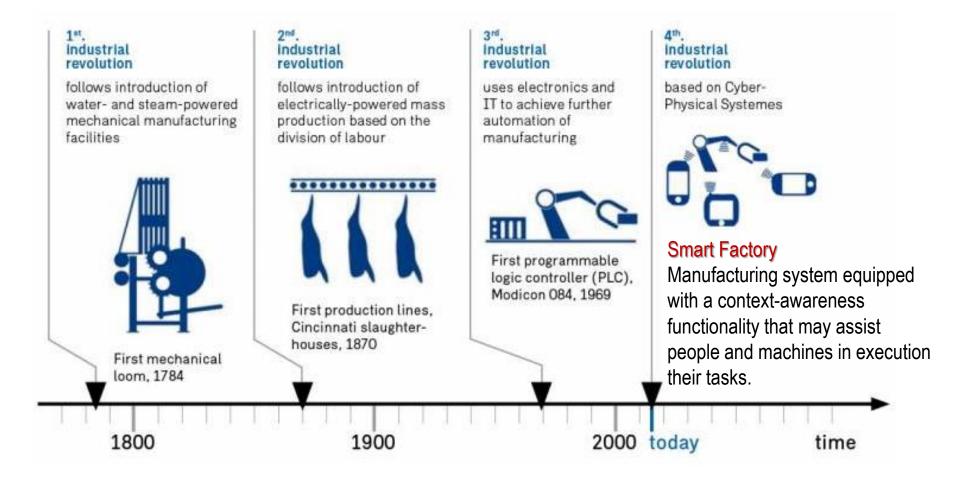
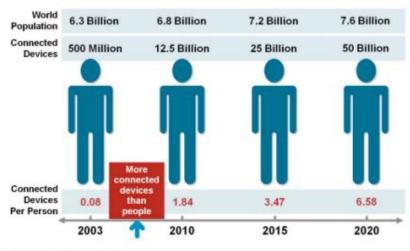
A potential of smart PPE in accident prevention and well-being at work on the examples of selected solutions

Anna Dąbrowska Katarzyna Majchrzycka


Central Institute for Labour Protection – National Research Institute, Warsaw, Poland

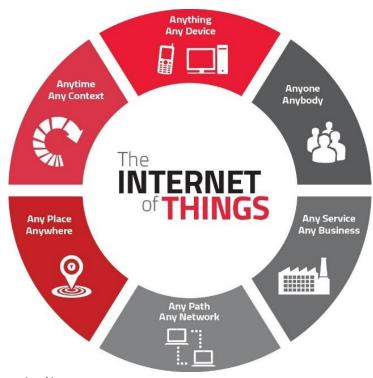
www.ciop.pl

Technological innovation and organisational changes: the potential impacts on prevention 29-31 March 2017, Nancy, France


Industry 4.0 and Internet of Things
Applications of IoT in OSH – smart PPE
A future role of smart PPE in Smart Working Environment

