
Mesurer & réduire l’empreinte
des services logiciels

@RomainROUVOY

project-team

• Software engineering ⇢⇠ Distributed systems
• Smart Software Systems at Large

• Self-repair & self-optimization
• Focus on security & energy

• 40 members :
• 11 staff members
• 7 postdocs
• 17 PhD students
• 5 engineers

https://team.inria.fr/spirals

Under the (cl)hood….

Pooling

Under the (cl)hood….

Pooling Virtualization

What about software
sustainability??

074 0 -74 5 9 /16 / $ 3 3 . 0 0 © 2 016 I E E E MAY/JUNE 2016 | IEEE SOFTWARE 83

FEATURE: GREEN SOFTWARE

feature image here

What Do
Programmers
Know about
Software Energy
Consumption?
Candy Pang and Abram Hindle, University of Alberta

Bram Adams, Polytechnique Montréal

Ahmed E. Hassan, Queen’s University

// A survey revealed that programmers

had limited knowledge of energy ef! ciency,

lacked knowledge of the best practices to

reduce software energy consumption, and

were unsure about how software consumes

energy. These results highlight the need

for training on energy consumption. //

WITH THE rising popularity of mo-
bile computing and the advent of
large-scale cloud deployments, the
nonfunctional requirement of mini-
mizing software energy consumption

has become a concern. For mobile
devices, energy consumption affects
battery life and limits device use.
For datacenters, energy consumption
limits the number of machines that

can be run and cooled. According to
an IDC white paper, “Today, for ev-
ery $1.00 spent on new hardware, an
additional $0.50 is spent on power
and cooling, more than double the
amount of ! ve years ago. Datacenters
at their power and cooling thresholds
are unable to support new server de-
ployments, a fact that severely limits
the expansion of IT resources.”1

Unfortunately, the demand for
energy-ef! cient computing isn’t re-
" ected in the education, training,
or knowledge of programmers. Pro-
grammer training often focuses on
methodologies such as object-oriented
programming and nonfunctional re-
quirements such as performance.
Performance optimization is often
considered a substitute for energy
optimization because a faster system
likely consumes less energy. Although
this is a step in the right direction,
it’s insuf! cient and sometimes even
incorrect. For instance, parallel pro-
cessing might improve performance
by reducing calculation time. How-
ever, saving and restoring execution
context, scheduling threads, and los-
ing locality might end up consum-
ing more resources than sequential
processing.2

A previous analysis based on
energy-related questions on Stack-
Over" ow (http://stackover" ow.com)
showed that programmers had many
such questions but rarely got appro-
priate advice.3 To gain more tangi-
ble evidence of and concrete insight
into this problem, we surveyed pro-
grammers to gauge their knowledge
of software energy consumption
and ef! ciency. In particular, we ad-
dressed four questions. Are pro-
grammers aware of software energy
consumption? What do they know
about reducing it? What’s their level
of knowledge about it? What do they
think causes spikes in it?

FEATURE: GREEN SOFTWARE […] clients “care first and foremost
about speed of development, and
secondly about reasonable quality and
performance.”

These results show that these
programmers lacked knowledge of
how to accurately measure software
energy consumption.

“It’s more often the hardware rather
than the software that we are in-
terested in when we talk about en-
ergy consumption.”

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: GREEN SOFTWARE

over the past three years and recent
studies.5,8,9 Because these rankings
weren’t written in stone, they could
differ among speci! c hardware. We
were focusing on the consistency of
rankings across all respondents, in-
dependent of our expected rank-
ing. For desktop computers, only 1
respondent (1 percent) ranked the
components in our expected order.
For mobile devices, 12 respondents
(10 percent) ranked the components
in our expected order.

Using Spearman’s rank correla-
tion, we compared the respondents’
rankings with the expected rank-
ing. Generally, positive correlations
closer to 1 indicate stronger agree-
ment. If two rankings completely
match, their correlation is 1. If
they’re the inverse of each other, the
correlation is –1. If they’re unrelated,
a correlation near 0 is possible.

For desktop computers, the aver-
age correlation between the respon-
dents’ rankings and the expected
ranking was 0.48, indicating a me-
dium level of agreement. For mo-
bile devices, the average correlation
was 0.75, indicating a much stronger
agreement. The correlation’s standard

deviation was 0.25 for desktop com-
puters and 0.20 for mobile devices.

We also used Spearman’s rank
correlation to compare the respon-
dents’ rankings against each other
(interagreement), regardless of the
expected ranking. The correlation
was 0.3 for desktop computers
and 0.6 for mobile devices. So, re-
spondents had less internal agree-
ment on the energy consumption
of desktop computer components
than on the consumption of mobile-
device components. The correla-
tion’s standard deviation was 0.48
for desktop computers and 0.32
for mobile devices. This implies
that respondents agreed less about
the energy consumption of desktop
hardware components and more
about the energy consumption of
mobile-device components.

In other words, considerable dis-
agreement existed on whether a par-
ticular component consumed more
energy than another. One explana-
tion might be that different types of
programmers make different assump-
tions about the energy consumption
of hardware components. For ex-
ample, game programmers interact

mostly with the screen and GPU, so
they’re more likely to identify the
screen and GPU as the most energy-
consuming components. Program-
mers might blame the most obvious
component without understanding
how software consumes energy.

Furthermore, programmers might
focus overly on their users’ on-screen
experience—that is, on what’s observ-
able. The respondents overwhelm-
ingly ranked the screen and GPU as
the highest-energy-consuming com-
ponents: 82 respondents (67 per-
cent) for desktop computers and 95
respondents (78 percent) for mobile
devices. It is true, though, that the
screen and GPU often consume the
most energy on mobile devices.

The overall results show that
programmers lack consistent knowl-
edge regarding the energy consump-
tion relationship between software
and hardware. Nonetheless, pro-
grammers have more consistent
knowledge about software energy
consumption on mobile devices
than on desktop computers. So, it
might be more effective to develop
education and awareness programs
and guidelines for speci! c domains
(for example, mobile devices and
gaming).

Programmers Are
Unaware of Software
Energy Consumption’s Causes
Gustavo Pinto and his colleagues
mined StackOver" ow data to iden-
tify seven causes of unnecessary
software energy consumption:3

• unnecessary resource use,
• faulty GPS behavior,
• background activities,
• excessive synchronization,
• background wallpapers,
• advertisements, and
• high GPU use.

No
 o

f p
ar

tic
ip

an
ts

12
14
16
18
20

10
8
6
4
2
0

Bet
ter

alg
orit

hm

Les
s co

mput
atio

n

Impro
ve

net
work

 acc
ess

Bet
ter

I/O
 acc

ess Sle
ep

Impro
ve

gra
phi

c ha
ndl

ing

Avo
id p

ull
or p

oll

Tes
t an

d im
pro

ve

Impro
ve

cac
hin

g

Bet
ter

har
dware

Impro
ve

multi
thre

adi
ng

Tas
k b

und
ling

Avo
id s

ens
or

Les
s us

er i
nte

rac
tion

Par
alle

lism

Virt
ual

iza
tion

User
 na

tive
 cod

e

FIGURE 1. Respondents’ responses regarding ways to improve software energy
ef! ciency. The respondents’ answers varied widely, indicating the need for increased
education on software energy consumption and ef! ciency.

http://doi.org/10.1109/MS.2015.83

OnReducing the Energy Consumption of So�ware:
FromHurdles to Requirements

Zakaria Ournani
Orange Labs/ Inria / Univ. Lille

zakaria.ournani@inria.fr

Romain Rouvoy
Univ. Lille / Inria / IUF

romain.rouvoy@univ-lille.fr

Pierre Rust
Orange Labs

pierre.rust@orange.com

Joel Penhoat
Orange Labs

joel.penhoat@orange.com

ABSTRACT
Background.As software took control over hardware in many do-
mains, the question of the energy footprint induced by the software
is becoming critical for our society, as the resources powering the
underlying infrastructure are �nite. Yet, beyond this growing inter-
est, energy consumption remains a di�cult concept to master for
a developer.
Aims. The purpose of this study is to better understand the root
causes that prevent the issue of software energy consumption to be
more widely considered by developers and companies.
Method. To investigate this issue, this paper reports on a qualita-
tive study we conducted in an industrial context. We applied an
in-depth analysis of the interviews of 10 experienced developers and
summarized a set of implications.
Results.We argue that our study delivers i) insightful feedback on
how green software design is considered among the interviewed
developers and ii) a set of�ndings to build helpful tools,motivate fur-
ther research, andestablishbetter development strategies topromote
green software design.
Conclusion. This paper covers an industrial case study of develop-
ers’ awarenessof green softwaredesignandhowtopromote itwithin
the company. While it might not be generalizable for any company,
we believe our results deliver a common body of knowledge with
implications to be considered for similar cases and further researches.

ACMReference Format:
Zakaria Ournani, Romain Rouvoy, Pierre Rust, and Joel Penhoat. 2020. On Re-
ducing the Energy Consumption of Software: FromHurdles to Requirements.
In ESEM ’20: ACM / IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM) (ESEM ’20), October 8–9, 2020, Bari, Italy.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3382494.3410678

1 INTRODUCTION
The last decade witnessed several attempts to consider green soft-
ware design as a core development concern to improve the en-
ergy e�ciency of software systems at large [2, 3, 18, 23, 26]. How-
ever, despite previous studies that have contributed to establish
guidelines and tools to analyze and reduce the energy consump-
tion [1, 7, 12, 16, 17, 25, 32], these contributions fail to be adopted by
practitioners till date [14, 28].

Concretely, both quantitative and qualitative studies [22, 28, 31]
previouslysurveyeddevelopers toestablishassumptionsaboutdevel-
opers’ knowledge of green software design. These studies highlight
that developers might be aware of software energy consumption

problems, buthaveavery limitedknowledgeonhowto reduce theen-
ergy footprint of their software product. For example, Pinto et al. [31]
mentioned collecting "vague" answers from developers when asked
about how to dealwith software energy consumption. Fang et al. [28]
reported that, among 100 developers, a small portion are aware of
the primary sources of software energy consumption. Only 10% of
the participants try tomeasure the energy consumption of their soft-
ware project, while less than 20% take energy into account in the�rst
place. Moreover, the empirical study of Manotas et al. [22] reported
that energy requirements are oftenmore desires than speci�c targets.
They highlight that developers believe they miss accurate intuitions
about the energy usage of their code, and that energy concerns are
largely ignored during maintenance.

