3.0 to more accurately

reflect viewability.

The exposure change event is not supported in two-part ads.

When the ad registers a listener for the exposureChange event, the host sends

the event asynchronously with the initial exposure state to all listeners for the ad.
After the initial event, the host reports exposureChange events anytime the

exposed area changes. An exposedPercentage value of 0.0 (zero) indicates the

current ad container is not in view or has been moved to the background.
Exposure changes can occur when the ad container or any of its parent views is
scrolled, translated, or clipped. The host also reports exposureChange events

when the visibility of the ad changes because of application or UI transitions.

The host must send exposureChange events when the exposed area of the ad

view changes, even if the visible percentage does not change. Examples of such
events include resizing, showing or hiding an interstitial, a banner expanding to
fullscreen, and a banner ad being attached to the window. These exposure
changes prompt the ad to recalculate viewability measurements based on the
updated ad size.

The host may implement ‘exposureChange’ through native event handling or

through polling in the native layer. See the section “Polling Rates and Event
Thresholds” for requirements.

Syntax "exposureChange" function(exposedPercentage,

visibleRectangle, occlusionRectangles)

Parameters exposedPercentage: percentage of ad that is visible on

screen, a floating-point number between 0.0 and 100.0, or 0.0
if not visible
visibleRectangle: the visible portion of the ad container, or null

if not visible. It has the fields {x, y, width, height}, where x

and y are the position of the upper-left corner of the visible area,

relative of the upper-left corner of the ad container's current extent,
and width and height are size of the visible area. If the visible

© 2016 IAB Technology Laboratory 61 MRAID_v3.0

area is non-rectangular, then this parameter is the bounding box of
the visible portion, and the occlusionRectangles parameter

describes the non-visible areas within the bounding box

occlusionRectangles: an array of rectangles describing the

sections of the visibleRectangle that are not visible, or null if

occlusion detection is not used or relevant. Each element of the
array is has the fields {x, y, width, height}, where x and y

are the position of the upper-left corner of the occluded area,
relative of the upper-left corner of the ad container's current extent,
and width and height are size of the occluded area. The

rectangles must not overlap, and they must be sorted from largest
area to smallest area. In common scenarios, the visible area is
rectangular, and this parameter is null. If the implementation can
detect non-rectangular exposures, then this parameter will be set

Triggered by a change in the exposed area of the webview. See details
below on what triggers an exposureChange event.

Example function

{

 "exposedPercentage": 78,

 "viewport": {

 "width": 375,

 "height": 667

 },

 "visibleRectangle": {

 "x": 27.5,

 "y": 65,

 "width": 300,

 "height": 50

 "occlusionRectangle":

 {

 "x": 27.5,

 "y": 65,

 "width": 50,

 "height": 50

 }

Triggers for exposureChange events
An ad is considered exposed when all of these properties are true:

● The device is not sleeping or locked and the screen is on.

● The application is in the foreground.

© 2016 IAB Technology Laboratory 62 MRAID_v3.0

A foreground application is the active application on device screen and
available for user input. On Android, an activity is the foreground between
calls to the Activity.onResume() and Activity.onPause() methods.

On iOS, an app is in the foreground between the
UIApplicationDidBecomeActiveNotification and

UIApplicationWillResignActiveNotification events.

● The ad view has at least one pixel on-screen, taking into account clipping
and scrolling within the app’s view hierarchy. (This calculation does not
need to account for Z-order occlusion within the view hierarchy.) Note that
this is a change from the MRAID 2.0 specification, which did not have any
pixel thresholds for a visible ad.

● There are no modal interfaces blocking the ad. Modal interfaces can
include MRAID features like an in-app browser or app store displayed via
mraid.open(), video playback via mraid.playVideo(), photo album

access via mraid.storePicture(), and calendar access via

mraid.createCalendarEvent(), as well as other in-app modal

screens.

If any of these conditions don't hold, the ad is out of view and not exposed.