Industry 4.0

Internet of Things – next trend of Ubiquitous Computing

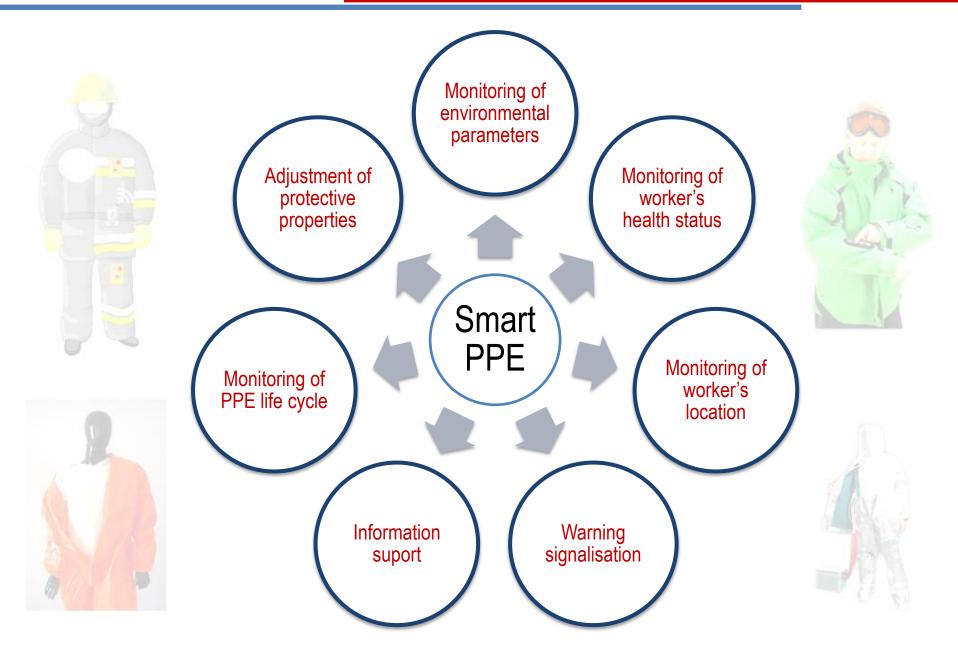

- Collecting, processing and data exchange by means of computer networks, particularly via the Internet
- Objects identified by their unique addresses
- IPv6 protocol for 128-bit addresses a possibility to address up to 2¹²⁸ devices
- Worldwide expotential growth of connected devices

Source: Cisco IBSG, April 2011

Basic abilities of the interconnected objects:

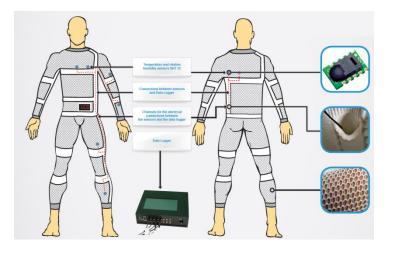
- To be identifiable (everything identifies itself)
- To communicate (everything communicates)
- To interact (everything interacts)

www.tweaktown.com


State-of-the-art applications of IoT in OSH:

- ✓ Direct hazards for health and life
- ✓ Unpredictible and dynamic harsh and complex environment
- \checkmark Workers' protection can be guaranteed only by means of PPE

Smart PPE - new functions


Smart PPE with monitoring functions

Intelligent PPE system for personnel in high-risk and complex environments

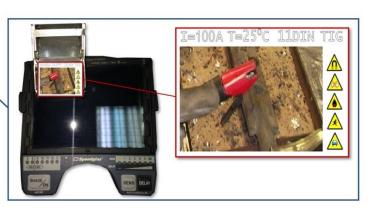
Firefighters, chemical rescuers and mine rescuers

Measurement system for undergarment microclimate monitoring with data logging and wireless transmission

ICT applications:

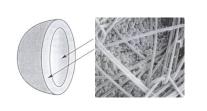
- Monitoring of environmental hazards
- Monitoring of health status
- Wireless communication network

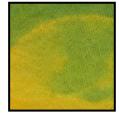
RFID-based network for PPE life cycle monitoring



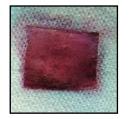
- Control and supervision of PPE parameters during the working day
- Long term monitoring of PPE "life cycle" focused on the economic aspect

