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Evolving Ramp Secret-Sharing Schemes∗

Amos Beimel and Hussien Othman
Department of Computer Science
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E-mail: {amos.beimel,hussien.othman}@gmail.com

June 7, 2018

1 Introduction
Evolving secret-sharing schemes, introduced by Komargodski, Naor, and Yogev [4], are a secret-
sharing scheme in which the dealer does not know the number of parties that will participate and
has no upper bound on their number. The parties arrive one after the other and when a party
arrives the dealer gives it a share; the dealer cannot update this share when other parties arrive.
The motivation for studying such schemes is that updates can be the very costly (e.g., the Y2K
problem). On the other hand, if the system designer would take cautious upper bound on the
number of parties, then the scheme will not be efficient (specifically, if a small number of parties
participate).

Komargodski et al. [4] constructed evolving k-threshold secret-sharing schemes for any con-
stant k (where any k parties can reconstruct the secret). The size of the share of the i-th party
in their scheme is O(k log i). Komargodski and Paskin-Cherniavsky [5] constructed evolving dy-
namic a-threshold secret-sharing schemes (for every 0 < a < 1), where any set of parties whose
maximum party is the i-th party and contains at least ai parties (i.e., the set contains an a-fraction
of the firtst i parties) can reconstruct the secret; any set such that all its prefixes are not an a-fraction
of the parties should not get any information on the secret. The length of the share of the i-th party
in their scheme is O(i4 log i). As the number of parties is unbounded, this share size can be quite
large.

We consider a relaxation of evolving a-threshold secret-sharing schemes motivated by ramp
secret-sharing schemes. Ramp secret-sharing schemes were first presented by Blakley and Mead-
ows [1], and were used to construct efficient secure multiparty computation (MPC) protocols,
starting in the work of Franklin and Yung [3]. We consider evolving (a, b)-ramp secret-sharing
schemes (where 0 < b < a < 1), in which any set of parties whose maximum party is the i-th
party and contains at least ai parties can reconstruct the secret, however we only require that any
set such that all its prefixes are not a b-fraction of the parties should not get any information on the
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secret. For every constants 0 < b < a < 1, we construct an evolving (a, b)-ramp secret-sharing
scheme where the length of the share of the i-th party is O(1). Thus, we show that evolving ramp
secret-sharing schemes offer a big improvement compared to the known constructions of evolving
a · i-threshold secret-sharing schemes. We note that all our schemes are linear.

2 Our Technique and Results
We demonstrate the basic idea of our schemes by describing a simple construction of an evolving
(1/2, 1/8)-ramp secret-sharing scheme. Following [4], we partition the parties to sets, called gen-
erations, according to the order they arrive. The first generation contains the first two parties, the
second generation contains the next 22 parties, and so on, where the g-th generation contains 2g

parties. When the first party of the g-th generation arrives, the dealer prepares shares of a 2g/4-
out-of-2g threshold secret-sharing scheme (e.g., Shamir’s scheme [6]); when a party in generation
g arrives the dealer gives it a share of this scheme. On one hand, if a set whose maximum party
is the i-th party contains at least i/2 parties, then in some generation it contains at least 1/4 of the
parties (even if it ends at the beginning of a generation), thus it can reconstruct the secret. On the
other hand, if a set can reconstruct the secret from the shares of some generation g, then it contains
at least 1/4 of the parties in that generation, hence it contains at least 1/8 of the parties that have
arrived until the end of the generation.

We show, using a more complicated analysis, how to construct evolving (1/2, b)-ramp secret-
sharing schemes with small share size for every b < 1/6 by sharing the secret using one threshold
secret-sharing scheme in each generation (with an appropriate threshold). To construct evolving
(a, b)-ramp secret-sharing schemes for every constants 0 < b < a < 1, we need to share the
secret more than once in each generation. However, we share the secret only O(1) times in each
generation, resulting in a scheme in which the share size of the i-th party isO(log i) (whereO(log i)
is the share size in the threshold secret-sharing scheme). To reduce the share size to O(1), we
use (non-evolving) ramp secret-sharing schemes of Chen et al. [2] instead of the threshold secret-
sharing schemes. As Chen et al. only provide an existential proof of their ramp schemes with share
size O(1), we only obtain that there exist evolving (a, b)-ramp secret-sharing schemes with share
size O(1). In contrast, our evolving (a, b)-ramp secret-sharing schemes with share size O(log i)
for party pi is explicit. We proved the following theorem.

Theorem 2.1. For every constant 0 < b < a < 1, there is an evolving (a, b)-ramp secret-sharing
scheme where the length of the share of each party is O(1).

In order to prove the theorem, we construct the following scheme. We partition the parties
into generations, where the size of generation g is mg. That is, generation g contains the parties
pmg−m

m−1
+1, . . . , pmg+1−m

m−1

.
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Input: a secret s ∈ {0, 1}.

1. For every g, share s among the mg parties in generation g using a (c0, c0− ε)-ramp
secret-sharing scheme for some constant ε > 0 to be fixed later (denote this scheme
by Π

′
c0

).

2. For every 1 ≤ ` ≤ r and for every g ≥ 2, share the secret s among the parties in
generation g−1 and the first

⌈
k`

m−1
·mg

⌉
parties in generation g using a (c` ·mg−1 ·

1
n
, (c` − ε) ·mg−1 · 1

n
)-ramp secret-sharing scheme for some constant ε > 0 to be

fixed later, where n = mg−1 +
⌈

k`
m−1
·mg

⌉
is the number of parties (denote this

scheme by Π
′
c`

).

3. For all the parties in the first g0− 1 generations, share the secret s using the secret-
sharing scheme of [5].

All parameters are chosen in our analysis such that the correctness and security of the scheme hold.
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Abstract – The high demand for transferring video streams over 

networks has long required the implementation of compression 

algorithms that substantially reduce the rate required to deliver a 

certain Quality of Experience (QoE). The most commonly used 

compression protocol today is H.264, which is in the process of 

migrating to H.265 (or HEVC – High Efficiency Video Coding). AV1 

is another protocol from the Alliance of Open Media (AOMedia). 

Both standards take advantage of intra-frame pixel value 

dependencies to perform prediction at the encoder end and transfer 

only residual errors to the decoder. The standards use multiple 

“Modes”, which are various linear combinations of pixels for 

prediction of their neighbors within image Macro-Blocks (MBs). In 

this research, we have used Deep Neural Networks (DNN) to perform 

the predictions. Using twelve Fully Connected Networks, we 

managed to reduce Mean Square Error (MSE) of the predicted error 

by up to 3 times. This substantial improvement comes at the expense 

of more extensive computations. However, these extra computations 

can be significantly mitigated using dedicated Graphical Processing 

Units (GPUs). 

 

Index Terms — Intra Prediction, Deep Learning, Intra-

Prediction Modes, H.264, VP10. 

I. INTRODUCTION 

URING the last decade, ever soaring bandwidths and high 

penetration of smartphones have led to extensive flood of 

video streams on public as well as private networks. Streaming 

media is becoming the primary bandwidth consuming 

application. Huge video repositories are available online 

(YouTube, Facebook, Netflix, Hulu are just few examples). The 

delivery of streaming video over networks is expensive. 

Therefore, major efforts have been invested and are invested 

today, in improving compression algorithms and delivering 

identical quality for less bandwidth. The most commonly used 

compression protocol today is H.264, which is in the process of 

migrating to H.265 (or HEVC – High Efficiency Video Coding) 

[1], [2]. AV1 is another protocol from the Alliance of Open 

Media (AOMedia). Intra-Prediction is a fundamental 

component of these video compression standards. Intra-

Prediction deals with taking advantage of pixels’ data 

redundancies in Intra-Coded video frame, to predict pixel 

values and therefore transmit only residual errors, which require 

less encoding bits. Prediction of pixel values is performed by 

dividing the frame into Macro-Blocks (MBs) and assuming 

some correlation between pixels of each individual block. 

Different modes have been proposed to perform the prediction 

of MB pixels from their neighbors [4]. Video compression 

standards, such as the ones mentioned above, calculate the 

prediction error per block for multiple modes, select the best 

performing one and signal to the decoder, which mode has been 

used for that block. 

In this research we have demonstrated that Intra-Prediction 

modes can be replaced by Deep Neural Networks (DNNs), 

trained upfront on some typical image blocks and generalize 

prediction for all frames. We have used 4x4 blocks and have 

considered several different trained network architectures, that 

can be used by the decoder to decode the original pixel values. 