The host reports an exposure change as follows:

Condition Exposure change reported

Ad container is exposed exposureChange events have non-zero
percentage argument

Ad container is out of view or
behind other active views

exposureChange events have zero
exposedPercentage argument

Ad container changes from
exposed to out of view

host sends exposureChange with zero (0)
exposedPercentage argument

Ad container changes from out of
view to exposed

host sends exposureChange with non-zero
exposedPercent argument

Ad container state or size
changes, but exposure
percentage remains the same

host sends an exposureChange event with
same exposedPercent argument as
previously reported

7.6 audioVolumeChange

The host uses audioVolumeChange to report changes in audio volume

percentage. The audio volume may be calculated by multiplying the device
volume by any gating factors, which may include the application audio focus,
application-specific volume level, device muting, and other factors. If the

© 2016 IAB Technology Laboratory 63 MRAID_v3.0

application is not able to play audio, or if it cannot determine the audio volume,
this event reports null instead of a percentage.

Syntax "audioVolumeChange" function(volumePercentage)

Parameters volume_Percentage: percentage of maximum audio playback
volume, a floating-point number between 0.0 and 100.0, or 0.0
if playback is not allowed, or null if volume can’t be
determined

Triggered by a change in the audio playback volume of the ad

When an ad registers for an audioVolumeChange event, the host

asynchronously sends the event with the initial audio volume level to all listeners
for that ad. After that initial event, the host reports audioVolumeChange events if

the audio volume changes.

Typical causes of volume changes are when the user changes the device volume
or mutes the device. The host also reports volume change when the audio focus
changes because of application or UI transitions. Multiple audio change events
may be reported with the same percentage value.

The host may determine the audio level through native event handling or through
polling in the native layer. If the native layer uses polling, it must send an
audioVolumeChange event no later than 1.0 second after an audio change.

The volume change event is the effective volume outside the control of the ad.
The ad may also have some control over volume, such as mute control. Volume
control that occurs directly in the ad is not reflected in the audioVolumeChange

event.

In some cases, the host may not have any access to audio levels when the ad is
not playing audio. Additionally, the host may not be able to tell that the audio is
muted or not playing, such as when the mute switch on, but headphones still
work. In such situations, the host reports a volume_Percentage of null before

the ads plays, and then another audioVolumeChange event with a numeric

volume level just after playback starts and the host can detect volume levels.

Sample Usage
When host offers the audioVolumeChange event in addition to the other features

in MRAID, the ad will be able to determine audibility. The ad might use the
following pseudocode:

1. Register a listener for the audioVolumeChange event. For example,
mraid.addEventListener('audioVolumeChange',

handleVolumeChange);

© 2016 IAB Technology Laboratory 64 MRAID_v3.0

2. The audioVolumeChange handler may compare the volume with an

audibility threshold and log time when the threshold is reached:
function handleVolumeChange(volume_percentage) {

 if (volumePercentage && volumePercentage >= 10.0) {

 // log audible time ...

 }

}

3. When the ad has been sampled long enough for the desired audibility
metric, remove the audioVolumeChange listener. For example,
mraid.removeEventListener('audioVolumeChange',

handleVolumeChange);

Implementation Notes
This JavaScript event-driven API was chosen over a status API (e.g.
“getAudioVolume()”) for the following reasons:

● Fetching values immediately from the native layer for a
“getAudioVolume()” status call in JavaScript would involve blocking

the webview execution thread, which negatively impacts performance.
● In order to prevent a “getAudioVolume()” status call from blocking the

JavaScript thread, the native layer would have to check audio levels (and
cache the result) whether or not creative ever used the value. By using an
event interface, only ads interested in managing audio volume incur the
cost of determining the value.

● An event interface avoids polling loops in the JavaScript layer.
● Adding a “getAudioVolume()” status API in addition to the

“audioVolumeChange” event interface is superfluous. The JavaScript for

a creative can easily implement such a function based on its handler for
the event.

Android
On Android, the class android.media.AudioManager provides access to the

device audio level. That value must be gated by the audio focus status of the
webview displaying the ad. The following pseudocode will return the device audio
volume.

Double getAudioVolumePercentage() {

 if (!adHasAudioFocus()) return null;

 AudioManager audioManager = (AudioManager)

 getContext().getSystemService(Context.AUDIO_SERVICE)

 int currentVolume =

 audioManager.getStreamVolume(AudioManager.STREAM_MUSIC);

 int maxVolume =

 audioManager.getStreamMaxVolume(AudioManager.STREAM_MUSIC)

;

 return new Double((100.0 * currentVolume) / maxVolume);

}

© 2016 IAB Technology Laboratory 65 MRAID_v3.0

The method adHasAudioFocus() in the pseudocode would call the MRAID

implementation’s handling of audio focus and activity background checks.

iOS
On iOS, the class AVAudioSession provides access to the device audio

volume level. However, the volume level is valid only when the app has audio
focus (the active audio session). The following pseudocode will return the device
audio volume.