However, to the best of our knowledge, none of these studies
discuss i) the hurdles that prevent the broader adoption of green soft-
ware design, and ii) the developers’ requirements in terms of tooling
in an industrial context. But, we actually believe that both aspects
are critical issues to consider when aiming to reach an adoption of
such tools and methods among developers.
Contribution. This paper reports on a qualitative investigation on
software energy consumption considerations among experienced
developers of a large company. Concretely, we conducted interviews
with 10 senior/expert developers with the ambition to cover devel-
opers’ opinions, problems, and requirements to promote the green
software design in an industrial context. The key contributions of
this paper can, therefore, be summarized as:

(1) Providing a detailed understanding of the interviewed de-
velopers’ awareness and knowledge about green software
design,

(2) Identifying the main constraints and challenges that devel-
opers encounter in their daily development,

(3) Building speci�cations for the tooling that suits developers
expectations and experiences,

(4) Investigating the best ways to keep developers aware of soft-
ware energy consumption and promote it within a company,

(5) Identifying the exact role and responsibilities of the company
to promote green software design,

We believe it can o�er a common body of knowledge for researchers,
tools creators, companies, and developers, which can be considered
to improve awareness and adoption of green software design. For ex-
ample, our investigations highlight that adoption of green software
design in an industrial context requires not only a tight integration
of future tools into the software development lifecycle, but also the

http://doi.org/10.1109/MS.2015.83

http://powerapi.org

« These results show that these programmers
lacked knowledge of how to accurately measure
software energy consumption. »

Enabling power monitoring of software systems

http://powerapi.org/

Complex Hardware Arch
ite

ctu
res

Learning the CPU/DRAM power models from RAPL

Feature selection Regression model Online learning

SmartWatts

Monitoring the power consumption in real-time

SmartWatts

7.2. SD POWER MONITORING OF DISTRIBUTED SYSTEMS 81

Figure 7.13: Overview of the distributed search engine based on Elasticsearch.

Cluster
Master Slave

swarm

Slave Slave

swarm swarm swarm

weave weave weave weave

ES ES ES

ZK ZKZK

Slave

swarm

weave

ES

ZK

Slave

swarm

weave

ES

ZK

PDU PDU PDU PDU PDU PDU

Given the distributed nature of each of these services (Elasticsearch, ZooKeeper,
Swarm, Weave) and their entanglement due to respective dependencies, monitoring
and analyzing the power consumption of individual services is a particularly tedious task.
For example, Figure 7.14 illustrates the measurements reported by a PDU physically
connected to each node of the cluster (cf. Figure 7.13). In this experiment, we deploy
and sequentially stress each of these services by running the ZooKeeper benchmark12

and Yahoo! Cloud Serving Benchmark (YCSB)13 [Coo+10] while logging the power
consumption per node reported by the associated PDU. In particular, we run the update
heavy workload (Workload A) of YCSB, which has a mix of 50/50 reads and writes. An
application example is a session store recording recent actions. We complete the scenario
by killing sequentially each node of the cluster to observe the impact of nodes’ leaves on
the distributed system’s behavior.

If one can observe some variations in the power consumption of individual nodes, it
remains di�cult to analyze how this power consumption is distributed across services
(and not hosts). Furthermore, the heterogeneity of nodes (Intel Xeon W3520, Intel Core2
Q6600 and E8400), which is the rule in modern production systems, complicates the power
analysis due to the diversity in idle powers and CPU power features (HT, TB, etc.). One
therefore needs to manually tag the nodes to services and to ideally find the relevant
scenarios that isolate the execution of services in order to obtain a better insight on their
individual power consumption, in order to identify potential energy leaks or optimize the
whole system’s configuration.

We therefore introduce WattsKit as a solution to this key limitation and we propose
in particular to introduce a modular approach to monitor—in real-time—the power
consumption of all the services involved in a distributed system. In the following sections,
we first define and assess a service-level power model before revisiting the above case study
with our solution.

7.2.2 Enabling Service-Level Power Monitoring
To deliver service-level power measurements, our approach consists in tracking the power
consumption—per node—of the system processes associated to the services of a given
distributed system before aggregating these power measurements at the scale of the cluster.

12https://github.com/brownsys/zookeeper-benchmark
13https://research.yahoo.com/news/yahoo-cloud-serving-benchmark

82 CHAPTER 7. SAAS-LEVEL POWER ESTIMATION

Figure 7.14: Power consumption of the distributed search engine based on Elasticsearch.

��

��

��

��

��

���

���

� ��� ��� ��� ��� ��� ��� ���
��
�
��
��

�
���� ���

������
���� �

���� �
���� �

���� �
���� �

�
�
�
�
�
�

� ��� ��� ��� ��� ��� ��� ���

��
��
��
��
�
��
�

���� ���

���������
�������������

��������� ���������
����

Achieving such process-level power measurements therefore requires a software-defined
power meter as physical power meters are limited to the boundaries of nodes and hardware
components. For example, Intel’s RAPL fails to support this process-level granularity.14

Given the diversity of nodes and services, we further decide to extend the empirical
learning approach described in Section 4.1.1 for handling the service-level granularity.
Unlike the state-of-the-art in this domain [ZA12], our power model is service-agnostic,
which means that it can be used to track a wide diversity of distributed systems. Once
defined, this power model can therefore be used in production by WattsKit to monitor
the power consumption of the individual services composing the distributed system in
real-time.

To build this service-level power model, we adopt a bottom-up approach, therefore esti-
mating the power consumption of the instances of the services running on the hosting nodes,
before aggregating them into a service-level power model. Regarding network-intensive
workloads, we have previously demonstrated in [NRS15] that the power consumption
of network-intensive systems were dominated by the activity of the CPU spent on I/O
operations. By carefully modeling such I/O operations, we are able to deliver accurate
estimations of both memory-intensive and network-intensive workloads (cf. Section 6.1.1).

7.2.3 To a Service-Level Power Model
As described in Section 4.1.1, we are able to first model the power consumption of a
node as the sum of its idle power consumption and the consumptions of its individual
processes that are running on it. Given the power aware features already available in
modern processors, we demonstrate in Section 6.1.1 that our approach is able to accurately
estimate the dynamic power consumption of a node by using HPCs as input metrics for

14https://01.org/rapl-power-meter

WattsKit

7.2. SD POWER MONITORING OF DISTRIBUTED SYSTEMS 85

Figure 7.17: Monitoring the distribution of the power consumption of a distributed system
in a cluster.

�

�

��

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� ���

��
�
��
��

�

���� ���

���������
�������������

�����
�����

��������

�
�
�
�
�
�

� ��� ��� ��� ��� ��� ��� ���

��
��
��
��
�
��
�

���� ���

���������
�������������

��������� ���������
����

whole cluster) and constant along the execution. WattsKit can therefore be considered
as a relevant and cheap alternative to physical PDUs by providing an accurate and
fine-grained power meter for distributed services.

7.2.6 Analyzing the Power Consumption Per Service

By taking a closer look to individual services composing the distributed system, we can
also use WattsKit to zoom in the power consumption analysis of one of these services.
In particular, we report in Figure 7.18 on the distribution of the power consumption
of ZooKeeper across the nodes that we use for its deployment. This perspective on
ZooKeeper illustrates that the power consumption of such a service is distributed but
not equally balanced across the nodes. It also illustrates that the nodes 5 (zk1) and 4
(zk3) are running the two leader elections we identified towards the end of the scenario.

This granularity of power consumption understanding was particularly di�cult to
achieve using the coarse-grained power measurements (cf. Figure 7.14) and WattsKit

clearly advances the state-of-the-art with respect to that. In particular, we believe that
WattsKit can help software engineers to better understand the energy footprint of
their services once deployed in production, thus investigating potential optimizations in
order to minimize this impact. WattsKit can also benefit to system administrators by
investigating the impact of the configuration parameters exposed by the individual services
on the power consumption of the distributed system.

86 CHAPTER 7. SAAS-LEVEL POWER ESTIMATION

Figure 7.18: Analyzing the distribution of the power consumption of ZooKeeper across
nodes.

�

�

��

��

��

��

� ��� ��� ��� ��� ��� ��� ���

��
�
��
��

�

���� ���

��� ����� ��
��� ����� ��

��� ����� ��
��� ����� ��

��� ����� ��

�
�
�
�
�
�

� ��� ��� ��� ��� ��� ��� ���

��
��
��
��
�
��
�

���� ���

���������
�������������

��������� ���������
����

Summary
We presented a software-defined power meter, WattsKit, for monitoring the power
consumption of distributed systems. Such software power meters provide an accurate
alternative to dedicated hardware systems or embedded probes by estimating power
consumption in the large—i.e., at the granularity of services running across several nodes.
With WattsKit, we cross the boundaries of physical hosts and we provide an estimation
of the power consumption of applications spanning several (or virtual) machines.

Thanks to the learning approach we describe in Section 4.1.1, we extend the learned
power model for services that conciliates the heterogeneity and the complexity of modern
processors. This power model runs in WattsKit without hardware support or system al-
terations to accurately deliver power estimation. To the best of our knowledge, WattsKit

is the first approach to provide such an accurate service-level power model.
This power model is exploited within an instance of software-defined power meter,

which can be deployed across the nodes of a cluster to monitor the power consumption of
distributed systems in real-time. It is noteworthy that the proposed solution can be scaled to
multiple services and nodes, depending on the complexity of the environment. We evaluated
the applicability of WattsKit on 3 processor architectures, and we demonstrated that it
performs well for di�erent kinds of distributed protocols and algorithms we considered.