We considered (1) a multiple neural network encoder with 

selection of best network per block, (2) a fixed number (in our 

case four) of networks that are always used for prediction of all 

blocks, and (3) a single network which is used for predicting all 

blocks. In this work we have used images (which represent 

frames). In the future, we intend to integrate our algorithm in a 

full video codec. 

II. DEEP LEARNING FOR INTRA-PREDICTION 

Using Deep Learning for predicting Intra-block pixels is a 

very promising idea that has already been explored in several 

research papers. In [1] Laude, Thorsten, et al. learn the best 

Intra-Prediction mode per block using Convolutional Neural 

Networks (CNN) applied on a block. In [7] Cui, Wenxue, et al. 

use CNNs to perform Intra-Prediction of complete blocks from 

their neighboring blocks. In [8] Li, Hoggui, et al. use single 

pixel prediction from all pixels that have been scanned so far. 

We are proposing a very simple and straight forward 

approach that can easily fit into standard video compression 

standard since it is using the traditional raster frame scanning 

order and simply replaces all the commonly used modes by 

DNNs. We have explored two network architectures: a network 

that predicts one pixel at a time and a network that predicts up 

to 4 pixels at a time. A conceptual network that has proven to 

yield good results is depicted in Fig. 1. Since we use a relatively 

low number of input pixels (small image patches), we perform 

the optimization using a Fully Connected (FC) Neural Network. 

The mathematical representation of the proposed network is 

as follows: 
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Where: 

   𝐹1 is the ReLU function 

   𝐹2 is the Sigmoid function 

   j = Number of Neurons in each layer 

   𝑤1/2𝑖𝑗  – Weights of the hidden layers 
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   𝑏1/2𝑖 – Biases of the hidden layers 

   𝑜𝑢𝑡𝑖𝑗 – Weights of the output layer 

   𝑏_𝑜𝑢𝑡𝑖 Bias of the output layer    

The networks used for predictions vary between 2 – 4 hidden 

layers and the number of neurons per hidden layer changes 

between 2 – 4 times the number of the input pixels, which are 

used for the prediction. The network architecture has been 

heuristically optimized per mode to yield best results. All 

hidden layers use Sigmoid and ReLU activation functions. 

The Sigmoid activation function used in the hidden layers 

introduces the necessary nonlinearity necessary to obtain an 

accurate prediction for multiple, not necessarily linear 

relationships between neighboring pixels. The ReLU activation 

function, favors positive values, which are expected for 

predicted pixels. In order to exploit the full dynamic range of 

the Sigmoid function and avoid the diminishing gradient 

problem, pixel values were normalized for the learning process 

and have values in the range of zero to one. 

 

 
The network was optimized using the Adam Optimizer [6], 

which is an improvement of Stochastic Gradient Decent (SGD) 

algorithm [5], introducing Momentum, which is effectively a 

factored running average of the gradients in the different steps 

so far, and RMSprop, which introduces a factored square of the 

gradient in order to reduce variations in steeper directions and 

prefer more gradual and stable ones. The loss function 

minimizes the MSE between the predicted pixel value 𝑦̂ and the 

original pixel value 𝑦. 

 
2)ˆ( yyLoss −=  (2) 

 

The networks were implemented in Python using 

Tensorflow. There are twelve trained networks, determined 

according to the position of pixels used for prediction around 

the block. The pixels used for prediction for each one of the 

modes/networks are depicted in Fig. 2. Predicting a block starts 

from the top left corner pixel and moves from left to right and 

from top to bottom. Pixels are predicted one by one and not all 

at once. 

 

III. RESULTS 

The networks were trained on 512x512 standard test images, 

divided to 4x4 blocks. Once trained, the same networks have 

been used for predicting multiple images. While it is expected 

that image content and texture will have some impact on 

network accuracy, the limited set of test images that we have 

used, indicate that the networks generalize well. Fig. 3. indicates 

two images that have been used (Lena and Mandrill), which are 

very different in their texture. Both were predicted using the 

same identical trained networks. A histogram of the selected 

modes is depicted in Fig. 4. The selection rates of all modes are 

indicated in percentage on top of the bars. 

The selection of preferred modes is accomplished at the 

encoder side by running all the relevant DNNs on each and 

every block and selecting the most appropriate one according 

to the MSE criteria. Calculation complexity can be mitigated by 

using a GPU. Since the GPU is optimized to perform parallel 

pixel computations of large image arrays, and since our input 

vector has very limited size (up to 8 input pixels used for the 

prediction), it is possible to represent all modes by a single 

matrix of multiple vectors and run the calculation of the modes 

in parallel for all of them.  

Several standard test images were analyzed and their 

respective MSEs are depicted in Table 1. The results have been 

 

 
Fig. 1. Two-hidden Layers Deep Neural Network used for Intra-Prediction of 

block pixels. Each predicted block is used for all other pixel predictions in the 
block 

 

 

 
Fig. 2. Pixels used for prediction in the twelve (12) different trained networks 
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compared to a combination of eight modes used in [3] (we give 

them the title ‘All-Modes’ in the table) – four of the modes were 

the most frequently selected modes in VP9 - True Motion (TM) 

Mode, DC, Horizontal and Vertical. The other four were new 

modes introduced by us in a previous paper [3] – Weighted 

CALIC (WCALIC), Intra-Prediction using System of Linear 

Equations (ISLE), Prediction of Discrete Cosine 

Transformations (PrDCT) Coefficients and Reverse Least 

Power of Three (RLPT)[4]. In [3], our proposed four modes 

were preferred and thus selected around 57% of the blocks, 

resulting in a reduced average prediction error, i.e. the MSE of 

26%. In Table 1 we provide MSE results for a multi-network 

approach, with selection of a best network per block (Net-1). 

Realizing the simplicity of using a single network and the 

savings that can be achieved in signaling bits, we have trained 

a single DNN, based on Mode-4 (input pixels - 𝐴0, 𝐿0, 𝐶). Such 

a network does not require advance testing of the best mode and 

will be applied just the same for all MBs. The MSE of a single 

network is also depicted in Table 1 (Net-2). 

 

 Net-1 Net-2 All-

Modes 

Avg MSE 

Improvement 

Lena 49.2 87.7 190.0 386% 

Mandrill 316.3 473.7 508.0 161% 

Fruits 42.8 152.4 130.7 305% 

Lighthouse 91.8 310.4 191.7 209% 

Table 1. MSE comparison. Net-1: multi-network predicting one pixel at a 

time, Net-2: Single network based on Mode-4, All-Modes: Reference results 

predicted with all the conventional modes 

As can be seen from the results of Table 1, using the neural 

networks prediction approach, we have been able to achieve an 

improvement of up to 3 times in the MSE, thus substantially 

reducing the prediction error and potentially improving 

compression efficiency. Looking at the mode selection rates we 

observe that for all the tested images, some of the modes are 

more dominant than others and some have a minor contribution 

to the result. If we select only the five most dominant modes – 

1, 2, 4, 6 and 12, we will reach a total mode selection rate of 

78% for both images. Table 2 indicates the MSE of predicting 

with twelve modes vs. that of predicting with only the selected 

best five modes. The maximum degradation of the MSE results 

reaches 6%, which indicates that we can afford cutting 

computational complexity by using only five of the twelve 

proposed modes. 

 

 
The results also indicate that some modes are more suitable than 

other for different textures in the image. For example, it is clear 

from Fig. 4 that Mode-4 was preferred in smooth regions of the 

‘Lena’ image (yellow) while Mode-2 was preferred in the high 

spatial activity areas of the ‘Mandrill’ image (green). 

IV. CONCLUSIONS AND FUTURE WORK 

Using Deep Neural Networks for predicting block pixel 

values had yielded a substantial improvement of up to 3 times 

in MSE compared to our previous mode predictions. The results 

obtained by using DNN for Intra-Prediction of block pixels are 

promising. The proposed networks generalize well and 

outperform existing Intra-Prediction modes. We have selected 

arbitrary pixel configurations around the predicted block and 

represented them as modes, due to the expectation that they will 

effectively perform better than the conventional angular 

prediction modes, which are based on image gradients. As can 

be seen from the results, some of the modes are more dominant 

than others. Therefore, we expect that further research can 

identify the most suitable modes, which are most frequently 

used over many images of various types. Thus, we can trim 

down the number of relevant modes and maintain a more 

relaxed calculation load. This research work has focused on 

improving Intra-Predictions. Future expansion of the work will 

introduce the modes into a complete Encoder/Decoder scheme, 

to test overall RD results. 