-(NSNumber*)getAudioVolumePercentage {

 if (![self adHasAudioFocus]) return nil;

 return @(100.0 * [AVAudioSession

sharedInstance].outputVolume);

}

The method adHasAudioFocus in the pseudocode would call the MRAID

implementation’s handling of audio session and app background checks.

7.7 viewableChange (deprecated)

The viewableChange event is deprecated in MRAID 3.0 and may be removed in

future versions of MRAID. However, the host must still support viewableChange

in MRAID 3.0 to maintain backward compatibility. The host sends
viewableChange when the ad container moves from on-screen to off-screen or

off-screen to on-screen. In any situation where the container may be loaded off
screen, the ad should check on its viewable state and/or register for
viewableChange before taking any action.

Syntax "viewableChange" function(boolean)

Parameters true: container is on-screen and viewable by the user; false:
container is off-screen and not viewable

Triggered by a change in the application view controller

8 Working with Device Features

MRAID is designed to provide interaction with mobile device features such as
geolocation, orientation, image storage, the calendar, and the native video
player. Guidelines and examples for developing an ad that uses these features
are provided in the following sections.

8.1 Device Orientation

The ad should not use window.orientation to determine orientation or
orientationChange events to determine a change in orientation. On newer OS

© 2016 IAB Technology Laboratory 66 MRAID_v3.0

verisons, the host cannot control orientation updates that the webview reports
and sometimes the webview reports orientation inaccurately.

Instead of window.orientation to determine orientation, the ad must use

mraid.getCurrentPosition() and compare width and height values to identify

a portrait or landscape layout. Instead of using orientationChange when the

layout changes, the ad must use it as a cue to check the width and height values
reported in sizeChange to verify ad orientation.

The getOrientationProperties feature offered in MRAID 3.0 should be used

to determine orientation when the ad is not managing ad size. See section 6.3 for
details on using the orientationProperties object.

8.2 Store a picture

Rich media ad designers may want to add a picture to the camera roll or photo
album of the device they are running on. This can be handy for a number of
features, including storing coupons for later redemption.

storePicture method

The storePicture method will place a picture in the device's photo album. The

picture may be local or retrieved from the Internet. To ensure that the user is
aware a picture is being added to the photo album, MRAID requires the
SDK/container use an OS-level handler to display a modal dialog box asking that
the user confirm or cancel the addition to the photo album for each image added.
If the device does not have a native “add photo” confirmation handler, the SDK
must treat the device as though it does not support storePicture.

This method will store the image or other media type specified by the URI.

MRAID-compliant containers will support adding a picture via an HTTP redirect
(for tracking purposes); however they will not necessarily support meta redirects.

If the attempt to add the picture fails for any reason or is cancelled by the user, it
will trigger an error.

storePicture(URI)

parameter:

● URI -String: the URI to the image or other media asset related event:
● none

© 2016 IAB Technology Laboratory 67 MRAID_v3.0

8.3 Calendar Events

createCalendarEvent method

The createCalendarEvent method opens the device UI to create a new

calendar event. The ad is suspended while the UI is open. To ensure the
creation of a calendar event is always user initiated and authorized, MRAID-
compliant containers must invoke the device’s native “create calendar event”
sheet, pre-populated with data supplied by the ad. Where a device does not
support such a “create calendar event” sheet, the SDK must treat that device as
if it does not support adding calendar events.

Calendar event data must be delivered in the form of a JavaScript object written
to the W3C’s calendar specification. See Appendix.