The code of WattsKit is freely available as open-source.18

18http://wattskit.powerapi.org

WattsKit

fast, with or without HW acceleration, etc.); it supports
containers whose workload and duration are not known
in advance (which is the general case for many applica-
tion domains) and must be learned at runtime; it supports
fluctuating workloads by adapting the number of servers
in the different generations, thus enabling energy-efficient
container scheduling in cloud data centers.

We have implemented our approach within the DOCKER
SWARM framework [6]. In particular, GENPACK includes a
comprehensive monitoring framework, as well as resource
management, container migration, and scheduling mech-
anisms. We have tested our system in a dedicated data
center with real-world traces from [7]. Our evaluation reveals
that GENPACK is up to 23% more energy-efficient than
SWARM’s built-in schedulers with a real-world trace.

This paper is organized as follows. We first introduce a
motivating scenario in §II and describe the overall archi-
tecture of GENPACK in §III. We present the monitoring
framework and the scheduling mechanisms respectively in
§IV and §V. We briefly discuss some implementation notes
in §VI and provide a comprehensive evaluation in §VII.
Finally, we review related work in §VIII and conclude in
§IX.

II. MOTIVATING SCENARIO

To illustrate and assess the benefits of proper container (or
VM)1 placement, we first illustrate the limitation of existing
scheduling policies on a simple scenario.

We define two types of containers: cpu-heavy containers
require 2 CPU cores and 1 GB of RAM, while mem-heavy
containers require only 1 CPU core but 2 GB of RAM. We
set up a cluster of nodes with 8 available cores and 8 GB
of RAM, running UBUNTU SERVER (v15.10) and DOCKER
(v1.10.1). The containers are managed by Docker Swarm
(v1.2.0) and they execute the STRESS-NG benchmark [8]
with a fixed total number of operations before terminating.

We deploy the containers in a dedicated cluster using four
placement strategies:

• spread places new containers on the node with the
least number of containers;

• binpack deploys containers on the same node until
its resources are totally exhausted before moving to the
next node;

• random dispatches containers at random;
• custom assigns containers to nodes so that they fit

into the least number of nodes, by taking into account
both the CPU and memory requirements.

For the sake of illustration, assume that a node can host
(i) 3 cpu-heavy, or (ii) 3 mem-heavy, or (iii) 2 cpu-heavy
and 2 mem-heavy containers of each type. In that case, a

1In the remaining of the paper, we primarily consider containers, which
are essentially lightweight VMs, and we use the two terms interchangeably.

mem

cpu
mem

cpu
mem-
heavy

Containers

Host

cpu

mem
1

1

2

2

3

3

1

1

2

2

3

3

3

4

1

1

2

2
3

4

cpu-
heavy

Placement

or or

1

1

5

5
2

2

3

3

4

4

6

6
7

7

8

8

9

9

10

10

1

1

5

5
2

2

3

3

4

4

6

6

7

7

8

8

9

9

10

10

1

1

5

5
2

2

3

3

4

4

6

6

7

7

8

8

9

9

10

10

11

11

12

12

11

11

12

12

Arrival order

1

1 2

3

3

2 4

4
5

5

6

6

7

7

8

8
9

9

10

10

11

11

12

12
cpu cpu cpu cpu mem mem cpu cpu mem mem mem mem

or …

spread

binpack

custom

?

Needs 4 nodes

All 12 containers
fit on 3 nodes

11

11

12

12
?

Needs 4 nodes

Figure 1. Placement of the containers with 3 scheduling strategies for a
given arrival order of containers, and assuming that a node can host 3 cpu-
heavy containers, or 3 mem-heavy containers, or 2 of each type (top). While
spread and binpack would require 4 nodes to schedule 12 containers,
custom requires only 3 (bottom).

scheduler that takes into account the nature of the workload
can obviously perform more efficient container placement.

Figure 1 shows a simple execution where the 12 contain-
ers (6 of each type) are registered in the following order:
4 cpu-heavy, 2 mem-heavy, 2 cpu-heavy, 4 mem-heavy.
Containers specify their resource needs and the system
performs placement accordingly without overbooking. A
possible container scheduling for the spread, binpack,
and custom strategies is shown in the bottom part of the
figure. As one can see, with 3 nodes available the first
two strategies can only schedule 10 containers, whereas the
custom strategy can place all of them on the 3 nodes.
Although very simplistic, this example illustrates the need
for scheduling strategies that are aware of the requirements
of the containers and the properties of the workloads.

In our actual experiment, we set the CPU load of contain-
ers to 20,000 “bogo” operations2 for each CPU core. This
corresponds to a total of 40, 000 and 20, 000 operations for
cpu-heavy and mem-heavy containers, respectively. Figure 2

2Fake operations that represent the unit of load of the benchmark.

GenPack

Node (nursery) Node (young) Node (old)

Node (master)

App14 App15
App16 App17

App19

Docker

Swarm
cAdvisor
BitWatts

Docker

Swarm
cAdvisor

Docker

Swarm

App18

Docker
InfluxDB GenPack

App4 App5
App9 App12

…
…

App1 App2
App3

…
…
…

…

Swarm

Figure 6. Overview of the monitoring support in GENPACK.

maintain a up-to-date cartography of available resources in
the cloud data center.

Profiling the resources consumption.: Upon deploy-
ment of a new container within the nursery generation,
GENPACK uses a CADVISOR daemon [3] to collect, aggre-
gate, process, and export metrics about running containers
every 30 seconds. In particular, CADVISOR logs resource
isolation parameters, historical resource usage, histograms
of complete historical resource usage, and network statistics
for each system container running on a DOCKER host.
Collected metrics are automatically exported towards an
INFLUXDB service [9] hosted on the master node (see Fig-
ure 6). INFLUXDB provides a time-series database to store
cluster-wide metrics per container, according to a specific
data retention policy (x minutes in GENPACK). Whenever
needed, GENPACK can therefore query INFLUXDB to learn
about the containers’ workloads.

Computing the container envelopes.: Periodically,
GENPACK picks the containers running in the nursery gen-
eration and triggers a scheduling phase for all of them. As
part of this phase, GENPACK queries INFLUXDB to convert
raw resource metrics into container envelopes, which will
be used by the scheduler to estimate the expected resource
consumption. In particular, for each resource, GENPACK
first computes the metrics distribution and extracts the 90 th

percentile value as a component of the resource envelope.
Then, GENPACK splits the set of containers into k clusters
by applying the k-means algorithm, which belongs to the
category of unsupervised learning approaches. For example,
we can set k = 4 to segregate 4 classes of CPU-, disk-,
network-, and memory-intensive workloads into 4 container
envelopes.

Finally, within each envelope, containers are ordered per
decreasing resource consumption score, which is computed

GenPack

Resources
consumption

Containers
clusters

InfluxDB
Containers

metrics

Containers
envelopes

Nodes
metrics

Nodes
ranking

K-means
clustering

Availability
ranking

90th
percentile

Containers
ranking

Containers
migration

cAdvisor
metrics

Swarm

Figure 7. Container and node profiling in GENPACK.

for each enclosed container i as:

scorei =

s

(
cpuiP
cpu

)2 + (
diskiP
disk

)2 + (
netiP
net

)2 + (
memiP
mem

)2 .

The resulting container envelopes are posted to the GEN-
PACK scheduler, which is in charge of placing the containers
among the nodes of the young generation.

Beyond this first scheduling phase, GENPACK keeps
monitoring and profiling the containers within the young
generation in order to consolidate the resource envelope prior
to a later migration in the old generation.

Maintaining the node availability cartography.: GEN-
PACK monitors the resource availability of nodes within
the young and old generations. For each generation, it uses
this information to rank the nodes according to resource
availability, least available nodes first, by computing for each
node j the availability level as:

availabilityj =
q

cpu2
ratio + disk2

ratio + net2ratio +mem2
ratio ,

which corresponds to the norm of the resource vec-
tor ~rj = (cpuratio diskratio netratio memratio) that
GENPACK extracts from INFLUXDB. This ranking of nodes
will then be used by the scheduler to find the first fitting
node to host a container, ultimately minimizing the number
of hosts to be used—i.e., that need to be powered up.

V. CONTAINER SCHEDULING

Once the container profiles are identified and the as-
sociated resource envelopes have been computed by the
monitoring module of GENPACK, the scheduling module
builds on these resources estimations to identify the best
fitting node for each of the container executing in the nursery
generation.

More specifically, Algorithm 1 describes the scheduling
strategy applied by GENPACK to migrate a set of profiled
containers at runtime. The scheduling phase is triggered for
a given set of container envelopes and available nodes.
The algorithm starts by homogeneously blending the con-
tent (i.e., container descriptions) of the envelopes (line 2
and lines 17–31) to increase of the diversity of containers
per node. From there, it iterates over this ordered set of
containers to be scheduled (line 5) and picks the first
node n among the ordered list of available nodes (as

Node (nursery) Node (young) Node (old)

Node (master)

App14 App15
App16 App17

App19

Docker

Swarm
cAdvisor
BitWatts

Docker

Swarm
cAdvisor

Docker

Swarm

App18

Docker
InfluxDB GenPack

App4 App5
App9 App12

…
…

App1 App2
App3

…
…
…

…

Swarm

Figure 6. Overview of the monitoring support in GENPACK.

maintain a up-to-date cartography of available resources in
the cloud data center.

Profiling the resources consumption.: Upon deploy-
ment of a new container within the nursery generation,
GENPACK uses a CADVISOR daemon [3] to collect, aggre-
gate, process, and export metrics about running containers
every 30 seconds. In particular, CADVISOR logs resource
isolation parameters, historical resource usage, histograms
of complete historical resource usage, and network statistics
for each system container running on a DOCKER host.
Collected metrics are automatically exported towards an
INFLUXDB service [9] hosted on the master node (see Fig-
ure 6). INFLUXDB provides a time-series database to store
cluster-wide metrics per container, according to a specific
data retention policy (x minutes in GENPACK). Whenever
needed, GENPACK can therefore query INFLUXDB to learn
about the containers’ workloads.