 
Fig. 3. Original image on the left and predicted image on the right. Both 

predicted with the same trained networks 

 

  

 
Fig. 4. On the left – map of selected modes. On the right – histogram of 

selected modes 

 
 Net-1 

All-Modes 

Net-1 

5-Modes 

MSE Degradation 

Lena 49.2 52.2 6.1% 

Mandrill 316.3 320.9 1.5% 

Fruits 42.8 45.2 5.6% 

Lighthouse 91.8 93.6 2.0% 

Table 2. MSE degradation when using only five (5) most dominant modes 
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Algorithm for Heavy Hitters Detection 
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Abstract 

Numerous caching mechanisms have been proposed, exploring various insertion and 

eviction policies. In this paper, we introduce the 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 cache scheduling 

algorithm, a new policy for cache management. This policy improves the Least Recently 

Used (𝐿𝑅𝑈) to gain optimal performance in a fixed probability scenario, without maintaining 

statistics for each item. Rather, it stores a single value (the current jump), while preserving 

the fast adaptation of probability changes of 𝐿𝑅𝑈. 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 is a version of the 

Incremental Rank Progress (𝐶𝐿𝐼𝑀𝐵) cache management algorithm, that changes the 

number of position shifts according to whether the last request was a hit or a miss. 

Related works show that the performance of 𝐶𝐿𝐼𝑀𝐵 is close to that of the optimal off-line 

algorithm, but its stabilization time is long. 𝐿𝑅𝑈, on the other hand, is much more sensitive 

to changes, and thus its stabilization time is shorter, but it is sensitive to noise. We combine 

these two advantages in a single algorithm, with both good performance and short 

stabilization time. 

 

1. Introduction 

In this work we refer to two well-known cache management algorithms, 𝐶𝐿𝐼𝑀𝐵 and 𝐿𝑅𝑈. 

Let us first recall how these two work. Both algorithms manage the order of the items in the 

cache. Items believed to be heavy hitters are placed at the top of the cache, while less heavy 

are at the bottom. 

𝑳𝑹𝑼: When there is a request for some item 𝑖, and 𝑖 is not in the cache (cache miss), then 𝑖 

is inserted in the first position in the cache, all other items in the cache move back one 

position, and the item at the last position is evicted. If 𝑖 is at some position 𝑗 of the cache 

(cache hit), then it moves to the first position, and all other items at positions 1 to 𝑗 −  1 

move back one position. 

𝑪𝑳𝑰𝑴𝑩: When there is a request for item 𝑖 and 𝑖 is not in the cache (cache miss), then i is 

inserted in the last position in the cache, and the item that was in the last position of the 

cache is evicted; when a cache hit occurs on an item that was in position 𝑗, this item moves 

up one position to position 𝑗 −  1. 

 

𝐿𝑅𝑈 is known as fast algorithm for adapting to requests with dynamically changed 

distribution. 𝐶𝐿𝐼𝑀𝐵 has been numerically shown to have a higher hit ratio than 𝐿𝑅𝑈, at the 

expense of increased time to reach this steady state in comparison to 𝐿𝑅𝑈 [A-LRU]. For our 

best knowledge there is no theoretical proof for this yet. Although, under the IR model, the 



steady-state probabilities 𝜋(
𝜎
→)  of finding the cache of size 𝐾 in some state   

𝜎
→= {𝜎1, 𝜎2, … , 𝜎𝐾} are know for both algorithms [ACK87]: 

 
where  𝐶1 is a normalization constant. 

 

In the current paper we introduce an algorithm that combines these two advantages 

together. Let a jump size parameter of a caching algorithm be a number of cells that a 

current request is promoted in a cache, on its way from a bottom (or from an outside, in a 

case of cache miss) to a top of a cache. A jump size of 𝐶𝐿𝐼𝑀𝐵 is 1, and a jump size of 𝐿𝑅𝑈 is 

𝐾 (on a cache hit, 𝐿𝑅𝑈 promotes a current request at most 𝐾 cells up, depends on its 

current position in a cache). Using this parameter, 𝐿𝑅𝑈 is 𝐶𝐿𝐼𝑀𝐵 with the jump size of 𝐾. 

This is the factor that makes 𝐿𝑅𝑈 sensitive to data changes and to adapt to them quickly, 

compared with 𝐶𝐿𝐼𝑀𝐵. On the other hand, a jump size of 1 of 𝐶𝐿𝐼𝑀𝐵 algorithm allows 

avoid noises influences and gather most frequently asked requests in the cache, during 

constant distributions periods. Our idea is to dynamically fit a jump size in a cache so that it 

would fit frequently changed data periods and constant distribution periods. Our algorithm 

achieves this by incrementing jump size on cache misses, and decrementing jump size on 

cache hits. 

 

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 does not spend any space to save statistics, except for a single variable, 

indicating the current jump size. Thus, all the cache space is available for running processes. 

Just as 𝐿𝑅𝑈 and 𝐶𝐿𝐼𝑀𝐵, 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 is very simple and easy to implement.  

 

2. Previous work 

Caching algorithms attempt to ensure content availability by trying to learn the distribution 

of content requests in some manner. Usually, such algorithms use statistics to detect 

recently used requests, as does 𝐿𝑅𝑈, and then try keeping most valuable requests in a 

cache. Meta-cache caching algorithms are proposed like 𝑘 − 𝐿𝑅𝑈 [k-LRU], which manages a 

cache of size m by making use of 𝑘 −  1 virtual caches and store meta-data to keep track of 

the recent request history. Multi-Level caching algorithms are proposed like 𝐿𝑅𝑈(𝑚) [LRU-

m]. An item enters the cache network via a cache with a lowest index and will be promoted 

to a higher index cache whenever there is a cache hit on it.  

Dynamically adaptive caching algorithms show-up in previous work. In [A-LRU], a hybrid 

algorithm, 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 − 𝐿𝑅𝑈 (𝐴 − 𝐿𝑅𝑈), has been proposed, which divides the cache into 

several parts and uses meta-caches. Another dynamically adaptive caching algorithm is 

Adaptive replacement cache (𝐴𝑅𝐶) [ARC], which balances between 𝐿𝑅𝑈 and 𝐿𝐹𝑈, to 

improve the combined result. Note that these algorithms use large amount of statistic data 



to manipulate (maneuver?) between different parts of algorithm and to adapt to changing 

requests’ distribution. 

The previous algorithms are both space and time wasteful, as they require additional space 

for statistics (or metadata) and are complex to implement. The 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 algorithm 

presented in this paper manipulates its two internal parts very naturally and smoothly, with 

no need for statistics and additional data structures. 

3. System model 

Suppose, in general, that we have a list of 𝑁 possible different requests 𝑅 = {𝑟1, … , 𝑟𝑁}. 

Suppose 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑁  are the corresponding probabilities. The system contains a 

cache of size 𝐾, and a slow memory. We implicitly assume that 𝐾 < |𝑅|. For each request 𝑟, 

and each cache configuration 𝐶, we need to decide which configuration 𝐶′ we move to, 

according to whether the request has been a hit or a miss, and to the value of 𝑗𝑢𝑚𝑝. On a 

cache miss, a cache management algorithm should decide which cache element to evict. On 

a cache hit, a cache management algorithm may decide to change the location of 𝑟 in the 

cache. 

 

4. AdaptiveClimb algorithm and results 

Let 𝑗𝑢𝑚𝑝 be the size of the current jump our algorithm uses for insertion of new elements 

into the cache and promoting existing elements of the cache.  

 

The algorithm is defined as follows: 

• Initialize 𝑗𝑢𝑚𝑝 = 𝐾 − 1 

• On cache hit of 𝑐𝑎𝑐ℎ𝑒[𝑖] element 

o decrement the value of 𝑗𝑢𝑚𝑝 (but not below 1) 

o if 𝑖 > 1, shift down the cache elements between 𝑐𝑎𝑐ℎ𝑒[𝑖 − 𝑗𝑢𝑚𝑝] and 

𝑐𝑎𝑐ℎ𝑒[𝑖 − 1], and move the requested cache line into 𝑐𝑎𝑐ℎ𝑒[𝑖 − 𝑗𝑢𝑚𝑝] 

• On cache miss 

o evict 𝑐𝑎𝑐ℎ𝑒[𝐾],  increment the value of 𝑗𝑢𝑚𝑝 (but not above 𝐾 − 1) 

o shift down the cache elements between 𝑐𝑎𝑐ℎ𝑒[𝐾] and  𝑐ℎ𝑎𝑐ℎ𝑒[𝐾 − 𝑗𝑢𝑚𝑝 +

1], and insert the new request into 𝑐𝑎𝑐ℎ𝑒[𝐾 − 𝑗𝑢𝑚𝑝 + 1] 

 

Performance analysis typically consists of determining the hit probability at the cache under 

either a synthetic or real data. Synthetic arrival process usually consists of independent 

draws of content requests following a fixed Zipf popularity distribution, referred to as the 

Independent Reference Model (IRM). Real data is usually a data trace of requests observed 

in a real system [1]. For a Zipf distribution, the probability to request the i-th most popular 

item is 𝑝𝑖  =  𝐴/𝑖𝛼, where 𝛼 is the Zipf parameter that depends on the application 

considered, and 𝐴 is the normalization constant so that ∑ 𝑝𝑖
𝑁
𝑖=1 = 1 if there are 𝑛 unique 

items in total. 

