

Cliquez pour ajouter la date

Notre métier, rendre le vôtre plus sûr

Endocrine disruptors and epidemiological evidences : methodological challenges

Dr Jean-Bernard HENROTIN, INRS

- . Concerning occupational health
- . Examples from reproductive system

Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles

Colloque INRS-ISSA, 1^{er} au 3 juin 2016, Paris

Introduction (1)

- Generally, an essential part of the evidence in establishing causality between a risk factor and a disease -> case-control or cohort studies
- All human observational studies have limitations
- But, studies of EDs have specific complications compared to studies
- Objective: to present some key issues about EDs which should be considered to design epidemiological studies

Introduction (2)

The demonstration of the effect of a cause by comparing groups is a key principle of the causal epidemiology.

Physiological levels of the endogenous hormones are extremely low : 10-900 pg/ml for oestradiol; 300-10,000 pg/ml for testosterone; 8-24 pg/ml for T4^[Vandenberg 2012]

Hormones have a strong affinity for their receptor

A near-maximum biological response can be observed at low concentration without a high rate of receptor occupancy (0.1-10% of total receptors)

Physiologically, all contribue to what natural hormones are active at extremely low doses

Expected weak effects

Difficulty : EDs using physiological mechanism, effect sizes <u>are expected to be weak to moderate</u> in observational studies

- When RR is weak (from 1 to 1,5) → difficulty to argue a causality relationship (sampling fluctuation, problems of biases, ...)
- Epidemiologist can : \uparrow size of studies (statistical power); multicenter studies ex: case-control study \rightarrow RR=1,5 and exposition 10% => n=900 x 2 exposition 5% => n=1700 x 2

Expected weak effects

weak RR in large population exposed at risk \rightarrow numerous cases

Example: estimation of number of cases (low birth weight) according to the frequency of exposition at least one ED in pregnant women at work

RR	% Exposition	Number of Birth in working population 2010 <i>(France)</i>	Number of birth (<2500 g) (6,4 %)	Number of cases* due to exposure
1,25 ^{\$}	11 ^{\$}			1000
1,25	30	600 000	40 000	2800
1,25	50			4500
1,25	70			6000

⁵ From Birks L et al, occupational exposure to endocrine-disrupting chemicals and birth weight and length of gestation: a European meta-analysis. EHP 2016

* calculated with attributable fractions from Levin's method

Low dose -> operational definition [Vandenberg 2012]:

- doses that are in the range of human exposure
- or/and doses below those traditionally tested in toxicological studies

From this definition :

- for PEs -> from micro- to milligram/kg
- for some PEs ->in the nanogram /kg (e.g. dioxin-like)
- traditional approaches rather > at milligram/kg

From animal studies: e.g. Vom Saal and Welshons et al, 2006

- examined the low-dose BPA literature
- ≈ 100 studies -> significant effects < 50 mg/kg/d (LOAEL)
- \approx 40 studies -> adverse effects < 50µg/kg/day

(NOAEL / LOAEL)

Low-dose hypothesis

<u>Therefore</u> : \rightarrow need of accurate exposure assessment

- To limit misclassification errors : non differential → ↓ RR (questionnaire, self-reported, job exposure matrix...)
- Rather quantitative approach of exposure
- Often several routes (skin, inhaled, ingested) \rightarrow internal dose
- Dosage biologique ED or metabolites in biological matrice like blood, urine, other tissue ...
 - . when half-life is long (POPs) may provide a reasonable exposure marker
 - . But difficulty with short half-life +++ (*like BPA, phtalate, alkylphenol, UV filter ...*)
 - variability the day and across days / low reproducibility
 - difficult to estimate an internal dose that reflets interest exposure for given period and/or long term exposure
 - often need several samples

Exposure occurs through the diet, personal care products (cosmetic, perfumes, lotions, and shampoos), detergents, PVC products, medecine...

Pregnant women (n = 54; each vertical bar is one study participant)

Figure 3. Number of chemicals detected by chemical class in U.S. pregnant women, NHANES subsample B [metals, cotinine, organochlorine (OC) pesticides, phthalates, brominated flame retardants (PBDEs), and PAHs], 2003–2004 (n = 54). Each vertical bar represents one study participant. Other subsamples showed similar results.