Computing the container envelopes.: Periodically,
GENPACK picks the containers running in the nursery gen-
eration and triggers a scheduling phase for all of them. As
part of this phase, GENPACK queries INFLUXDB to convert
raw resource metrics into container envelopes, which will
be used by the scheduler to estimate the expected resource
consumption. In particular, for each resource, GENPACK
first computes the metrics distribution and extracts the 90 th

percentile value as a component of the resource envelope.
Then, GENPACK splits the set of containers into k clusters
by applying the k-means algorithm, which belongs to the
category of unsupervised learning approaches. For example,
we can set k = 4 to segregate 4 classes of CPU-, disk-,
network-, and memory-intensive workloads into 4 container
envelopes.

Finally, within each envelope, containers are ordered per
decreasing resource consumption score, which is computed

GenPack

Resources
consumption

Containers
clusters

InfluxDB
Containers

metrics

Containers
envelopes

Nodes
metrics

Nodes
ranking

K-means
clustering

Availability
ranking

90th
percentile

Containers
ranking

Containers
migration

cAdvisor
metrics

Swarm

Figure 7. Container and node profiling in GENPACK.

for each enclosed container i as:

scorei =

s

(
cpuiP
cpu

)2 + (
diskiP
disk

)2 + (
netiP
net

)2 + (
memiP
mem

)2 .

The resulting container envelopes are posted to the GEN-
PACK scheduler, which is in charge of placing the containers
among the nodes of the young generation.

Beyond this first scheduling phase, GENPACK keeps
monitoring and profiling the containers within the young
generation in order to consolidate the resource envelope prior
to a later migration in the old generation.

Maintaining the node availability cartography.: GEN-
PACK monitors the resource availability of nodes within
the young and old generations. For each generation, it uses
this information to rank the nodes according to resource
availability, least available nodes first, by computing for each
node j the availability level as:

availabilityj =
q

cpu2
ratio + disk2

ratio + net2ratio +mem2
ratio ,

which corresponds to the norm of the resource vec-
tor ~rj = (cpuratio diskratio netratio memratio) that
GENPACK extracts from INFLUXDB. This ranking of nodes
will then be used by the scheduler to find the first fitting
node to host a container, ultimately minimizing the number
of hosts to be used—i.e., that need to be powered up.

V. CONTAINER SCHEDULING

Once the container profiles are identified and the as-
sociated resource envelopes have been computed by the
monitoring module of GENPACK, the scheduling module
builds on these resources estimations to identify the best
fitting node for each of the container executing in the nursery
generation.

More specifically, Algorithm 1 describes the scheduling
strategy applied by GENPACK to migrate a set of profiled
containers at runtime. The scheduling phase is triggered for
a given set of container envelopes and available nodes.
The algorithm starts by homogeneously blending the con-
tent (i.e., container descriptions) of the envelopes (line 2
and lines 17–31) to increase of the diversity of containers
per node. From there, it iterates over this ordered set of
containers to be scheduled (line 5) and picks the first
node n among the ordered list of available nodes (as

T
o

ta
l c

o
n

ta
in

e
rs

 p
e

r
g

e
n

.

Trace Replay Time

nursery young old

 0

 5

 10

 15

 20

 25

 30

 35

0 30m 1h 1h30m 2h

Figure 11. Migration of containers between generations.

A
ct

iv
e

 h
o

st
s

p
e

r
g

e
n

.

Trace Replay Time

nursery young old

 0

 1

 2

 3

 4

 5

0 30m 1h 1h30m 2h

Figure 12. Active hosts per generations.

number of active hosts for each generation, as shown in
Figure 12. The sampled Borg trace triggers 131 migrations
from the nursery to the young and 50 from the young to
the old generation. These results partially derive from the
chosen configuration of monitoring periods. We postpone to
future work a full sensibility analysis of these parameters
with respect to the Borg trace.

While performing these experiments, we observe differ-
ent replay timings—i.e., the time required to completely
inject the Borg trace in our cluster—between the scheduling
strategies under test. Given the ideal duration of 1 hour,
the random strategy completes in 1h19m54s, spread in
1h02m42s, binpack in 2h22m5s and finally the GENPACK
strategy in 2h37m42s. These differences can be explained
by the different load on the DOCKER daemon running on
the host VMs and in general the ability to load balance
the containers across the hosts and VMs. It is important to
stress that these results correspond to the costs of injecting
the Borg trace with our prototype, but do not directly
reflect the system costs of scheduling in real conditions. In
particular, as we show in the following Section VII-D, the
four strategies are equivalent with respect to job completion
times.

D. Job completion time
We compare the observed job completion time when using

the default SWARM strategies against the GENPACK strategy.
Figure 13 shows that our approach does not impact nega-
tively the executing time of the jobs. The tested strategies
result in the same long tail of few longer jobs as well as the
same inflection point for the 90th percentile. Instead, the

 0

 20

 40

 60

 80

 100

0 10m 20m 30m

C
D

F
 (

%
)

Job Duration

Google Borg Trace - Job Completion Time

random
spread

binpack
genpack

Figure 13. Distribution (CDF) of job completion times.

4 strategies produce the same job completion distribution,
and thus offer the same experience to the end-users of a
GENPACK cluster. Given the reported job completion times,
we can conclude that GENPACK does not over-commit
the cluster resources and rather offers a resource-efficient
scheduling approach.

E. Energy impact

We demonstrate the interest of adopting the GENPACK
strategy for a cloud data center by comparing its energy im-
pact to the default SWARM strategies. We rely on BITWATTS
probes to continuously report on the container’s and node’s
power consumption. Figure 14 shows our results. We present
the normalized results against the spread baseline. While
the binpack strategy saves up 9% of energy compared to
spread default built-in strategy, GENPACK outperforms the
existing strategies by saving 23% of the cluster consump-
tion. These impressive results are due to the capability of
GENPACK of i) packing efficiently system containers onto
a reduced number of nodes per generation and ii) turning
off unused nodes in each of the generations. This result
suggests that the GENPACK approach can lead to sensible
savings for cloud data centers. In particular, our evaluation
based on real-world traces considers a large diversity of jobs’
durations and profiles as well as incoming workloads, even
though we could not inject the full Google Borg Trace.

We can also observe that the deployment of additional
containers for monitoring the resource consumptions and
computing the container envelopes does not penalize the
power usage efficiency of GENPACK. We can therefore
conclude that GENPACK can achieve the same performances
as existing scheduling strategies of DOCKER SWARM, but at
a drastically reduced cost.

VIII. RELATED WORK

Resource management and scheduling is an important
topic. Many researchers have addressed various aspects of
scheduling resources during the last decades. Scheduling has
been addressed in the context of GRID computing [19],
distributed systems [20], HPC [21], batch processing [22],
MapReduce [23], and more recently in the context of
VM [24] and container scheduling [25] in large clusters.

0

20%

40%

60%

80%

100%

spread random binpack genpack

-4%-4%
-9%-9%

-23%-23%

N
o
rm

a
liz

e
d
 E

n
e
rg

y
(J

o
u
le

s)

Power Consumption (1 Hour of Borg Trace)

Figure 14. Normalized energy consumption.

Distributed job schedulers like the CONDOR sched-
uler [20] performs a match making between a job waiting to
run and the machines available to run jobs. Hence, each job
explicitly describes its resource requirements and also a rank
expression that permits the scheduler to select the machine
that is most suited to run this job. Also, the resources of a
machine have to be explicitly described. In GENPACK, we
avoid the need to describe jobs and machines by performing
an automatic profiling of the containers and nodes (cf.
Section IV).

The OPENSTACK NOVA scheduler does not consider CPU
load for the assignment of VMs [24]. The scheduling in
OPENSTACK, no matter the selected strategy, is rather based
on statically defined RAM and CPU size of the VM, known
as flavors [24]. In our experience, the simple round-robin
scheduler results in many cases in situations where all hosts
run some VMs and none of the hosts can be switched off
to reduce the energy consumption (cf. Section II).

OPTSCHED [26] compares the energy implications of a
round robin scheduler, a first fit scheduler, and an optimized
scheduler that knows the run time of (some of) the VMs
upon scheduling. Knowing the run times before starting a
VM helps reduce the total energy consumed by a cluster.
In GENPACK, however, run times are not known a priori
and GENPACK is able to automatically learn the profile that
is used by the scheduler along generations to improve the
energy efficiency of the cluster (cf. Section VII).

YARN [23] is a two-level scheduler that can handle
multiple workloads on the same cluster. It is request-based
and supports locality of scheduling decisions such that jobs
can, for example, access data on local disks to avoid remote
accesses via the network. Nonetheless, the scheduling in
YARN implements a strategy close to the spread strategy of
DOCKER SWARM, thus suffering from the same limitations
in terms of power usage efficiency.

Google developed a series of container management sys-
tems during the last 10 years [25]: BORG, OMEGA, and
more recently KUBERNETES. Initially, Google started with
a centralized container management system called BORG,
which remains the main system in use by Google [7].
OMEGA is based on the lessons learned from BORG and
has a principled architecture that includes a centralized
transactional store and an optimistic concurrency control.

In particular, the OMEGA architecture supports multiple
concurrent schedulers. Finally, KUBERNETES is an open
source container system that focuses on simplifying the task
of application developers and has less focus on maximizing
the utilization of clusters—which is the focus of OMEGA
and BORG. Compared to GENPACK, all these approaches
does not incorporate the concept of generations within the
cluster to automatically learn about the container profiles at
runtime.

DOCKER SWARM is very similar to KUBERNETES in
that it aims to support cloud native applications. SWARM
permits users to define applications consisting of a set of
containers. The focus is on simplifying the typical tasks of
the application developers like load balancing, elasticity, and
high availability. Unlike GENPACK, the main goal of Swarm
is not on ensuring a high utilization of a compute cluster,
but this paper demonstrates how we succeed to extend it in
order to address this concern.