If the attempt to create the calendar event fails or is cancelled by the user, it will
trigger an error.

createCalendarEvent(parameters)

parameters:

● parameters: JavaScript Object {…} – this object contains the parameters
for the calendar entry, written according to the W3C specification for
calendar entries. See Appendix.

 return value:

● none
related event:

● none

© 2016 IAB Technology Laboratory 68 MRAID_v3.0

For example, the following would add a calendar event for the Mayan
Apocalypse/End of the World on December 21, 2012, taking place “everywhere”
and starting at midnight Eastern time and ending at midnight Eastern time on
December 22, 2012.

createCalendarEvent({description: “Mayan Apocalypse/End of

World”, location: ‘everywhere’, start: ‘2012-12-21T00:00-

05:00, end: ‘2012-12-22T00:00-05:00’})

8.4 Video

Video on mobile devices can be played either inline (within the current webview,
app, or mobile web page) or by opening a native player on the device. For many
advertising applications, inline playback is preferred: it is less disruptive to the
viewer’s experience, and playback within a webview enables HTML5 reporting on
metrics related to how much of the creative was viewed. These metrics are
generally harder to access, or unavailable, when video is viewed in the native
player.

Ad designers must keep in mind that device/OS limitations may prevent inline
video playback (this is notably the case with devices running Android version 2.x
and earlier).

However, MRAID-compliant containers must support inline playback where
possible, and permit ad designers to specify if video creative must play inline or
in a separate player. Ad designers can use the “supports(“inlineVideo”)” method
to determine whether the device running the creative will display video inline.

In order to enable inline video playback and autoplay of video, MRAID-compliant
SDKs must consistently insert any necessary enabling tags into the webview
depending on operating system of the device.

For iOS devices, the following tags must be used:

● webView.mediaPlaybackRequiresUserAction = NO;

● webView.allowsInlineMediaPlayback = YES;

For Android (Honeycomb, Ice Cream Sandwich and above) devices, the SDK
must invoke hardware acceleration, which is dependent on the view in question
and how it is added to the WindowManager:

● getWindow().setFlags(WindowManager.LayoutParams.FLAG_HARDWAR
E_ACCELERATED, WindowManager.LayoutParams.FLAG_HARDWARE
_ACCELERATED);

© 2016 IAB Technology Laboratory 69 MRAID_v3.0

For Android 2.x and earlier devices, it is not possible to play video inline; the
native player is always invoked by the playVideo method.

playVideo method

Use this method to play a video on the device via the device’s native, external
player. Note that this is purely a convenience method for the OS’s existing
external player, and does not imply a separate, SDK-based video player. To play
video inline (on devices where that feature is supported), use HTML5 video tags.

playVideo(URI)

parameters:

● URI - String, the URI of the video or video stream

return values:

● None

9 VPAID Events and Methods

MRAID handles the interaction between rich media ads and the app or the
webview. When the ad includes a video component, the host can indicate to the
ad that it is interested in video playback events as well as video timing for
tracking and user experience.

IAB's Digital In-Stream Video Player-Ad Interface Definition (VPAID) is an
interface that handles communication between the ad and the video player. An
addendum to MRAID 2.0 introduced support for initiating VPAID and reporting
certain events. MRAID 3.0 integrates this addendum and offers optional
compliance for the host to support ads developed using both MRAID and VPAID.

The VPAID integration with MRAID does NOT handle ad interactions with the
player. The integration enables the MRAID host to listen for VPAID events.

9.1 VPAID Interaction in MRAID Ads

The following diagram illustrates the interactive process of a VPAID video in an
MRAID creative.

© 2016 IAB Technology Laboratory 70 MRAID_v3.0

9.1.1 Initializing VPAID in the MRAID Context

An MRAID/VPAID ad initializes using the initialization mechanism described
in Section 3. Once the container returns the "ready" event or sets the container's

state to "default," the ad may check whether the container supports VPAID.

© 2016 IAB Technology Laboratory 71 MRAID_v3.0

Support for VPAID can be checked using the mraid.supports() method using

the value of "vpaid" in the following format:

mraid.supports("vpaid")

Support for VPAID in MRAID 3.0 is optional, but an app that supports MRAID 3.0
is required to return a Boolean value: true if VPAID is supported or false if not
supported.

9.1.2 Sending and Receiving VPAID events

Once ad verifies that the host supports VPAID, the ad must invoke
mraid.initVpaid(vpaidObject) to pass the VPAID object to the container.

The host then subscribes to VPAID events and calls vpaidObject.startAd().

The ad can then start the video creative and send VPAID events as appropriate.