 



Caching Process as Markov Chains: A caching algorithm generates a Markov process over 

the occupancy states of the cache. Each state 𝐶 is a vector of size K indicating the content in 

each cache line, and a current 𝑗𝑢𝑚𝑝 size. Each cache request generates a state transition 

based on the caching algorithm used via item entrances and evictions. Hence, for a given 

request arrival process, a caching algorithm is equivalent to a state transition matrix over 

the cache states. The typical performance analysis approach is then to determine the 

stationary distribution of the Markov process of occupancy states, and from it derive the hit 

probability. 

 

As an evidence of the quality of our algorithm, we theoretically calculated the expected hit 

ratio for 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 versus 𝐿𝑅𝑈 for various values of 𝑁, 𝐾, and requests’ distribution 

settings, using Markov matrices. In all our calculations, 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 achieves better 

results. Let’s observe a result of such a calculation for 𝐾 = 3, 𝑁 = 4, 𝑝1 = 0.4, 𝑝2 =

0.3, 𝑝3 = 0.2, 𝑝4 = 0.1. We get an expected hit ratio of 0.833 for 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏, an 

expected hit ratio of 0.825 for 𝐿𝑅𝑈, and this leads to relative improvement of 1.009.  

We test 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 algorithm on real data which is taken from [EPA-HTTP]. The data 

contains 6620 different possible requests, a request sequence of length 47748, and a cache 

of size 𝐾 = 100. 𝐶𝐿𝐼𝑀𝐵 hit ratio is 0.37, 𝐿𝑅𝑈 hit ratio is 0.47, and 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 hit ratio 

is 0.48. 

 
There are situations where both 𝐿𝑅𝑈 and 𝐶𝐿𝐼𝑀𝐵 perform very poorly. For example, 
consider the case where the sequence of requests is periodic, with a period exceeding the 
cache size. Obviously, both algorithms will achieve a 0% hit ratio. As another example, 
suppose that at some point, two items that are initially not in the cache, start appearing 
alternatingly. Employing 𝐶𝐿𝐼𝑀𝐵, after each request, we will insert to the cache the element 
just requested and evict the other. Again, we get a 0% hit ratio. 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 algorithm 
may be a slightly modified to overcome these problems.  
 
The modified 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 algorithm uses two more parameters. The first indicates if 

the last request leaded to hit or miss. The second is a counter of consecutive cache misses 

that occurred while the value of 𝑗𝑢𝑚𝑝 was maximal. When we get too many consecutive 

cache misses, the algorithm uses 𝑗𝑢𝑚𝑝 = 1 once, only for a single next request. After this 

the counter is set to zero. The following is an example where 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 performs 2 

times better than 𝐿𝑅𝑈, and much better than 𝐶𝐿𝐼𝑀𝐵. 
 

We ran the algorithm with 𝑁 = 1600 different possible requests, a cache of size 𝐾 = 100, 
request sequence of length 10,000 requests. Each request is selected using Zipf distribution. 
The distribution values of possible requests are randomly uniformly shuffled after each 200 
requests. The sum of highest 𝐾 probabilities is 0.42 which defines an optimal hit ratio for 
this experiment. The results of this experiment are presented in the Graph below. Even if 
the percentage of loop requests is 10% of the total number of requests, we get 
𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 hit ratio of 0.35 versus 𝐿𝑅𝑈 hit ratio of 0.18, and 𝐶𝐿𝐼𝑀𝐵 hit ratio of 0.02. 
 



 
 

5. Future research directions 

For our best knowledge, there is no theoretical proof that the expected hit ratio of 𝐶𝐿𝐼𝑀𝐵 

algorithm is higher than expected hit ratio of 𝐿𝑅𝑈 algorithm, but this is detected 

experimentally by previous work [CLIMB]. For both algorithms, the expected hit ratio 

depends on the cache size 𝐾 and the number of possible requests 𝑁. Thus, it seems 

impossible to calculate the difference between these two formulas for a general case but 

only for concrete values of 𝐾 and 𝑁. It may be interesting to prove this for general case. For 

this, one should look at a difference 𝑃(𝐶𝐿𝐼𝑀𝐵1ℎ𝑖𝑡) − 𝑃(𝐿𝑅𝑈ℎ𝑖𝑡), and try to prove that this 

expression is non-negative. Of course, it would be of high interest to calculate a general 

formula for expected hit ratio of 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑙𝑖𝑚𝑏 algorithm by using the following formula 

to calculate hit ratio for 𝐿𝑅𝑈 and 𝐶𝐿𝐼𝑀𝐵 algorithms, each according to its formula for 

steady-state probabilities: 

𝑃𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡 = ∑ (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖) ∙ (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑖 𝑖𝑠 𝑖𝑛 𝑐𝑎𝑐ℎ𝑒)
𝑁

𝑖=1

= ∑ 𝑝𝑖𝑃(𝑖 ∈ 𝑐𝑎𝑐ℎ𝑒)
𝑁

𝑖=1
= ∑ 𝑝𝑖 ∙ (

∑ 𝜋(
𝜎
→)

𝐴𝐿𝐺   
∀

𝜎
→: 𝑖∈

𝜎
→,𝐴𝐿𝐺∈{𝐿𝑅𝑈,𝐶𝐿𝐼𝑀𝐵}

∑ 𝜋(
𝜎
→)

𝐴𝐿𝐺   
𝑖∈

𝜎
→,𝐴𝐿𝐺∈{𝐿𝑅𝑈,𝐶𝐿𝐼𝑀𝐵}

)
𝑁
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ABSTRACT
Microsoft’s PowerShell is a command-line shell and scripting lan-
guage that is installed by default on Windows machines. Based on
Microsoft’s .NET framework, it includes an interface that allows
programmers to access operating system services. While PowerS-
hell can be configured by administrators for restricting access and
reducing vulnerabilities, these restrictions can be bypassed. More-
over, PowerShell commands can be easily generated dynamically,
executed from memory, encoded and obfuscated, thus making the
logging and forensic analysis of code executed by PowerShell chal-
lenging.

For all these reasons, PowerShell is increasingly used by cybercri-
minals as part of their attacks’ tool chain, mainly for downloading
malicious contents and for lateral movement. Indeed, a recent com-
prehensive technical report by Symantec dedicated to PowerShell’s
abuse by cybercrimials [52] reported on a sharp increase in the
number of malicious PowerShell samples they received and in the
number of penetration tools and frameworks that use PowerShell.
This highlights the urgent need of developing effective methods
for detecting malicious PowerShell commands.

In this work, we address this challenge by implementing several
novel detectors of malicious PowerShell commands and evaluating
their performance. We implemented both “traditional” natural lan-
guage processing (NLP) based detectors and detectors based on
character-level convolutional neural networks (CNNs). Detectors’
performance was evaluated using a large real-world dataset.

Our evaluation results show that, although our detectors (and
especially the traditional NLP-based ones) individually yield high
performance, an ensemble detector that combines an NLP-based
classifier with a CNN-based classifier provides the best performance,
since the latter classifier is able to detect malicious commands
that succeed in evading the former. Our analysis of these evasive
commands reveals that some obfuscation patterns automatically
detected by the CNN classifier are intrinsically difficult to detect
using the NLP techniques we applied.
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Our detectors provide high recall values while maintaining a
very low false positive rate, making us cautiously optimistic that
they can be of practical value.
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1 INTRODUCTION
Modern society is more than ever dependent on digital technology,
with vital sectors such as health-care, energy, transportation and
banking relying on networks of digital computers to facilitate their
operations. At the same time, stakes are high for cybercriminals
and hackers to penetrate computer networks for stealthily manipu-
lating victims’ data, or wreaking havoc in their files and requesting
ransom payments. Protecting the ever-growing attack surface from
determined and resourceful attackers requires the development of
effective, innovative and disruptive defense techniques.