IX. CONCLUSION

Efficient VM or container scheduling is particularly crit-
ical in cloud data centers to not only provide good perfor-
mance, but also minimize the hardware resource required for
running concurrent applications. This can, in turn, reduce the
costs of operating a cloud infrastructure and, importantly,
reduce the associated energy footprint. In particular, when
efficiently packing containers on physical hosts, one can save
significant amounts of energy by turning off unused servers.

In this paper, we propose GENPACK, a new scheduler
for containers that borrows ideas from generational garbage
collectors. An original feature of GENPACK is that it does
not assume the properties of the containers and workloads to
be known in advance. It relies instead on runtime monitoring
to observe the resource usage of containers while in the
“nursery”. Containers are then run in a young generation
of servers, which hold short-running jobs and experience
relatively high turnaround. This collection of servers can
also be elastically expanded or shrunk to quickly adapt
to the demand. Long-running jobs are migrated to the old
generation, which is composed of more stable and energy-
efficient servers. The containers in the old generation run for
a long time and typically experience relatively even load,
hence they can be packed in a very efficient way on the
servers without need for frequent migrations.

We have implemented GENPACK in the context of
DOCKER SWARM and evaluated it using a real-world trace.
Our comparison against SWARM’s built-in schedulers shows
that GENPACK does not add noticeable overheads while
providing more efficient container packing, which can result
in important energy savings.

Our perspectives for GENPACK includes a careful sen-
sitivity analysis of key parameters like the k-means value
or the scheduling period. We also plan to evaluate the
performances of GENPACK in a long-running deployment

GenPack

Energy profiling with JouleHunter

https://pypi.org/project/joulehunter/

https://pypi.org/project/joulehunter/

Z. Ournani, R. Rouvoy, P. Rust, J. Penhoat. Tales from the Code #1: The Effective Impact of Code Refactorings on
Software Energy Consumption. 16th International Conference on Software Technologies (ICSOFT), July 2021.

https://commons.wikimedia.org/wiki/File:Pyramide_khephren.jpg

Energy / environment footprint

In
ef

fic
ie

nt
/

w
as

te
d

re
so

ur
ce

s

https://commons.wikimedia.org/wiki/File:Pyramide_khephren.jpg

Take away

• ICT energy consumption will keep growing at et
• More and more digital services (no matter the domain)

• Hardware keeps improving energy efficiency
• But hardware keeps being driven by software

• Computing resources are going to be limited
• One really need to better control computations

• Needs to work on all the layers of an infrastructure
• Each layer = a software to optimize

The Green Side of the Force

Pascal Felber, Pierre Rust, Bo Zhang, Aurélien Havet, Mascha Kurpicz, Valerio Schiavoni, Anita Sobe, Christof Fetzer,
Yahya Al-Dhuraibi, Fawaz Paraiso, Georges-Aaron Randrianaina, Antoine Huyghes, Arthur D’Azémar, Jordan Bouchoucha,
Maxime Colmant, Loïc Huertas, Aurélien Bourdon…

Chakib Belgaid

Zakaria Ournani

Lionel Seinturier

Thibault Simon Emile Cadorel

Daniel Romero

Adel Noureddine

Pierre JacquetGuillaume Fieni

Lauric Desauw

1. Comparing the Energy Consumption of Java I/O Libraries and Methods. Z. Ournani, R. Rouvoy, P. Rust, J. Penhoat:
ICSME’21.

2. Evaluating the Impact of Java Virtual Machines on Energy Consumption. Z. Ournani, M.C. Belgaid, R. Rouvoy, P. Rust,
J. Penhoat: ESEM’21.

3. On Reducing the Energy Consumption of Software Product Lines. É. Guégain, C. Quinton, R. Rouvoy: SPLC’21.
4. Tales from the Code #1: The Effective Impact of Code Refactorings on Software Energy Consumption. Z. Ournani, R.

Rouvoy, P. Rust, J. Penhoat: ICSOFT’21.
5. SelfWatts: On-the-fly Selection of Performance Events to Optimize Software-defined Power Meters. G. Fieni, R.

Rouvoy, L. Seinturier: CCGrid’21.
6. SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers. G. Fieni, R. Rouvoy, L. Seinturier:

CCGrid’20.
7. On Reducing the Energy Consumption of Software: From Hurdles to Requirements. Z. Ournani, R. Rouvoy, P. Rust, J.

Penhoat: ESEM’20.
8. Power Budgeting of Big Data Applications in Container-based Clusters. J.Enes, G. Fieni, R. Expósito, R. Rouvoy, J.

Tourino: CLUSTER’20.
9. Taming Energy Consumption Variations in Systems Benchmarking. Z. Ournani, M. C. Belgaid, R. Rouvoy, P. Rust, J.

Penhoat, L. Seinturier. ICPE’20.
10. The next 700 CPU power models. M. Colmant, R.Rouvoy, M. Kurpicz, A. Sobe, P. Felber, L. Seinturier: Journal of Systems

and Software 144: 382-396 (2018)
11. WattsKit: Software-Defined Power Monitoring of Distributed Systems. M. Colmant, P. Felber, R. Rouvoy, L. Seinturier:

CCGrid’17
12. GENPACK: A Generational Scheduler for Cloud Data Centers. A. Havet, A. Schiavoni, P. Felber, M. Colmant, R. Rouvoy,

C. Fetzer: IC2E’17
13. CLOUDGC: Recycling Idle Virtual Machines in the Cloud. B. Zhang, Y. Al-Dhuraibi, R. Rouvoy, F. Paraiso, L. Seinturier:

IC2E’17
14. Process-level power estimation in VM-based systems. M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, A. Sobe:

EuroSys’15
15. Unit testing of energy consumption of software libraries. A. Noureddine, R. Rouvoy, L. Seinturier: SAC’14
16. A preliminary study of the impact of software engineering on GreenIT. A. Noureddine, A. Bourdon, R. Rouvoy,

L. Seinturier: GREENS’12
17. Runtime monitoring of software energy hotspots. A. Noureddine, A. Bourdon, R. Rouvoy, L. Seinturier: ASE’12

L. A. Barroso, U. Hölzle: The Case for Energy-Proportional Computing. IEEE Computer 40(12) 2007 CloudGC

Taming Energy Consumption Variations
in Systems Benchmarking

Zakaria Ournani
Orange Labs/ Inria / Univ. Lille

zakaria.ournani@inria.fr

Mohammed Chakib Belgaid
Inria / Univ. Lille

mohammed-chakib.belgaid@inria.fr

Romain Rouvoy
Univ. Lille / Inria / IUF
romain.rouvoy@inria.fr

Pierre Rust
Orange Labs

pierre.rust@orange.com

Joel Penhoat
Orange Labs

joel.penhoat@orange.com

Lionel Seinturier
Univ. Lille / Inria

lionel.seinturier@inria.fr

ABSTRACT
The past decade witnessed the inclusion of power measurements
to evaluate the energy e�ciency of software systems, thus making
energy a prime indicator along with performance. Nevertheless,
measuring the energy consumption of a software system remains
a tedious task for practitioners. In particular, the energy measure-
ment process may be subject to a lot of variations that hinder
the relevance of potential comparisons. While the state of the art
mostly acknowledged the impact of hardware factors (chip printing
process, CPU temperature), this paper investigates the impact of
controllable factors on these variations. More speci�cally, we con-
duct an empirical study of multiple controllable parameters that
one can easily tune to tame the energy consumption variations
when benchmarking software systems.

To better understand the causes of such variations, we ran more
than a 1, 000 experiments on more than 100 nodes with di�erent
workloads and con�gurations. The main factors we studied encom-
pass: experimental protocol, CPU features (C-states, Turbo Boost,
core pinning) and generations, as well as the operating system.
Our experiments showed that, for some workloads, it is possible to
tighten the energy variation by up to 30⇥. Finally, we summarize
our results as guidelines to tame energy consumption variations.We
argue that the guidelines we deliver are the minimal requirements
to be considered prior to any energy e�ciency evaluation.

CCS CONCEPTS
•Hardware→ Power and energy; Power estimation and optimiza-
tion; Platform power issue; Enterprise level and data centers power
issues.

KEYWORDS
Energy Variations; System Benchmarking; Energy Consumption;
Energy E�ciency

1 INTRODUCTION
To conduct robust evaluations, practitioners often try to ensure
reproducible environmental conditions in order to properly bench-
mark their software systems. In this area, reproducibility might
be achieved by ensuring the same execution settings of physical
nodes, virtual machines, clusters or cloud environments. Recently,
the research community has been investigating typical "crimes" in
systems benchmarking and established guidelines for conducting
robust and reproducible evaluations [23].

Figure 1: CPU energy variation for the benchmark CG

In theory, using identical CPU, samememory con�guration, simi-
lar storage and networking capabilities, should favour reproducible
experiments. However, when it comes to measuring the energy
consumption of a system, applying acknowledged guidelines and
carefully repeating the same benchmark can nonetheless lead to dif-
ferent energy footprints not only on homogeneous nodes, but even
within a single node. This di�erence—also called energy variation
(EV)—has become a serious threat to the accuracy of experimental
evaluations.

Figure 1 illustrates this variation problem as a violin plot of
20 executions of the benchmark Conjugate Gradient (CG) taken
from the NAS Parallel Benchmarks (NBP) suite [3], on 4 nodes of
an homogeneous cluster (the cluster Dahu described in Table 1)
at 50 % workload. One can observe a large variation of the energy
consumption, not only among homogeneous nodes, but also at the
scale of a single node, reaching up to 25 % in this example.