9.1.3 If VPAID Is Not Supported

If VPAID is not supported, the call for VPAID support returns false, results in an
error, or returns an undefined result. When this happens, the creative must begin
the ad experience without waiting for the vpaidObject.startAd(). Supported

VPAID Methods and Events

Not all VPAID events are supported in an MRAID context. In order to avoid
overlap with MRAID or conflicting commands, only the following VPAID methods
and events are supported. When the host supports VPAID integration, VPAID
methods are called using vpaidObject (for example, vpaidObject.subscribe()

to subscribe to VPAID events). See section 5.14 for details on using VPAID
methods in MRAID.

Supported VPAID Methods

● subscribe()
● unsubscribe()
● getAdDuration()
● getAdRemainingTime()
● startAd()

Unsupported VPAID Methods

● handshakeVersion
● initAd()
● resizeAd()
● stopAd()
● pauseAd()
● resumeAd()
● expandAd()
● collapseAd()
● skipAd

Supported VPAID Events

● AdClickThru
● AdError
● AdImpression
● AdPaused
● AdPlaying

Unsupported VPAID Events

● AdDurationChange
● AdExpandedChange
● AdInteraction
● AdLinearChange
● AdLoaded

© 2016 IAB Technology Laboratory 72 MRAID_v3.0

● AdVideoComplete
● AdVideoFirstQuartile
● AdVideoMidpoint
● AdVideoStart
● AdVideoThirdQuartile

● AdLog
● AdRemainingTimeChange

(Deprecated in VPAID 2.0)
● AdSizeChange
● AdSkippableStateChange
● AdSkipped
● AdStarted
● AdStopped
● AdUserAccept Invitation
● AdUserClose
● AdUserMinimize
● AdVolumeChange

Any VPAID method or event not listed here is not supported in MRAID. The
methods and events listed should help track interactions on any video portion of
an MRAID creative.

9.1.4 VPAID AdClickThru Event

In VPAID, the ad creative uses the AdClickThru event to communicate how a

clickthrough URL must be handled. VPAID offers three parameters to define the
URL (url), an ID for tracking purposes (id), and a Boolean for identifying whether
the player or the ad creative must open the URL (playerHandles). The MRAID
container must ignore these parameters and instead the ad must use
mraid.open() to offer the host instructions on how to handle the video

clickthrough.

9.1.5 VPAID AdPaused, AdPlaying Events

In VPAID, the AdPaused and AdPlaying events are used in response to the

player commands, pauseAd() and resumeAd(). However, in an MRAID context,

the commands are not issued so the AdPaused and AdPlaying events are

instead used to notify the host when these events have occurred.

9.1.6 Support for Auto-Start Video

To support the optimal interactive video experience, the container webview must
support inline video and autostart video. The video element in the ad creative
must be able to start without user interaction and play inline.

Reference to the autostart support parameter for iOS is already included in the
MRAID spec under the additional information provided for inline video.
Containers supporting this addendum must add autostart support to a webview.

© 2016 IAB Technology Laboratory 73 MRAID_v3.0

If autostart is not supported on a given device, operating system or app, then the
container must return mraid.supports(“vpaid”) as “false”, so that the ad

creative can either play a non-interactive version of the video content, allow the
user to initiate video playback manually, or take some other action.

Note, however, that video ads requiring manual playback should be an edge
case - advertisers must make sure that publisher/network ad servers target
around OS versions that do not support autostart to make sure this is the case.

9.2 Clickthrough Behavior and Viewability

When the user clicks an ad, the container opens a new browser window in the
app e.g. SFSafariViewController or WKWebView in iOS or custom tabs in
Android or sends user to the device’s default browser using the mraid open()

method. In this new window, the container lacks any method to communicate the
shift from the webview of the ad to a new browser window. Likewise, the
container cannot indicate when a user closes the new browser window and
returns to the first. Because of the blind spot in the new browser window, the
creative may not know when to pause any animation or video element.
MRAID 3.0 uses the new exposureChange event to report a shift in exposure.

This event will report the change by reporting the exposedPercentage and

occlusionRectangle parameters.

The clickthrough process should be managed as follows:

1. On requesting the URL to display (this can either be from the main ad unit,
or from within an interactive engagement state), the ad unit calls
mraid.open().

2. The container opens a new browser window within the app or in the
default device browser and fires exposureChange(). This new browser

window should contain a close button and may also contain other controls,
such as a back button or return to app indicator.