One of the trends in modern cyber warfare is the reliance of
attackers on general-purpose software tools that already preexist
at the attacked machine. Microsoft PowerShell1 is a command-
line shell and scripting language that, due to its flexibility, po-
werful constructs and ability to execute scripts directly from the
command-line, became a tool of choice for many attackers. Se-
veral open-source frameworks, such as PowerShell Empire2 and
PowerSploit3 have been developed with the purpose of facilitating
post-exploitation cyber-offence usage of PowerShell scripting.

While some work has been done on detecting malicious scripts
such as JavaScript [9, 10, 30, 53], PowerShell, despite its prominent
status in the cyber warfare, is relatively untreated by the academic
community. Most of the work on PowerShell is done by security
practitioners at companies such as Symantec [52] and Palo Alto
Networks[37]. These publications focus mainly on surveying the
1https://docs.microsoft.com/en-us/powershell/
2https://www.powershellempire.com/
3https://github.com/PowerShellMafia/PowerSploit
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PowerShell threat, rather than on developing and evaluating appro-
aches for detectingmalicious PowerShell activities. The discrepancy
between the lack of research on automatic detection of malicious Po-
werShell commands and the high prevalence of PowerShell-based
malicious cyber activities highlights the urgent need of developing
effective methods for detecting this type of attacks.

Recent scientific achievements in machine learning in general,
and deep learning [14] in particular, provide many opportunities
for developing new state-of-the-art methods for effective cyber
defense. Since PowerShell scripts contain textual data, it is natural
to consider their analysis using various methods developed within
the Natural Language Processing (NLP) community. Indeed, NLP
techniques were applied for the sentiment analysis problem [31],
as well as for the problem of detecting malicious non-PowerShell
scripts [53]. However, adapting NLP techniques for detecting malici-
ous scripts is not straightforward, since cyber attackers deliberately
obfuscate their script commands for evading detection [52].

In the context of NLP sentiment analysis, deep learning met-
hods considering text as a stream of characters have gained recent
popularity and have been shown to outperform state of art met-
hods [23, 55]. To the best of our knowledge, our work is the first to
present an ML-based (and, more specifically, deep-learning based)
detector of malicious PowerShell commands. Motivated by recent
successes of character-level deep learning methods for NLP, we too
take this approach, which is compelling in view of existing and
future obfuscation attempts by attackers that may foil extraction
of high-level features.

We develop and evaluate several ML-based methods for the de-
tection of malicious PowerShell commands. These include detectors
based on novel deep learning architectures such as Convolutional
Neural Networks (CNNs) [13, 27] and Recurrent Neural Networks
(RNNs) [12], as well as detectors based on more traditional NLP
approaches such as linear classification on top of character n-grams
and bag-of-words [32].

Detecting malicious PowerShell commands within the high vo-
lume of benign PowerShell commands used by administrators and
developers is challenging. We validate and evaluate our detectors
using a large dataset4 consisting of 60,098 legitimate PowerShell
commands executed by users in Microsoft’s corporate network
and of 5,819 malicious commands executed on virtual machines
deliberately infected by various types of malware, as well as of
471 malicious commands obtained by other means, contributed by
Microsoft security experts.

Contributions. The contributions of our work are two-fold. First,
we address the important and yet under-researched problem of
detecting malicious PowerShell commands. We present and eva-
luate the performance of several novel ML-based detectors and
demonstrate their effectiveness on a large real-world dataset.

Secondly, we demonstrate the effectiveness of character-level
deep learning techniques for the detection of malicious scripting.
Our evaluation results establish that, although traditional NLP-
based approaches yield high detection performance, ensemble le-
arning that combines traditional NLP models with deep learning
models further improves performance by detecting malicious com-
mands that succeed in evading traditional NLP techniques.
4User sensitive data was anonymized.

Since the character-level deep learning approach is intrinsically
language independent, we expect it can be easily adapted for de-
tecting malicious usage of other scripting languages.

The rest of this paper is organized as follows. In Section 2, we
provide background on PowerShell and how it is used as an attack
vector and on some concepts required for understanding our deep-
learning based detectors. In Section 3, we describe our dataset, how
we pre-process commands and how our training set is constructed.
A description of our detectors is provided in Section 4, followed by
an evaluation of their performance in Section 5. Key related work is
surveyed in Section 6. We conclude with a summary of our results
and a short discussion of avenues for future work in Section 7. 8

2 BACKGROUND
2.1 PowerShell
Introduced by Microsoft in 2006, PowerShell is a highly flexible
system shell and scripting technology used mainly for task au-
tomation and configuration management [7]. Based on the .NET
framework, it includes two components: a command-line shell and
a scripting language. It provides full access to critical Windows
system functions such as the Windows Management Instrumenta-
tion (WMI) and the Component Object Model (COM) objects. Also,
as it is compiled using .NET, it can access .NET assemblies and
DLLs, allowing it to invoke DLL/assembly functions. These built-in
functionalities give PowerShell many strong capabilities such as
downloading content from remote locations, executing commands
directly from memory, and accessing local registry keys and sche-
duled tasks. A detailed technical discussion of these capabilities can
be found in [39].

As typical of scripting languages, PowerShell commands can
be either executed directly via the command line, or as part of a
script. PowerShell’s functionality is greatly extended using thou-
sands of ‘cmdlets’ (command-lets), which are basically modular
and reusable scripts, each with its own designated functionality.
Many cmdlets are built into the language (such as the Get-Process
and Invoke-Command cmdlets), but additional cmdlets can be lo-
aded from external modules to further enrich the programmer’s
capabilities. The Get-Process cmdlet, for instance, when given a
name of a machine which can be accessed in the context in which
PowerShell is executed, returns the list of processes that are run-
ning on that machine. As another example, the Invoke-Command
cmdlet executes the command provided as its input either locally
or on one or more remote computers, depending on arguments.
The Invoke-Expression cmdlet provides similar functionality but
also supports evaluating and running dynamically-generated com-
mands.

2.1.1 PowerShell as an Attack Vector. While PowerShell can be
configured and managed by the company IT department to restrict
access and reduce vulnerabilities, these restrictions can be easily by-
passed, as described by Symantec’s comprehensive report about the
increased use of PowerShell in attacks [52]. Furthermore, logging
the code executed by PowerShell can be difficult. While logging
the commands provided to PowerShell can be done by monitoring
the shell that executes them, this does not necessarily provide the
visibility required for detecting PowerShell-based attacks, since
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PowerShell commands may use external modules and/or invoke
commands using dynamically-defined environment variables.

For instance, the Kovter trojan [8] uses simple, randomly gene-
rated innocent-looking environment variables in order to invoke a
malicious script. One such command that appears in our dataset
is “IEX $env:iu7Gt”, which invokes a malicious script referenced
by the “iu7Gt” environment variable.5 A log of the executing shell
would only show the command before its dynamic interpretation,
but will not provide any data regarding the malicious script.

Although Microsoft improved the logging capabilities of Po-
werShell 5.0 in Windows 10 by introducing the AntiMalware Scan
Interface (AMSI) generic interface [6], many methods of bypas-
sing it have already been published [41, 52], thus effective forensic
analysis of malicious PowerShell scripts remains challenging.

In addition to the difficulty of forensic analysis, malware authors
have several other good reasons for using PowerShell as part of
their attacks [52]. First, since PowerShell is installed by default on
all Windows machines, its strong functionality may be leveraged
by cybercriminals, who often prefer using pre-installed tools for
quicker development and for staying under the radar. Moreover,
PowerShell is almost always whitelisted since it is benignly used
by Windows system administrators [39].

Secondly, as PowerShell is able to download remote content and
to execute commands directly from memory, it is a perfect tool for
conducting file-less intrusions [22] in order to evade detection by
conventional anti-malware tools. Finally, as we describe next, there
are multiple easy ways in which PowerShell code can be obfuscated.

PowerShell Code Obfuscation. As described in [52], there are nu-
merous ways of obfuscating PowerShell commands, many of which
were implemented by Daniel Bohannon in 2016 and are publicly
available in the “Invoke-Obfuscation” module he created [3]. Fi-
gure 1 lists a few key obfuscation methods we encountered in our
data and provides examples of their usage. We now briefly explain
each of them.

(1) As PowerShell commands are not case-sensitive, alterna-
ting lower and upper case letters often appear in malicious
commands.