Most of the state of the art has been investigating this power con-
sumption issue from a hardware perspective [5, 22] and reported
that the causes of such energy variations are CMOS manufacturing
process of transistors in a chip, di�erences in node assembly and
data center hot spots. Additionally, [13] described it as a combi-
nation of parameters, mentioning a list of candidate factors, such
as the thermal e�ect or the CPU frequency, but failing to deliver
a deeper analysis of these factors. Unfortunately, hardware fac-
tors can be hardly tuned to tame the energy variation that can be
observed in systems benchmarking. For example, managing the
CPU temperature or a server position in a cluster, are not actions

Phase 1 Phase 2 Phase 3 Phase 4
0

5

10

15

20

0 200 400 600
Time(s) − conf(1:1)

N
um

be
r o

f i
ns

ta
nc

es

(a) vCPU limitation of straight

Phase 1 Phase 2 Phase 3 Phase 4
0

30

60

90

120

0 1000 2000 3000
Time(s) − conf(16:1.5)

N
um

be
r o

f i
ns

ta
nc

es

(b) vRAM limitation of standard

Phase 1 Phase 2 Phase 3 Phase 4
0

50

100

150

0 1000 2000 3000 4000
Time(s) − conf(24:2)

N
um

be
r o

f i
ns

ta
nc

es

running
paused
interrupted

(c) vRAM limitation of over-commit

Fig. 1. Observation of the IaaS limitations on the number of VM instances that can be provisioned.

II. THE SKY IS NOT THE LIMIT

Cloud computing provides a model for enabling on-demand
access to a shared pool of computational resources, which can
be quickly provisioned and released upon needs. In the case
of Infrastructure-as-a-Service (IaaS), these resources take the
form of VMs, which can be created, suspended and deleted
by the end-user at any time. Beyond the control of a VM
lifecycle, some IaaS solutions, like OPENSTACK2, can also
control the CPU and memory consumption of VMs though
the definition of VM profiles, also known as flavors3 (e.g.,
tiny, small). Furthermore, the number of VM instances can
be constrained by the definition of quotas4, which limits the
amount of allocable resources for a given user. While quotas
can be used to guarantee that an end-user will not allocate more
VMs than allowed, the rest of this section will demonstrate
that a IaaS may also suffer from internal constraints that limits
its scalability, independently of user quotas.

To better understand such constraints, we run an experiment
on a vanilla installation of an OPENSTACK IaaS infrastruc-
ture (version 2015.1.4 Kilo). The hardware setup we use is
composed of 8 compute nodes, federating 22 CPU cores and
42.2 GB of memory. Each compute node runs Ubuntu (version
15.04) as the operating system, with QEMU (version 2.0.0)
as the default hypervisor. Our motivation scenario consists
in a synthetic workload that incrementally provisions new
VMs for a single user whose quotas is not constrained. Such
greedy scenario therefore starts by provisioning new tiny VM
instances as long as OPENSTACK allows it (Phase 1). Once
the maximum number of deployed VM instances is reached,
our script switches half of the running instances to the pause
state, before trying to provision some additional VM instances
(Phase 2). Once this step is completed, we interrupt the other
half of running VM instances and we try to provision some

2https://openstack.org
3http://docs.openstack.org/openstack-ops/content/flavors.html
4http://docs.openstack.org/openstack-ops/content/projects users.html

more VM instances, again (Phase 3). Finally, the scenario
concludes by deleting all the suspended VM instances and
allocates new VMs from there (Phase 4).

We report in Figure 1 on the results of executing this
experiment for three configurations of OPENSTACK (straight

(a), standard (b), and over-commit (c), whose details are
reported in Table I). The straight (a) configuration reflects
a bare-bone configuration that maps physical resources to
virtual ones. One can witness that the IaaS saturates when
the CPU limit is reached, as expected. The standard (b)
configuration is the default configuration of OPENSTACK and
maps 1 CPU core to 16 vCPUs and 1 GB of RAM to 1.5 GB
of vRAM. In theory, using the standard configuration, the
end-user could therefore expect to provision up to 352 tiny

VM instances (as each VM requires 1 vCPU and 0.5 GB of
vRAM). But, in practice, we observe that no more than 115
tiny VM instances can effectively be created by OPENSTACK,
due to the limited resources available. Indeed, in the case
of the standard configuration hosting exclusively tiny VMs,
352 (3521) vCPUs can be allocated, but the vRAM can only
support 118 instances (63.3�8⇥0.5

0.5 as illustrated in Figure 1b).
The maximum number of tiny VMs is therefore limited to
118 (min(3521 , 63.3�8⇥0.5

0.5) = 118). The subtraction of 8⇥ 0.5
in vRAM is due to the virtual memory reserved by compute
nodes—i.e., we use 8 compute nodes and each node requires
0.5 GB vRAM for running OPENSTACK.

TABLE I
OVERCOMMIT RATIOS USED AS CONFIGURATIONS.

configuration mapping vCPUs (total) vRAM (total in GB)
straight 1:1 22 ⇥ 1 = 22 42.2 ⇥ 1 = 42.2
standard 16:1.5 22 ⇥ 16 = 352 42.2 ⇥ 1.5 = 63.3
over-commit 24:2 22 ⇥ 24 = 528 42.2 ⇥ 2 = 84.4

By increasing the ratio of vCPUs and vRAM in the over-

commit (c) configuration, one can observe that the number
of deployed VM instances can be raised up to 156 (cf.
Figure 1c), but over-committing CPU and RAM resources

Phase 1 Phase 2 Phase 3

0.0

2.5

5.0

7.5

10.0

0 1000 2000 3000
Time (s)

Q
uo

ta
s

(m
em

)

VM1
VM2

VM3
VM4

VM5
VM6

VM7
VM8

VM9
VM10

VM11
VM12

VM13
VM14

VM15
VM16

VM17
VM18

VM19
VM20

VM21
VM22

Running Suspended

Recycled

[suspend]

[IP requested]
[resume]

[recycle]
[recycle]

Deleted
[delete]

[delete]

[delete]

[resume]

Fig. 3. Lifecycle of a VM instance in CLOUDGC.

B. Detecting Idle VM Instances
CLOUDGC builds on the assumption that not all the VM

instances are continuously used in a Cloud infrastructure.
Therefore, as part of the VM recycling process, CLOUDGC
aims at detecting VM instances that are considered as idle.
Idle VM instances are either VM instances that have been
explicitly suspended by the end-user (e.g., a VM in the paused
or interrupted state) or VM instances that have not been active
for a long period of time. CLOUDGC distinguishes between
explicit and implicit idle VM instances: the former is not
intended to be used by the end-user on a short-term basis,
while the latter might be triggered at any time. Nevertheless,
inspired by generational garbage collectors [22], we assume
that the longer a VM has been flagged as inactive in the past,
the longer it will still be in the future.

CLOUDGC therefore maintains two queues of VM instances:
the explicit queue and the implicit queue. To detect and track
idle VM instances, CLOUDGC periodically synchronizes the
list of deployed VM instances from the IaaS instance manager.
The list of suspended VM instances, ordered by interruption
date (oldest first), is used to generate the explicit queue. Then,
from the list of active VM instances, CLOUDGC queries the
IaaS monitoring service to filter out the instances whose CPU
activity has not exceeded a given threshold for a given duration
(the activity threshold and the duration are two configuration
parameters of CLOUDGC we use to tune the level of garbage
collection). The items from the implicit queue that are not in
this list are first removed, before inserting the items of the
list that are not in the queue. The output of this first phase
therefore delivers two lists of idle VM instances, ordered by
inactivity durations.

C. Recycling Idle VM Instances
As previously mentioned, unlike objects in garbage collected

languages, recycled VM instances may be recovered upon
request. Therefore, recycling VM instances does not only
consist in releasing the Cloud resources that are associated to
each of the instances, but it also requires to save the current
state of the instances in order to be able to recover them in a
similar state, if necessary. In CLOUDGC, the state of idle VM
instances is saved as a snapshot in the IaaS storage service.
If a snapshot of this VM is already stored in the IaaS, it is
automatically overridden by CLOUDGC if some activity has

been detected since the last version. CLOUDGC automatically
builds a snapshot of explicit idle instances when they are
suspended. Given that the activity of implicit idle instances is
not frozen, CLOUDGC can only build a snapshot of an implicit
idle instance on-demand—i.e., when the VM instances requires
to be recycled.

When CLOUDGC is requested to recycle VM instances, it
starts by recycling the explicit idle instances, before proceeding
with the implicit idle instances, if needed. In both cases,
CLOUDGC uses the IaaS instance manager to rebind the IP
address of the idle VM instance to a ghost instance, which acts
as a proxy to recover the VM upon request from a third party.
Upon completion of the VM snapshot, the instance is deleted
from the IaaS instance manager, thus effectively releasing
the associated resources. While this process can be applied to
recycle all the detected idle instances, CLOUDGC takes as input
the amount of resources to be released, based on the number
and the flavors of the new VM instances to be provisioned.
Thus, CLOUDGC only recycles the necessary idle instances to
allow the IaaS to provision the requested VM instances. If the
recycling process fails to release the requested resources, the
Cloud infrastructure can either reject the incoming provisioning
request, or trigger an elasticity service to provision some
additional compute nodes, thus increasing the capacity of the
IaaS.

D. Recovering Recycled VM Instances

CLOUDGC recycles idle VM instances to ease the de-
ployment of new VM instances. Nevertheless, recycled VM
instances can be triggered at any time, e.g. by requesting a
resource or a service of the ghost instance. In such a case,
CLOUDGC should be able to recover the associated instance in
the same state and configuration it was before being recycled,
before forwarding the incoming request. As part of this
recovery process, one can note that provisioning a recycled VM
instance may require CLOUDGC to recycle idle VM instances.
Therefore, the recovery process of CLOUDGC follows the
same workflow as for provisioning a new VM instance, but
loading automatically the snapshot from OPENSTACK Image
Service (Glance) and restoring the initial VM configuration
(e.g., rebinding the floating IP address).

Both recycling idle instances and recovering recycled in-
stances are not instant processes, taking from seconds to
minutes depending on the amount of resources to be recycled
and recovered. To prevent CLOUDGC from recycling VM
instances that are considered as critical (e.g., expected to react
as quickly as possible to incoming requests), a VM can be
pinned on the Cloud. Pinned VM instances are therefore made
invisible from the detection and recycling processes, no matter
their activity or their current state.

IV. IMPLEMENTATION DETAILS

This section dives into the details of the integration of
CLOUDGC into OPENSTACK. We considered OPENSTACK as
it is the de facto OSS standard for deploying a IaaS solution

NovaSwift

CeilometerGlance

monitors

monitors

VM

provisions

provides image for

recycles

CloudGC

store images in

Fig. 4. Integration of CLOUDGC in OPENSTACK.

in a private Cloud, which is representative of the environments
we target with CLOUDGC.