[Source : Woodruff TJ et al, 2011]

■ Difficulty → detect a signal from the background noise for a study in the workplace :

• Problem +++ : often impossible to find unexposed control [Lee 2016]

Mixture effects

■ Issues of mixture → in exposed group

- In general, epidemiological studies has focused on individual chemicals
- But EDs -> combinaison effects (experimental evidence) -> Act through a common mechanism -> additive or synergic effects

• For example -> sector of hairdressers and cosmetologists

11

• Developed better tools for the investigation of cumulative exposed

Non monotonicity

A dose-response curve is nonmonotonic when the slope of the curve changes sign within the range of doses examined

Examples of different exposure-response curves [Christensen 2015]

In observational epidemiology -> exposure distribution are given
In different populations -> will have different ranges of exposure
According to reference group -> a variety of possible findings

Source: Kortenkamp A et al, 2008

Importance of study size +++ -> the ability to detect NMDRCs, particularly in the low-dose range

Timing of exposure

- EDs can act at all times during life (fetus, infancy, puberty, adulthood, old age ...)
- But the timing of ED action often determines the strength of their impact
- At least two perspectives :
 - 1- developmental effects
 - **2-** disturbance of homeostasis

Windows of susceptibility

- 1 <u>Developing organisms</u> are extremely sensitive to EDs -> occur at concentrations of the chemical that are far below levels that in the adult
 - •During this period \rightarrow possible direct effects (but as well as impacts much later in life)

ex: anti-androgen effect during pregnancy

Variation in serum testosterone levels during fetal and neonatal period [O'Shaughnessy PJ et al 2011

- Difficulties → to have accurate assessment of exposure during critical period (from example above -> during first trimester)
 - ightarrow need cohorte starting from pregnancy

• 2 - Disturbance of homeostasis »

- The endocrine system plays an important role in the physiological response to environmental changes
- Disturbance of homeostasis is not necessarily harmful → may or may not result in « adverse effects » → adaptative responses
- But the response last as long as the PE is present
- The concern is the impact of chronic exposure \rightarrow change over the long term into adverse effects ?
- Need for studies: → **first** : to confirm impact on intermediate biomarker,
 - → second : long term follow-up with health outcomes is necessary

Confounding factors

Uncontrolled confounding is a major threat to validity in ED research

- To fully explain an association between E and D, the confounders must be moderately to strongly correlated with E or D) [Christensen 2015]
- But also, the distribution of the confounder must be very different between the exposed group and unexposed group to substantially change the effect estimate
- These conditions are rarely found : [Christensen 2015]
 - → e.g. for studies of occupational exposures and lung cancer risks the adjustment for tobacco => impact on the RRs was rather moderate $\rightarrow \approx \downarrow 0,3$
 - → researchers concluded : if RR> 1,5 or higher then RR unlikely to be entirely explained by uncontrolled confounding

Concerns about compared groups (exposed, unexposed)

- Exposure to EDs vary according to age, sexe, ethnic group, socioeconomicstatus, lifestyle ...
- e.g. study from USA to investigate the association between 179 toxicants and the poverty income ratio (PIR) → PIR was associated with 18 chemicals ^[Tyrrell 2013]

• Important to account for potential differences in these factors between groups to compare (exposed, unexposed)

Confounding factors

Concerns about co-exposures :

- co-exposures with moderate correlation \rightarrow as potential confounders
- [Swan 2005] **Phtalate Hypospadias** can be isolated statistically (multi-variable regression, factor analysis ...) Choix 2012] [N'Tumba 2012]
- If highly correlated ($\rho > 0.8$) may be difficult to analytically disentangle individual exposure effects

 In this situation, confounding may be difficult to address with statistical analysis for a given study

- Given this complexy, the evidence among epidemiology studies in humans is often inconsistent
- But there are :
 - many uncertainties surrounding the effects of EDs on human health
 - many limitations of extrapolation from in-vitro and in-vivo experimental findings to the human situation
- Despite methodological challenges, the conduct of epidemiological studies remains an essentiel component of the evaluation of possible human effects of EDs
- Key methodological issues must be known to develop new studies and raise the level of scientific evidence (new concepts ? new tools ? ...)

Notre métier, rendre le vôtre plus sûr www.inrs.fr