(2) Command flags may often be shortened to their prefixes. For
instance, the “-noprofile” flag that excludes a PowerShell
command from the execution policy can be shortened to
“-nop”.

(3) Commands may be executed using the “-EncodeCommand”
switch. While the design goal for this feature was to provide
a way of wrapping DOS-unfriendly commands, it is often
used by malicious code for obfuscation.

(4) As mentioned previously, the “Invoke-Command” cmdlet eva-
luates a PowerShell expression represented by a string and
can therefore be used for executing dynamically-generated
commands.

(5) Characters can be represented by their ASCII values using
“[char]ASCII-VALUE” and then concatenated to create a
command or an operand.

(6) Commands may be base-64-encoded and then converted
back to a string using the “FromBase64String” method.

5IEX is an alias of Invoke-Expression.

(7) Base64 strings can be encoded/decoded in various ways
(UTF8, ASCII, Unicode).

(8) Yet another way of obfuscating commands is to insert cha-
racters that are disregarded by PowerShell such as `.

(9) Command strings may be manipulated in real-time before
evaluation using replacement and concatenation functions.

(10) The values of environment variables can be concatenated in
run-time to generate a string whose content will be executed.

(11) Some malware generate environment variables with random
names in every command execution.

While the ability to encode/represent commands in different
ways and generate them dynamically at run-time provides for gre-
ater programming flexibility, Figure 1 illustrates that this flexibi-
lity can be easily misused. As observed by [52], “These [obfusca-
tion] methods can be combined and applied recursively, generating
scripts that are deeply obfuscated on the command line”.

2.2 Deep Learning
In this section we provide background on deep learning concepts
and architectures that is required for understanding the deep-learning
based malicious PowerShell command detectors that we present in
Section 4.

Artificial Neural Networks [47, 54] are a family of machine le-
arning models inspired by biological neural networks, composed
of a collection of inter-connected artificial neurons, organized in
layers. A typical ANN is composed of a single input layer, a single
output layer, and one or more hidden layers. When the network is
used for classification, outputs typically quantify class probabilities.
A Deep Neural Network (DNN) has multiple hidden layers. There
are several key DNN architectures and the following subsections
provide more details on those used by our detectors.

2.2.1 Convolutional Neural Networks (CNNs). A CNN is a lear-
ning architecture, traditionally used in computer vision [28, 29].
We proceed by providing a high-level description of the major com-
ponents from which the CNN deep networks we use are composed.

As its name implies, the main component of a CNN is a convoluti-
onal layer. Assuming for simplicity that our input is a 2D grey scale
image, a convolutional layer uses 2D k ×k “filters” (a.k.a. “kernels”),
for some integer k . As the filter is sliding over the 2D input matrix,
the dot product between its k × k weights and the corresponding
k × k window in the input is being computed. Intuitively, the filter
slides over the input in order to search for the occurrences of some
feature or patterm. Formally, given a k × k filter, for each k × k
window x of the input to which the filter is applied, we calculate
wT ·x+b, wherew is the filter’s weights matrix andb is a bias vector
representing the constant term of the computed linear function.
The k2 weights ofw , as well as the k values of b, are being learnt
during the training process.

Filters slide over the input in strides, whose size is specified in
pixels. Performing the aforementioned computation for a single fil-
ter sliding over the entire input using stride s results in an output of
dimensions

(
(n−k)/s+1

)
×
(
(n−k)/s+1

)
, called the filter’s “activa-

tion map”. Using l filters and stacking their activation maps results
in the full output of the convolutional layer, whose dimensions are(
(n − k)/s + 1

)
×
(
(n − k)/s + 1

)
× l .
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ID Description Example

1 Using alternating lower and upper case letters -ExecUTIONPoLICy BypASs -wiNDoWSTYLe hidDeN (NEW-objecT
SYstEM.NET.wEbCLIeNt).DOWnLoADFiLE(<removed>);

2 Using short flags -nop -w hidden -e <removed>

3 Using encoded commands -EncodedCommand <removed>

4 Invoke expression using its string representation - Invoke-Expression (("New-Object
Net.WebClient")).(’Downloadfile’) . . .

5 Using "[char]" instead of a character . . . $cs = [char]71; $fn = $env:temp+$cs; . . .

6 Reading data in base 64 IEX $s=New-Object IO.MemoryStream([Convert]::
FromBase64String(’<removed>’));

7 Using UTF8 encoding $f=[System.Text.Encoding]::UTF8.GetString
([System.Convert]::FromBase64String(<removed>’)); . . .

8 Inserting characters overlooked by PowerShell like ` . . . (new-object -ComObject wscript.shell).Popup(Ë-mail:
<removed>@<removed>.com ‘n ‘nClient: <removed>"`) . . .

9 String manipulation . . . $filename.Replace(’-’,’/’) . . . $env:temp + ’:’ + $name +
’.exe . . .

10 Concatenating variables inline $emnuxgy=’i’; $jrywuzq=’x’; $unogv=’e’;... Invoke-Expression
($emnuxgy+$unogv+$jrywuzq+’ ’ ...);

11 Using a random name for a variable in every run iex $env:vruuyg

Figure 1: Examples of PowerShell obfuscation methods.

In order to maintain the non-linear properties of the network
when using multiple convolutional layers, a non-linear layer (a.k.a.
activation layer) is added between each pair of convolutional layers.
The non-linear layer applies a non-linear activation function such as
the Rectified Linear Units (ReLU) function f (x) =max(0,x) whose
properties were investigated by [36] or the hyperbolic tangent
f (x) = tanh(x) function.

A max pooling layer [5] “down-samples” neurons in order to
generalize and reduce overfitting [19]. It applies a k × k window
across the input and outputs themaximum valuewithin thewindow,
thus reducing the number of parameters by a factor of k2. A fully
connected layer connects all inputs to all outputs. Intuitively, each
output neuron of the convolutional layers represents an image
feature. These features are often connected to the network’s outputs
via one or more fully connected layers, where the weights between
inputs and outputs (learnt during the training process) determine
the extent to which each feature is indicative of each output class.

Dropout layers [20] can be used between fully connected layers
in order to probabilistically reduce overfitting. Given a probability
parameter p, at each training stage, each node in the input remains
in the network with probability p or is “dropped out” (and is dis-
connected from outputs) with probability 1 − p. Dropout layers, as
well as fully connected layers, may also apear in recurrent neural
networks, described next.

2.2.2 Recurrent Neural Networks (RNNs). RNNs are neural net-
works able to process sequences of data representing, e.g., text
[26, 34], speech [17, 18, 44], handwriting [15] or video [24] in a
recurrent manner, that is, by repeatedly using the input seen so far
in order to process new input. We use an RNN network composed
of long short-term memory (LSTM) blocks [21]. Each such block con-
sists of a cell that stores hidden state, able to aggregate/summarize
inputs received over an extended period of time. In addition to the

cell, an LSTM block contains 3 components called gates that control
and regulate information flow into and out of the cell. Roughly
speaking, the input gate determines the extent to which new input
is used by the cell, the forget gate determines the extent to which
the cell retains memory, and the output gate controls the level to
which the cell’s value is used to compute the block’s output.

In the context of text analysis, a common practice is to add an
embedding layer before the LSTM layer [42, 43]. Embedding layers
serve two purposes. First, they reduce the dimensionality of the
input. Secondly, they represent input in a manner that retains its
context. The embedding layer converts each input token (typically
a word or a character, depending on the problem at hand) to a
vector representation. For example, when taking a character-level
approach, one can expect that the representations of all digits com-
puted by the embedding layer will be vectors that are close to each
other. When the problem benefits from a word-level representation,
word2vec [35] embeddings represent each word as a vector such
that words that share common contexts in the text corpus using
which the model was trained are represented by vectors that are
close to each other.

A bidirectional RNN (BRNN) network [48] is an RNN architec-
ture in which two RNN layers are connected to the output, one
reading the input in order and the other reading it in reverse or-
der. Intuitively, this allows the output to be computed based on
information from both past and future states. BRNNs have found
successful applications in various fields [2, 16, 51]. For instance, in
the context of the sentiment analysis problem, when processing
text from the middle of a sentence, text seen in the beginning of
the sentence, as well as text seen at the end the sentence, may be
used by the computation.
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Figure 2: 4-CNN architecture used

3 THE DATASET
Our work is based on a large dataset which, after pre-processing
(which we shortly describe), consists of 66,388 distinct PowerShell
commands, 6,290 labeled as malicious and 60,098 labelled as clean.
Malicious dataset commands belong to two types. For training and
cross-validation, we use 5,819 distinct commands obtained by exe-
cuting known malicious programs in a sandbox and recording all
PowerShell commands executed by the program. For testing, we
used 471 malicious PowerShell commands seen in the course of
May 2017, contributed by Microsoft security experts. Using this
latter type of malicious instances for evaluating our detection re-
sults mimics a realistic scenario, in which the detection model is
trained using data generated inside a sandbox and is then applied
to commands executed on regular machines.