3. Upon calling mraid.open(), the creative must also fire the VPAID

AdClickThru event if a VPAID object has been registered with the host so

that the integration layer may track the click using VPAID.
4. If the ad pauses the video, the ad must fire the VPAID AdPaused event.

5. When the new browser window is closed or user returns from default
device browser to the app, the container must send the
exposureChange() to report that the new exposedPercentage and

new occlusionRectangle values. The creative can then resume

execution as designed. If video play resumes, the VPAID AdPlaying

event must be sent.

© 2016 IAB Technology Laboratory 74 MRAID_v3.0

9.3 Counting Impressions

MRAID and VPAID are technical specifications for managing interaction between
the ad and a mobile app or mobile web app. Neither specification was intended
as measurement guidelines. However, both specifications are designed to
support measurement guidelines.

When the ad is a video using VPAID events to count impressions, reports must
reflect compliance with the latest IAB guidelines on counting digital video ad
impressions.

The following is an excerpt from the Digital In-Stream Video Impression
Measurement Guidelines:

A valid digital video ad impression may only be counted when an ad
counter (logging server) receives and responds to an HTTP request for a
tracking asset from a client. The count must happen after the initiation of
the stream, post-buffering, as opposed to the linked digital video content
itself.

Specifically, measurement should not occur when the buffer is initiated,
rather measurement should occur when the ad itself begins to appear on
the user’s browser, closest to the opportunity to see.

In-stream video ad impressions must be counted using the VPAID
AdImpression event. If the ad is treated as a rich media ad, the impression can

be counted on the adload response using MRAID. When counted in MRAID, the

VPAID AdImpression event is not needed and the ad container must not wait for

it.

MRAID video ads that can be counted using VPAID events are only those that
interrupt the flow of content and fill most of the ad container, such as interstitial
video ads. MRAID ads with a video component that run inline must use MRAID
events to count ads.

The following table identifies six common scenarios that include video
component in an MRAID ad and specifies when VPAID may be used to count the
video impression.

Format Description or Example
MRAID
placementType

Report
VPAID
events?

Video interstitial,
non-dismissible

E.g. a pre-app ad or a video
interstitial between two levels of
a game

interstitial Yes

https://www.iab.com/wp-content/uploads/2015/06/dig_vid_imp_meas_guidelines_finalv2.pdf
https://www.iab.com/wp-content/uploads/2015/06/dig_vid_imp_meas_guidelines_finalv2.pdf

© 2016 IAB Technology Laboratory 75 MRAID_v3.0

skippable pre-roll E.g. a 640x480 placement on an
iPad that takes over 3/4 of a
screen and plays before the
video content

interstitial Yes

Post-roll with an
end-card

E.g., a 15 second post-roll video
with an interactive end-card that
is displayed and stays on
screen until the user closes the
ad

interstitial Yes

Simple banner that
plays a video on
click

E.g., a 300x250 banner in a
newspaper app

inline No

A banner that on
click expands and
plays a video

E.g. a 320x50 static banner that
on tap calls mraid.expand() and
plays a video in a <video>
element. After the video
finishes, the ad collapses. For
the user, experience is almost
the same as using
mraid.playVideo() from the
banner; a basic tap-to-video

inline No

A banner that on
click expands and
offers a grid of
videos

Similar to the previous, but
when expanding, instead of a
video playing immediately, the
creative contains a grid of
poster images for different
videos. The user may choose
and play multiple times before
closing

inline No

10 Glossary of Terminology

The following terms are used throughout the MRAID specification.

Ad View/Container: The constrained area which displays the ad creative.
Publishers either place the Ad Container within the content (for inline
placements) or over the content (for interstitial placements) and present the ad
creative. The container provides the area on the screen, the MRAID controller,
and the web-based view for the ad to display. Ad Containers are usually, though

© 2016 IAB Technology Laboratory 76 MRAID_v3.0

not necessarily, provided by SDKs. An app may contain multiple Ad Containers
from a single SDK.

Close Event Region: The close event region is a tappable area on the ad
creative that will cause the ad to return to its default state (in the case of an
expandable/resizeable ad) or be removed from the screen (in the case of an
interstitial).

Close Indicator: The close indicator is the visual cue to the user as to the
location of the close event region.