A. CloudGC Middleware Overview
Figure 4 depicts our integration of CLOUDGC in the

OPENSTACK IaaS. Among all the services deployed by
OPENSTACK6, CLOUDGC interacts more specifically with
Nova, Ceilometer, Glance, and Swift. CLOUDGC builds on
the standard APIs provided by each of these services to support
the VM recycling process. In particular, CLOUDGC uses Nova

to recycle idle VM instances and to recover recycled VM
instances (and their configuration), while Glance and Swift

provide the necessary support to automatically save and restore
the snapshots and configurations of recycled VMs, respectively.
Finally, the monitoring capability of Ceilometer is used by
CLOUDGC to analyze the activity of deployed VM instances.

Our solution is implemented in Python, thus benefiting from
the client libraries made available for each of these services.
By adopting this service-oriented architecture, CLOUDGC
therefore integrates seamlessly with OPENSTACK and the
implementation of the recycling process does not impact the
API of existing services nor the GUI provided by Horizon,
the administration console of OPENSTACK.

The architecture of CLOUDGC is structured in 3
components—Monitoring, Recycling and Recovery—which
we detail in the following sections.

B. Monitoring Component
The monitoring component is an active component defined by

CLOUDGC to periodically query Nova for the list of deployed
VM instances and to update two shared priority queues—i.e.,
the most idle VMs are enqueued first. Algorithm 1 summarizes
the behavior that is periodically executed by this monitoring
component (the period can be configured by CLOUDGC). As
mentioned in Section III-B, CLOUDGC distinguishes between
explicit and implicit idle VM instances in order to recycle
explicit VM instances in priority. The second level of priority
in CLOUDGC consists in recycling first the deployed VM
instances that have been idle for a while, thus ordering the
implicit queue by idleness. Finally, VM instances that are
pinned are ignored by the monitoring component and therefore
not considered as part of the recycling process.

6https://www.openstack.org/software

Algorithm 1 Monitoring behavior of CLOUDGC
1: global ExplicitQueue
2: global ImplicitQueue
3: procedure MONITORING(duration)
4: CLEAR(ExplicitQueue)
5: vms LIST(Nova, UNPINNED)
6: for vm 2 FILTER(vms, PAUSED|INTERRUPTED)

do
7: INSERT(ExplicitQueue, vm)
8: SNAPSHOT(Glance, vm)
9: end for

10: active FILTER(vms, RUNNING)
11: for idle 2 ImplicitQueue do
12: if not CONTAINS(active, idle) then
13: REMOVE(ImplicitQueue, idle)
14: end if
15: end for
16: for vm 2 running do
17: if IDLE(Ceilometer, active) > duration then
18: if not CONTAINS(ImplicitQueue, vm) then
19: INSERT(ImplicitQueue, vm)
20: end if
21: end if
22: end for
23: end procedure

C. Recycling Component
The recycling component is a passive component introduced

by CLOUDGC and triggered by Nova when it fails to
satisfy an incoming provisioning request. In that case, Nova

requests the recycling component to recycle some idle VM
instances in order to free a sufficient volume of resources to
satisfy the provisioning request. Algorithm 2 reports on the
implementation of this component, illustrating the recycling
priorities we introduced in CLOUDGC. If CLOUDGC succeeds
to recycle a sufficient amount of resources, Nova can retry to
provision the new VM instances. In case of failure, Nova can
reject the request or trigger some horizontal elasticity support
of OPENSTACK, which is out of the scope of this paper. To
reduce the recycling delay, the STORE, REBIND, and DELETE
operations save the instance configurations, rebind the VM
instances on the ghost instance, and delete all the selected
idle VMs at once. Although the operation SNAPSHOT appears
in Algorithm 2, this operation is automatically called by the
operation PAUSE as it is the case for explicit idle VM instances.

D. Recovery Component
The recovery component is in charge of handling incoming

requests on recycled VM instances. To do so, CLOUDGC binds
the floating IP of an idle VM instance to a ghost instance as
part of the recycling process (cf. Algorithm 2), so that the
recycled VM instances are still perceived as available from
outside the IaaS. Therefore, upon receiving an incoming request,
the ghost instance triggers the recovery function described
in Algorithm 3 and then forwards the incoming request—if

Algorithm 2 Recycling behavior of CLOUDGC
1: global ExplicitQueue
2: global ImplicitQueue
3: function RECYCLE(volume)
4: recycled ;
5: while AVAILABLE(Nova, recycled) < volume do
6: if not EMPTY(ExplicitQueue) then
7: vm GET(ExplicitQueue)
8: ADD(recycled, vm)
9: else if not EMPTY(ImplicitQueue) then

10: vm GET(ImplicitQueue)
11: ADD(recycled, vm)
12: PAUSE(Nova, vm)
13: SNAPSHOT(Glance, vm) . called by PAUSE
14: else
15: return FAILURE . lack of idle VMs
16: end if
17: end while
18: STORE(Swift, recycled)
19: REBIND(Recovery, recycled)
20: DELETE(Nova, recycled)
21: return SUCCESS . idle VMs recycled
22: end function

the provisioning process succeeds—or returns an error to the
end-user. Additionally, for the VM instances that need to
run periodically, CLOUDGC proposes a timer, which acts
as crontab, to request a recycled VM periodically. This
solution ensures that the periodic VM instances are always
being scheduled in the Cloud in order to complete their periodic
jobs. As already mentioned, the provisioning process may in
turn trigger the recycling process prior to provisioning the
requested VM instance, thus introducing an unpredictable
delay for processing the incoming request. While the cost
of recovering a recycled VM instance is only paid upon the
first incoming request, this weakness of CLOUDGC is further
mitigated by the support for pinned VM instances, which can
be kept active to deliver better response time when a VM
instance is considered as critical for the end-user.

Algorithm 3 Recovering behavior of CLOUDGC
1: function RECOVER(id)
2: image RETRIEVE(Glance, id)
3: config RETRIEVE(Swift, id)
4: vm PROVISION(Nova, image, config)
5: if vm = NULL then
6: return FAILURE . No more resource available
7: else
8: REBIND(Nova, vm) . Disabling the ghost
9: DELETE(Glance, id) . Freeing the storage

10: DELETE(Swift, id)
11: return SUCCESS
12: end if
13: end function

0

50

100

150

200

0 1000 2000 3000
Time(s) − conf(16:1.5)

N
um

be
r o

f i
ns

ta
nc

es

interrupted paused recycled running

Fig. 5. Provisioning VM instances with CLOUDGC.

In the next section, we demonstrate how the combination of
these three components in CLOUDGC performs for different
scenarios we considered and we also evaluate the overhead
introduced by this new middleware service of OPENSTACK.

V. EMPIRICAL VALIDATION

This section assesses CLOUDGC with regards to the ob-
jectives we defined in Section II—i.e., pushing the limits of
a Cloud infrastructure to stop wasting resources by keeping
provisioning new compute nodes when new VM instances
needs to be deployed. We therefore report on various scenarios
we considered to demonstrate the capability of CLOUDGC to
better manage the resources of OPENSTACK. In this section,
we use the same hardware infrastructure as in Section II and we
configure OPENSTACK to run with the standard configuration.
We configure CLOUDGC to consider as implicitly idle, the
VMs whose activity has not exceeded 7% of CPU share for
the past 10 minutes (cf. Section III-B).

A. The Sky Is The Limit
In this first experiment, we run a similar scenario to the

one described in Section II—i.e., we first saturated the Cloud
infrastructure, then suspend some VM instances before trying
to provision some additional instances. Figure 5 depicts the
results CLOUDGC achieves on such a scenario. In particular,
while the number of VM instances that can be provisioned in
a vanilla OPENSTACK is limited, as emphasized in Figure 1b,
CLOUDGC demonstrates its capacity to recycle the idle VM
instances to accept the provisioning of new VM instances
beyond the limits we previously observed. CLOUDGC recycles
in priority the VM instances that are explicitly paused or
interrupted in order to accommodate the incoming provisioning
requests.

For the sake of readability, Figure 6 zooms on a single
compute node of OPENSTACK to show how VM instances are

0.0

2.5

5.0

7.5

10.0

May 06 12:00 May 07 00:00 May 07 12:00 May 08 00:00 May 08 12:00 May 09 00:00 May 09 12:00
Time (s)

Q
uo

ta
s

(m
em

)

G1:VM1 G1:VM2 G2:VM3 G2:VM4 G3:VM5 Other VMs

Fig. 10. Supporting periodic VM instances in OPENSTACK with CLOUDGC.

completing the snapshot associated to an idle VM instance
whenever the monitoring component detects that its internal
state has changed.

C. Orchestrating Periodic Usages

Thanks to CLOUDGC, a single physical infrastructure can
be shared by several groups of VM instances that do not
operate continuously. OPENSTACK can therefore periodically
and automatically switch between VM instances along periods
of variable durations in order to keep delivering the requested
services, according to user requirements. For example, a Cloud
infrastructure can host a group of services during office hours,
then switch to another group of VMs during night before
moving to a third profile along week-ends. While supporting
this kind of scenario requires carefully handcrafted scripts to
orchestrate the groups of VMs in OPENSTACK, CLOUDGC
delivers this support natively, by exploiting the features we
detailed in this paper.

For example, Figure 10 exposes a 4-day experiment we run
in our OPENSTACK infrastructure running CLOUDGC. In this
experiment, we provision 5 VMs, which are operating in 3
groups, next to other standard VM instances, which can be
provisioned and used more randomly. The group 1 includes
two small VM instances which are used from noon every day.
The group 2 contains two other small VM instances, which
need to be available twice a day at 4:00 and 16:00, respectively.
Finally, the group 3 has a single medium VM instance, which
is usually active from 22:00 to 10:00.