As for clean commands, we received from Microsoft a collection
of PowerShell commands executed within Microsoft’s corporate
network in the course of May 2017, on machines which had no
indication of malware infection thirty days prior to the execution
of the PowerShell command. Clean commands were split 48,094 for
training and cross-validation and 12,004 for testing.

3.1 Pre-processing & Training Set Construction
We implemented a preprocessor whose key goals are to perform
PowerShell command decoding and normalization for improved
detection results. It also eliminates identical (as well as “almost
identical”) commands in order to reduce the probability of data
leakage.

First, in order to be able to apply detection on “cleartext”, our
preprocessor decodes PowerShell commands that are encoded using
base-64. Such commands are identified by the -EncodedCommand
flag (or any prefix of it starting with ’-e’ or ’-E’). All these commands
undergo base-64 decoding, as otherwise they provide no useful
detection data.6

Next, the preprocessor normalizes commands in order to reduce
the probability of a data leakage problem [25] that, in our setting,
may result from using almost-identical commands for training the
model and for validating it. Indeed, we observed in our dataset
PowerShell commands that differ only in a very small number of
characters. In most cases, this was due to either the use of different
IP addresses or to the use of different numbers/types of whitespace
characters (e.g., spaces, tabs and newlines) in otherwise-identical
commands. To avoid this problem, we replaced all numbers to

6Command arguments encoded in either base-64 or UTF8 (see entries 6, 7 in Table 1)
are not decoded since, in these cases, the encapsulating command is available and can
be analyzed by the detector.

asterisk signs (‘*’) and all contiguous sequences of whitespace cha-
racters to a single space and then eliminated duplicates.

We also observed in our dataset PowerShell case-equivalent com-
mands that only differ in letter casing (see entry 1 in Figure 1). This
was dealt with by ensuring that only a single command from each
case-equivalence class is used for training/validation. We note that
the dimensions of the dataset specified earlier relate to the numbers
of distinct commands after this pre-processing stage.

Our dataset is very imbalanced, since the number of clean com-
mands is an order of magnitude larger than that of malicious com-
mands. In order to prevent model bias towards the larger class, we
constructed the training set by duplicating each malicious com-
mand used for training 8 times so that the ratio of clean/malicious
training commands is 1:1. We preferred to handle imbalance this
way rather than by using under-sampling in order to avoid the risk
of over-fitting, which may result when a neural network is trained
using a small number of examples.

4 DETECTION MODELS
In this section we describe the machine learning models we used
for malicious PowerShell command detection. We then evaluate
and compare their performance in Section 5.

We implemented several deep-learning based detectors. In order
to assess the extent to which they are able to compete with more
traditional detection approaches, we also implemented detectors
that are based on traditional NLP-based methods. We proceed by
describing these two sets of models.

4.1 Deep-Learning Based Detectors
4.1.1 Input Preparation. Neural networks are optimized for clas-

sification tasks where inputs are given as raw signals [28, 29]. Using
these networks for text classification requires to encode the text
so that the network can process it. Zhang et al. [56] explored tre-
ating text as a “raw signal at character level” and applying to it
a one-dimensional CNN for text classification. We take a similar
approach for classifying PowerShell commands as either malicious
or benign.

First, we select which characters to encode. We do this by coun-
ting for each character the number of training set commands in
which it appears and then assigning a code only to characters that
appear in at least 1.4% of these commands. We have set the enco-
ding threshold to this value because at this point there is a sharp
decline in character frequency. Thus, the least-frequent character
encoded (which is `) appeared in approx 1.4% of commands and
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the most-frequent character that was not encoded (which is a non-
English character) appeared in only approx 0.3% of the training set
commands.

Rare characters are not assigned a code in order to reduce di-
mensionality and overfitting probability. The result is a set of 61
characters, containing the space symbol, all lower-case English
letters (we soon explain how we represent upper-case letters) and
the following symbols: -’!%&()*,./:;?@[\]_` {|}+<=>û#$ˆ˜"

Similarly to [56], we use input feature length of 1,024, so if a
command is longer than that it is truncated. This reduces network
dimensions and, as shown by our evaluation in Section 5.2, suffices
to provide high-quality classification. The input to the CNN net-
work is then prepared by using “one-hot” encoding of command
characters, that is, by converting each character of the (possibly
truncated) command to a vector all of whose first 61 entries are 0
except for the single entry corresponding to the character’s code.
All characters that were not assigned a code are skipped.

In practice, we use 62-long vectors rather than 61-long vectors
in order to deal with the casing of English letters. Unlike in most
NLP classification tasks, in the context of PowerShell commands
character casing may be a strong signal (see obfuscation method 1
in Figure 1). In order to retain casing information in our encoding,
we add a “case bit”, which is the 62’nd vector entry. The bit is set
to 1 if the character is an upper-case English letter and is set to 0
otherwise. Thus, the representation of a PowerShell command that
is being input to the CNN network is a 62x1,024 sparse matrix. A
matrix representing a command that is shorter than 1,024 is padded
with an appropriate number of zero columns.

As we described in Section 2.2, whereas CNNs are traditionally
used for computer vision and therefore typically receive as their
input a matrix representing an image, recurrent neural networks
(RNNs) are optimized for processing sequences of data. Conse-
quently, the input we provide to our RNN classifier is a vector of
numbers of size at most 1,024, whose i’th element is the code (as
described above) of the i’th command character (characters that
were not assigned a code are skipped), except that we explicitly
encode upper-case English letters since we cannot use a case bit
for the RNN input representation.

4.1.2 Training. Stochastic gradient descent is the most widely-
used method for training deep learning models [4]. We train our
deep-learning based algorithms using mini-batch gradient descent,
in which each training epoch (a complete pass over the training
set) is sub-divided to several mini-batches such that the gradient is
computed (and network coefficients are updated accordingly) for
each mini-batch.

In order to compare all our deep-learning networks on the same
basis, in all our experiments we used 16 training epochs and mini-
batch size of 128. We also experimented with other numbers of
epochs/mini-batches but none of them obtained significantly better
classification results.

4.1.3 Detection models. We implemented and evaluated 3 deep-
learning based detectors described in the following.

(1) A 9-layer CNN (9-CNN). We use the network architecture
designed by [56], consisting of 6 convolutional layers with

stride 1, followed by 2 fully connected layers and the out-
put layer. Two dropout layers are used between the 3 fully
connected layers and a max pooling layer follows the first,
second and last convolutional layers.7 Unlike the architec-
ture of [56] that uses fully connected layers of size 1,024 or
2,048, we use 256 entries in each such layer as this provides
better performance on our data.

(2) A 4-layer CNN (4-CNN). We also implemented a shallower
version of the 9-CNN architecture whose structure is de-
picted by Figure 2. It contains a single convolutional layer
with 128 kernels of size 62x3 and stride 1, followed by a max
pooling layer of size 3 with no overlap. This is followed by
two fully-connected layers, both of size 1,024 – each follo-
wed by a dropout layer with probability of 0.5 (not shown in
Figure 2), and an output layer.

(3) LSTM. We implemented a recurrent neural network model
composed of LSTM blocks and used the character-level re-
presentation described above. Since inputs are not senten-
ces of a natural language, we decided not to use Word2Vec
[33] embedding. Instead, our LSTM architecture contains an
embedding layer of size 32. The LSTM blocks we used are
bi-directional LSTM cells with output dimension of 256, fol-
lowed by two fully-connected layers, both of size 256, using
a dropout probability of 0.5.

4.2 Traditional NLP-based detectors
We used two types of NLP feature extraction methods – a character
level 3-gram and a bag of words (BoW). In both we evaluated both
tf and tf-idf and then applied a logistic regression classifier on
extracted features. The 3-gram model performed better using tf-
idf, whereas BoW performed better using tf. For each detector we
selected the hyper-parameters which gave the best cross-validation
AUC results (evaluation results are presented in Section 5).

Note that as the 4-CNN architecture uses a kernel of length three
in the first convolutional layer, the features it uses are similar to
those extracted when using the character-level 3-gram detector.