Controller: The JavaScript code that provides ad designers access to MRAID
methods and events. The ad creative uses the controller to perform advertising-
related interactions with the Ad Container, and, indirectly, with the application
and the device.

Density-Independent Pixels: All length values passed between the container
and the creative through the MRAID API are in density-independent pixels.

Density-independent pixels are an abstraction from physical screen pixels meant
to simplify application and content development across devices of different
screen densities.

Using density-independent pixels means that, for example, retina display
iPhones and older iPhones will return the same dimensions/measures, despite
having different numbers of physical pixels. 1 density-independent pixel
corresponds roughly 1/160 of an inch (1 device pixel on a device with roughly
160 DPI).

On iOS, these must map to “points”; on Android, to “density-independent pixels”.

Note: One density-independent pixel will match 1 CSS pixel only if the viewport
scale is 1.0. To map between CSS pixels and density-independent pixels, the
creative must use the following formula:

css_pixels * viewport_scale = density_independent_pixels

Inline Ad: An ad that appears onscreen accompanied by other kinds of content,
e.g., a banner on a web page or in an app.

Interstitial Ad: A full page modal ad that displays on top of content -- a
"roadblock" or "overlay." The ad must be dismissed for the user to return to the
publisher content. Such ads can appear between levels of a game, or before or
after a video clip or other dynamic content. (An ad that is in-between pages and
swipes into view like in many magazine apps, is considered an inline ad under
MRAID.)

© 2016 IAB Technology Laboratory 77 MRAID_v3.0

Physical Pixels: The actual pixels on a device screen. For example, a retina-
display iPhone measures 960x640 physical pixels. MRAID API length values are
always calculated in density-independent pixels (defined above) NOT physical
pixels.

SDK: Software Development Kit. The reusable piece of code (library) integrated
into publisher apps to enable advertisements/ad containers. An SDK, by itself, is
not a visual component.

Webview: The HTML-based viewer that displays the ad creative. The webview
is used to perform rendering of HTML- and Javascript-enabled ads.

11 Appendix: W3C CalendarEvent Interface

Taken from: W3C Calendar API, Sections 4.3 and 4.4

W3C Working Draft 19 April 2011

This version:

http://www.w3.org/TR/2011/WD-calendar-api-20110419/

Latest published version:

http://www.w3.org/TR/calendar-api/

Latest editor's draft:

http://dev.w3.org/2009/dap/calendar/

Editors:

http://www.w3.org/TR/2011/WD-calendar-api-20110419/
http://www.w3.org/TR/2011/WD-calendar-api-20110419/
http://www.w3.org/TR/calendar-api/
http://www.w3.org/TR/calendar-api/
http://dev.w3.org/2009/dap/calendar/
http://dev.w3.org/2009/dap/calendar/

© 2016 IAB Technology Laboratory 78 MRAID_v3.0

Richard Tibbett, Opera Software ASA

Suresh Chitturi, Research in Motion (RIM)

Copyright © 2011 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

4.3 CalendarEvent interface

The CalendarEvent interface captures a calendar event object.

The current use of DOMString for dates and times is known to be insufficient for
representing events with timezones. The group is working on addressing that
limitation, looking at the development of TZDate object that would address this.

[NoInterfaceObject]

interface CalendarEvent {

 readonly attribute DOMString id;

 attribute DOMString description;
 attribute DOMString? location;
 attribute DOMString? summary;
 attribute DOMString start;
 attribute DOMString? end;
 attribute DOMString? status;
 attribute DOMString? transparency;
 attribute CalendarRepeatRule? recurrence;
 attribute DOMString? reminder;
};

4.3.1 Attributes

description of type DOMString

A description of the event.

{description: "Meeting with Joe's team"}

No exceptions.

end of type DOMString, nullable

The end date and time of the event as a valid date or time string.

http://richt.me/
http://www.opera.com/
http://www.opera.com/
http://www.rim.com/
http://www.rim.com/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/2009/dap/track/issues/81

© 2016 IAB Technology Laboratory 79 MRAID_v3.0

{end: '2011-03-24T10:00:00-08:00'} // Event ends on March 24, 2011 @ 6pm
(UTC)

No exceptions.

id of type DOMString, readonly

A globally unique identifier for the given CalendarEvent object. Each
CalendarEvent referenced from Calendar must include a non-empty id value.