From Figure 10, we can observe that, beyond the traditional
usage of a cloud infrastructure, CLOUDGC succeeds to
schedule periodic VM instances according to their respective
requirements. In order to guarantee the availability of periodic
VM instances on time, we also benefit from the timer

of CLOUDGC (cf. Section IV-D) to ensure that the VM
instances are provisioned 5 minutes before the expected time.
Furthermore, the use of the timer turns out to be also useful for
autonomous VM instances, which do not need to be requested
by an external user and control their own activity.

Our perspectives regarding this support for periodic VM
instances refer to the automatic mining of VM activity patterns
in order to configure the timer of CLOUDGC automatically.
By adding such a capability, we believe that CLOUDGC can
evolve to provide a new building block of a Cloud infrastructure
saving energy by turning off the compute nodes hosting idle
VM instances during periods of inactivity (e.g., nights, week-
ends, holidays). Furthermore, the combination of CLOUDGC
with an elasticity service would enable compute nodes to be
waken up automatically by the timer or by requesting one of
the recycled service.

VI. RELATED WORK

To the best of our knowledge, few approaches have been
proposed so far on developing a garbage collector of idle virtual
machines in the cloud. The most similar approaches to this work
are the Netflix Janitor Monkey8 and Heroku9, which operates
at the Platform-as-a-Service (PaaS) level. In Heroku, cloud
services deployed with the free offer automatically fall asleep
after 30 minutes of inactivity, and are resumed on-demand,
inducing a similar delay to CLOUDGC for accessing the service
again. Our approach generalizes this approach to the IaaS
level, like Netflix Janitor, taking into account the constraints of
VMs. Yet, at the IaaS level, several server consolidation and
elasticity solutions have been developed by public providers
and academia. In the remainder of this section, we therefore
present and discuss the closest related works that are relevant
to our approach.

a) Resource Management: Recycling resources is the
process of collecting, processing, and reusing VMs. There are
many proposed systems using resource management for various
computing areas [23]–[27], but none of these systems focuses
on the problem of recycling VMs in order to self-optimize
the physical resource utilization. In particular, none of these
systems is unable to detect idle VMs and trigger the recycling
of VM instances like CLOUDGC does.

8https://github.com/Netflix/SimianArmy/wiki/Janitor-Home
9https://www.heroku.com

within CLOUDGC to classify idle and active VMs, like
supervised machine learning approaches based on SVM [17],
[18]. However, by adjusting the duration and activity threshold
parameters used by CLOUDGC to detect idle VMs, an OPEN-
STACK administrator can implement various VM management
policies to urge the Cloud users to utilize the VMs that they
provision.

B. CloudGC Performance Analysis

Regarding the delay introduced by the recycling process
of CLOUDGC, we profiled the phases of CLOUDGC to
identify how it performs depending on the different situa-
tions we considered in our scenario (detailed in Section II).
Figure 8 therefore reports on the completion times achieved
by CLOUDGC to provision new or recycled VM instances
in our Cloud infrastructure. As long as enough resources are
available in the Cloud infrastructure, one can observe that the
monitoring component of CLOUDGC does not include any
processing overhead for the system, thus performing equally
to a standard configuration of OPENSTACK. When CLOUDGC
recycles explicitly idle VM instances, one can assess that the
processing overhead of CLOUDGC is rather low compared to a
standard provisioning process, adding only 5 seconds to recycle
an idle VM that has been explicitly suspended (cf. Table II).

TABLE II
PROCESSING OVERHEAD PER PHASE.

operation available explicit implicit

browse list - 2 sec 2 sec
create snapshot - - 215 sec
delete instance - 3 sec 3 sec
create instance 6 sec 6 sec 6 sec
deploy OS 9 sec 9 sec 9 sec
total 15 sec 20 sec 235 sec

The biggest processing penalty introduced by CLOUDGC
correspond to the recycling of implicitly idle VM instances
that are in a running state. In this specific case, CLOUDGC
requires to take a snapshot of the VM instance right before
releasing the associated resources, which imposes to wait for
the image to be safely persisted on the storage device before
completing the provisioning process, and thus explaining the
215 seconds taken by Glance to complete this phase.

Regarding memory consumption, Figure 9 compares the
memory consumption of OPENSTACK with and without
CLOUDGC. On average, the difference between the two curves
represents an overhead of 50 MB for the cloud controller node,
on which CLOUDGC is deployed with the other infrastructure
services. During the provisioning phases, which are reflected as
peaks in Figure 9, one can observe that the memory overhead
of CLOUDGC may reach up to 100 MB due to the additional
activities performed as part of the recycling process.

Regarding the storage consumption, the storage capacity of
Glance is impacted by CLOUDGC as it uses this service to
store the snapshots of recycled VMs. The storage overhead of

0

50

100

150

200

available explicit implicit
Freeable VMs

Co
m

pl
et

io
n

Ti
m

e
fo

r n
ew

 V
M

browse list create snapshot delete VMs create VM deploy OS

Fig. 8. Recycling delays introduced by CLOUDGC.

3375

3400

3425

3450

0 100 200
Time (s)

U
se

d
M

em
or

y
(m

b)

With CloudGC
Without CloudGC

Fig. 9. Memory overhead introduced by CLOUDGC.

CLOUDGC therefore corresponds to the number of currently
recycled VMs times the size of a VM, which highly depends
on the activity of the Cloud. For example, Figure 5 provides an
estimation of the volume of VMs recycled by CLOUDGC and
thus subsequent snapshot images it has to store. CLOUDGC
therefore trades CPU and memory resources against storage
resources, but we assume that the resource limitations of
a Cloud are stronger when it comes to CPU and memory
resources.

With regards to current limitations, we are therefore explor-
ing solutions to reduce the impact of on-demand snapshotting,
which is the major bottleneck of CLOUDGC when recycling
implicit idle VM instances. In particular, we are considering
the support for incremental snapshots of idle VM instances
to reduce both the processing and the network overhead
imposed by the snapshot operations. By integrating such
an incremental snapshot mechanism, CLOUDGC aims at

within CLOUDGC to classify idle and active VMs, like
supervised machine learning approaches based on SVM [17],
[18]. However, by adjusting the duration and activity threshold
parameters used by CLOUDGC to detect idle VMs, an OPEN-
STACK administrator can implement various VM management
policies to urge the Cloud users to utilize the VMs that they
provision.

B. CloudGC Performance Analysis

Regarding the delay introduced by the recycling process
of CLOUDGC, we profiled the phases of CLOUDGC to
identify how it performs depending on the different situa-
tions we considered in our scenario (detailed in Section II).
Figure 8 therefore reports on the completion times achieved
by CLOUDGC to provision new or recycled VM instances
in our Cloud infrastructure. As long as enough resources are
available in the Cloud infrastructure, one can observe that the
monitoring component of CLOUDGC does not include any
processing overhead for the system, thus performing equally
to a standard configuration of OPENSTACK. When CLOUDGC
recycles explicitly idle VM instances, one can assess that the
processing overhead of CLOUDGC is rather low compared to a
standard provisioning process, adding only 5 seconds to recycle
an idle VM that has been explicitly suspended (cf. Table II).

TABLE II
PROCESSING OVERHEAD PER PHASE.

operation available explicit implicit

browse list - 2 sec 2 sec
create snapshot - - 215 sec
delete instance - 3 sec 3 sec
create instance 6 sec 6 sec 6 sec
deploy OS 9 sec 9 sec 9 sec
total 15 sec 20 sec 235 sec

The biggest processing penalty introduced by CLOUDGC
correspond to the recycling of implicitly idle VM instances
that are in a running state. In this specific case, CLOUDGC
requires to take a snapshot of the VM instance right before
releasing the associated resources, which imposes to wait for
the image to be safely persisted on the storage device before
completing the provisioning process, and thus explaining the
215 seconds taken by Glance to complete this phase.

Regarding memory consumption, Figure 9 compares the
memory consumption of OPENSTACK with and without
CLOUDGC. On average, the difference between the two curves
represents an overhead of 50 MB for the cloud controller node,
on which CLOUDGC is deployed with the other infrastructure
services. During the provisioning phases, which are reflected as
peaks in Figure 9, one can observe that the memory overhead
of CLOUDGC may reach up to 100 MB due to the additional
activities performed as part of the recycling process.

Regarding the storage consumption, the storage capacity of
Glance is impacted by CLOUDGC as it uses this service to
store the snapshots of recycled VMs. The storage overhead of

0

50

100

150

200

available explicit implicit
Freeable VMs

Co
m

pl
et

io
n

Ti
m

e
fo

r n
ew

 V
M

browse list create snapshot delete VMs create VM deploy OS

Fig. 8. Recycling delays introduced by CLOUDGC.

3375

3400

3425

3450

0 100 200
Time (s)

U
se

d
M

em
or

y
(m

b)

With CloudGC
Without CloudGC

Fig. 9. Memory overhead introduced by CLOUDGC.

CLOUDGC therefore corresponds to the number of currently
recycled VMs times the size of a VM, which highly depends
on the activity of the Cloud. For example, Figure 5 provides an
estimation of the volume of VMs recycled by CLOUDGC and
thus subsequent snapshot images it has to store. CLOUDGC
therefore trades CPU and memory resources against storage
resources, but we assume that the resource limitations of
a Cloud are stronger when it comes to CPU and memory
resources.

With regards to current limitations, we are therefore explor-
ing solutions to reduce the impact of on-demand snapshotting,
which is the major bottleneck of CLOUDGC when recycling
implicit idle VM instances. In particular, we are considering
the support for incremental snapshots of idle VM instances
to reduce both the processing and the network overhead
imposed by the snapshot operations. By integrating such
an incremental snapshot mechanism, CLOUDGC aims at

Z. Ournani, M.C. Belgaid, R. Rouvoy, P. Rust, J. Penhoat. Evaluating the Impact of Java Virtual Machines on Energy
Consumption. 15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM),
2021. https://github.com/chakib-belgaid/jreferral

https://github.com/chakib-belgaid/jreferral

Cost of training a SVM classifier

https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
2x plus d’énergie pour gagner 0,1 de précision…

https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html