Welding helmet with Augmented Reality system


Signalisation of chemicals permeation through protective gloves

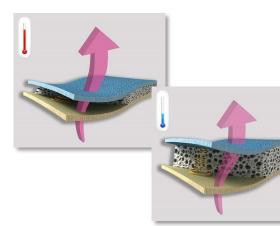


End-of-service-life indicator



Sulphuric acid

Sodium hydroxide



Toluene

Acetone

Smart PPE with adjustment of protective properties

Shape memory materials

Ionic electro-active polymers

Phase change materials

Liquid cooling system

Protective clothing against cold with active thermoregulation system

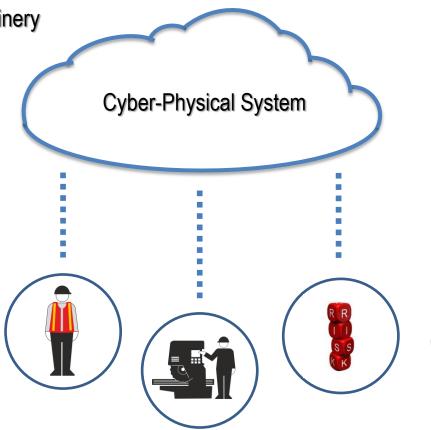
From Narrowly Specialised Smart Systems towards integrated Cyber-Physical Systems

1st generation

Narrowly specialised embedded Smart Systems integrating sensing and activators as well as information processing for safetyand performancefocused actions

2nd generation

Predictive and adaptive Smart Systems with selftest capabilities able to match harsh, high-risk and complex environments


3rd generation

Higher level of integration of smart manufacturing objects with human-centered & ICT-based components of a Cyber-Physical System (CPS)

Cyber-Physical System for symbiotic and safe collaboration between workers and machinery in Smart Working Environment

<mark>3rd Generation –</mark> Cyber-Physical Systems

- Integration of various autonomous smart PPE and manufacturing objects
- New approach to occupational risk management adjusted to SWE concept

Degree of technology integration

Smart Working Environment

www.humanmachineinteraction.org

Geographical location of a workplace & surrounding conditions, in which:

- Workers perform work-related tasks
- IoT technologies support monitoring of environmental parameters and interactions between workers and physical objects with an overarching goal to ensure workers' safety and well-being

www.technologyreview.com

<image>

www.gtai.de

www.ensco.com

Vision Zero – a vision of a holistic, people-centred accident prevention strategy including safety, health and well-being at work

7 Golden Rules for VISION ZERO

- ✓ Leadership commitment
- ✓ Identify all hazards and risks
- $\checkmark\,$ Set safety and health targets
- ✓ Ensure a safe system
- ✓ Use safe and healthy technology
- ✓ Improve qualification
- ✓ Involve people

Attention not limited to workplaces but focused on people with their issues like aging, obesity or chronic diseases

http://immigrationimpact.com

Empowering the workforce with wearables towards (1/2):

- ✓ Smarter, safer and faster work
- \checkmark Individualisation of processed information and taken measures
- $\checkmark\,$ Connection between humans and machines
- $\checkmark\,$ Effective and safe interactions of robots with people
- ✓ Integration of Human Factors into manufacturing

http://www.themanufacturer.com

http://thegadgetflow.com

www.fraunhofer.de

Empowering the workforce with wearables towards (2/2):

- ✓ Taking full advantage of workers' talent and knowledge for the benefit of business
- ✓ Optimisation of balance of people's strength and limitations
- ✓ Upskilling

https://upskill.io

www.inclusive-project.eu

Expected impact of smart PPE

A key challenge:

Workers' acceptance

Expected impact:

- Speed up tasks
- Lower effort
- Improve quality
- Less rework
- Improve safety
- Better service
- Process flexibility

http://www.newspotng.com

Thank you very much for your attention

Contact person:

Anna Dąbrowska

andab@ciop.lodz.pl

Acknowledgments

This presentation is based on results of a number of R&D projects carried out in the CIOP-PIB on a national and international level:

- **i-Protect** Intelligent PPE system for high-risk and complex environments 7th FP of the EU financed by the European Commission
- **Protective clothing for mine rescuers** strategic research project entitled "Improving work safety in mines" funded by the National Centre for Research and Development
- Active protective clothing against cold National Programme Technological Initiative I financed by the National Centre for Research and Development
- Other projects on protective clothing and gloves with embedded smart materials and systems, welding helmet with AR system, RFID-based system for PPE management -National Programme "Safety and working conditions improvement" financed by the Ministry of Science and Higher Education and the Ministry of Labour and Social Policy