An implementation must maintain this globally unique resource identifier when a
calendar event is added to, or present within, a Calendar.

An implementation may use an IANA registered identifier format. The value can
also be a non-standard format.

No exceptions.

location of type DOMString, nullable

A plain text description of the location of the event.

{location: 'Conf call #+4402000000001'}

No exceptions.

recurrence of type CalendarRepeatRule, nullable

The recurrence or repetition rule for this event

{recurrence: {frequency: 'daily'}} // Event occurs every day and never expires

{recurrence: {frequency: 'weekly', // Event occurs weekly...

daysInWeek: [2, 4], // ...every Tuesday and Thursday

expires: '2011-06-11T12:00:00-04:00'}} // Event expires on or before June 11,
2011 @ 4pm (UTC)

{recurrence: {frequency: 'weekly', // Event occurs weekly...on every
Wednesday

 // (if we say the 'start' attribute is March 24, 2011 @ 2pm
(Wednesday) as

© 2016 IAB Technology Laboratory 80 MRAID_v3.0

 // shown above and no daysInWeek attribute is
provided)

expires: '2011-06-11T11:00:00-05:00'}} // Event expires on or before June 11,
2011 @ 4pm (UTC)

{recurrence: {frequency: 'monthly', // Event occurs monthly...

daysInMonth: [-5], // ...5 days before the end of each month

expires: '2011-06-11T20:00:00+04:00'}} // Event expires on or before June 11,
2011 @ 4pm (UTC)

{recurrence: {frequency: 'monthly', // Event occurs monthly...on the 24th day of
every month

 // (if we say the 'start' attribute is March 24, 2011 @ 2pm
as

 // shown above and no daysInMonth attribute is
provided)

expires: '2011-06-11T20:00:00+04:00'}} // Event expires on or before June 11,
2011 @ 4pm (UTC)

{recurrence: {frequency: 'yearly', // Event occurs yearly...on the 24th day of
every March

 // (if we say the 'start' attribute is March 24, 2011 @ 2pm
as

 // shown above and no daysInMonth attribute is
provided)

expires: '2011-06-11T16:00:00+00:00'}} // Event expires on or before June 11,
2011 @ 4pm (UTC)

{recurrence: {frequency: 'yearly', // Event occurs yearly...

daysInMonth: [24], // ...every 24th day...

monthsInYear: [3, 6], // ...in every March and June

expires: '2011-06-11T16:00:00Z'}} // Event expires on or before June 11, 2011 @
4pm (UTC)

{recurrence: {frequency: 'yearly', // Event occurs yearly...

daysInYear: [168], // ...every 168th day of each year

© 2016 IAB Technology Laboratory 81 MRAID_v3.0

expires: '2011-06-11T21:45:00+05:45'}} // Event expires on or before June 11,
2011 @ 4pm (UTC)

No exceptions.

reminder of type DOMString, nullable

A reminder for the event.

This attribute can be specified as a positive valid date or time string.

, denoting a one-time reminder or as a negative value in milliseconds denoting a
relative relationship to the start time of the calendar event.

A relative reminder is recommended for setting a reminder for recurrent events.

{reminder: '2011-03-24T13:00:00+00:00'} // Remind ONCE on March 24, 2011
@ 1pm (UTC)

{reminder: '-3600000'} // Remind 1 hour before every occurrence of this event

No exceptions.

start of type DOMString

The start date and time of the event as a valid date or time string.

{start: '2011-03-24T09:00-08:00'} // Event starts on March 24, 2011 @ 5pm
(UTC)

No exceptions.

status of type DOMString, nullable

An indication of the user's status of the event.

This parameter may be set to one of the following constants:

'pending', 'tentative', 'confirmed', 'cancelled'.

{status: 'pending'} // Event is awaiting user action

No exceptions.

© 2016 IAB Technology Laboratory 82 MRAID_v3.0

summary of type DOMString, nullable

A summary of the event.

{summary: "Agenda:\n\n\t* Introductions\n\t* AoB"}

No exceptions.

transparency of type DOMString, nullable

An indication of the display status to set for the event.

This parameter may be set to one of the following constants:

'transparent', 'opaque'.

{freebusy: 'transparent'} // Mark event as transparent in Calendar

No exceptions.