4.3 Input Representation Considerations
Recalling the obfuscation methods used by PowerShell-base mal-
ware authors for avoiding detection (see Section 2.1.1), we observe
that our input representation retains the information required for
identifying them. The commands used for obfuscation, including
their short versions (obfuscation method 2 in Figure 1), can be learnt
due to the usage of 3-sized kernels by the deep-learning models
and the usage of 3-grams by the traditional NLP models. Obfusca-
tion method 3 is addressed by the decoding performed during data
preparation (see Section 3.1).

Most other obfuscation methods (see Figure 1) use special charac-
ters such as “`”, the pipe sign “|”, the symbol “+” and the environment-
variable sign “$”. These special characters are often used when
strings and the values of environment variables are concatenated in
runtime for obfuscation. All these special characters appear in a sig-
nificant fraction of our training set’s commands and consequently
they are all assigned codes by our input encoding for deep networks.

7Dropout and max pooling layers are typically not counted towards the network’s
depth.
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Table 1: Detectors’ area under the ROC curve (AUC) values.

9-CNN 4-CNN 4-CNN* LSTM 3-gram BoW
0.985 0.988 0.987 0.988 0.990 0.989

They are also retained in the input provided to the traditional NLP
models.

As for the usage of random names (obfuscation method 11), these
typically include numbers (converted to the ‘*’ sign) or alternating
casing, and can therefore be learnt by our classifiers as well. (As
we describe later, our deep learning classifiers do a better job in
learning such patterns.) The usage of special strings such as "[char]",
"UTF8", "Base64" or the character ’‘’ is also covered by both models
as they are retained in the input.

The only obfuscation method w.r.t. which the input to some of
our detectors is superior to that provided to others is the usage of
alternating lower/upper case characters (obfuscation method 1 in
Figure 1). Whereas the case-bit was easily incorporated in the input
to our CNN deep-learning classifiers, the RNN and the traditional
NLP-based models input representations do not accommodate its
usage.

5 EVALUATION
We performed 2-fold cross validation on the training data and
present the area under the ROC curve (AUC) results (rounded to
the third decimal place) of our detectors in Table 1. In addition to
the 5 detectors presented in Section 4, we also evaluated a variant
of 4-CNN (denoted 4-CNN*) in which we did not use the case bit.

All detectors obtain very high AUC levels in the range 0.985 −
0.990. The traditional NLP-based detectors provide excellent results
in the range 0.989 − 0.990, the 4-CNN and LSTM detectors slightly
lag behind with AUC of 0.988 and 9-CNN provides a lower AUC of
0.985. The 4-CNN* detector provides slightly lower AUC than that
of 4-CNN, establishing that the case bit is beneficial.

For a detector to be practical, it must not produce many false
alarms. As the cyber security domain is often characterized by a
very high rate of events requiring classification, even a low false-
positive rate (FPR) of (say) 1% may result in too many false alarms.
It is therefore important to evaluate the true positive rate (TPR)
(a.k.a. recall) provided by detectors when their threshold is set for
low FPR levels.

Table 2 presents the TPR of our detectors for FPR levels 10−2,
10−3 and 10−4 on both the training/cross-validation and the test
sets. Since we have a total of about 12,000 clean commands in the
test set, we stop the analysis at FPR level of 10−4. Presented values
in the “Cross-validation” part of the table are the average of the
two folds. Values in the “Test set” part were obtained by models
trained on the training set in its entirety.

Focusing first on cross-validation results, it can be seen that,
while all classifiers achieve high TPR values even for very low FPR
levels, the performance of the traditional NLP detectors is better.
The 3-gram detector leads in all FPR levels with a gap that increases
when FPR values are decreased. Specifically, even for an FPR of
1:10,000 it provides an excellent TPR of 0.95. Among the deep-
learning based detectors, 4-CNN and LSTM are superior to 4-CNN*

and 9-CNN. For FPR rate of 1:10,000, 4-CNN and LSTM provide
TPRs of 0.89 and 0.85, respectively. 9-CNN obtains the worst results
in all experiments.

Results on the test set are significantly lower but still good. It
is noteworthy that the gaps between the traditional NLP and the
4-CNN/LSTM models that we observed on the training data almost
vanish on the test data. This seems to indicate that the latter models
are able to generalize better.

For an FPR of 1:100, the best performers are 4-CNN and 4-CNN*
with a TPR of 0.89, LSTM is second best with 0.88 and both the
3-gram and BoW detectors obtain a TPR of 0.87. For FPR 1:1,000 the
3-gram detector is best with TPR of 0.83, only slightly better than
LSTM’s 0.81 TPR, and for FPR 1:10,000, all of 3-gram, 4-CNN and
LSTM (ordered in decreasing performance) identify approximately
two thirds of malicious commands. The significance of the case
bit is evident when comparing the results of the 4-CNN and the
4-CNN* detectors on the test set for FPR level of 1:10,000. The TPR
when using the case bit (4-CNN) is higher by almost one third than
that when it is not used (4-CNN*). 9-CNN is the worst performer
also in the test set experiments, by a wider margin than in the
cross-validation tests.

As we’ve mentioned, the performance on the test set is signifi-
cantly lower than that of cross-validation in all experiments. This
is to be expected: whereas training set malicious commands were
generated by running malware inside a sandbox, the malicious
commands in the test set were contributed by security experts.
Consequently, test set malicious commands may have been col-
lected in different ways (e.g. by searching the Windows registry for
malicious PowerShell commands) and may have been produced by
malware none of whose commands are in the training set.

5.1 A Deep/Traditional Models Ensemble
We next show that by combining 4-CNN – our best deep learning
model and 3-gram – our best traditional NLP model, we are able to
obtain detection results that are better than those of each of them
separately. We then analyze the type of malicious commands for
which the deep model contributes to the traditional NLP one.

The D/T Ensemble is constructed as follows. We classify a com-
mand using both the 4-CNN and the 3-gram detectors, thus recei-
ving two scores. If either one of the scores is 0.99 or higher, we
take the maximum score, otherwise we take the average of the two
scores. We evaluated the Ensemble’s TPR by FPR performance on
the test set in the same manner we evaluated the non-Ensemble

Table 2: TPR by FPR per model: cross-validation and test re-
sults.

FPR Cross-validation Test set
10−2 10−3 10−4 10−2 10−3 10−4

9-CNN 0.95 0.89 0.73 0.72 0.52 0.24
4-CNN 0.98 0.96 0.89 0.89 0.76 0.65
4-CNN* 0.97 0.93 0.85 0.89 0.72 0.49
LSTM 0.98 0.95 0.85 0.88 0.81 0.64
3-gram 0.99 0.98 0.95 0.87 0.83 0.66
BoW 0.98 0.93 0.87 0.87 0.50 0.35
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algorithms (see Table 2). The D/T Ensemble significantly outperfor-
med all non-Ensemble algorithms and obtained on the test set TPRs
of 0.92, 0.89 and 0.72 for FPR levels of 1:100, 1:1,000 and 1:10,000,
respectively.

In order to gain better visibility into the contribution of the
4-CNN detector on top of the 3-gram detector, we present in Figu-
res 3a-3c the confusion matrixes of the 3-gram, 4-CNN and D/T
Ensemble detectors on the test set. These results are obtained using
the lowest threshold (for each of the algorithms) that provides an
FPR of no more than 10−3. Since the test set contains approximately
12,000 clean instances, this means that the algorithms must have at
most 12 false positives.

As can be seen by comparing Figures 3a and 3c, the D/T Ensemble
adds 42 new detections on top of those made by the 3-gram detector,
with only 4 new false positives. We analyzed these new detections
in order to understand where the deep learning model is able to
improve over the traditional NLP model.

Out of the new 42 detected commands, 15 commands contain a
sequence of alternating digits and characters. In most cases, this
sequence represented the name of the host or domain from which
the command downloaded (most probably malicious) content. Re-
call that in our pre-processing of commands, we convert digits to
asterisks (see Section 3.1), thus the host/domain name contains
many asterisks in it. An example of the usage of such a name that
appeared in one of the newly detected commands is:
“...DownloadFile(’http://d*c*a*ci*x*.<domain>’)...”.

Each of these names appears only once and they are most proba-
bly generated by a domain generation algorithm (DGA) [50] used
by the malware for communicating with its command and control
center. Since these names are unique and seem random, the 3-gram
algorithm is unable to learn their pattern, while the neural network
is able to.

Figure 4a depicts an example of how such a host name is encoded
in the input to the neural network. Note the pattern of alternating
zeros and ones in the row corresponding to the symbol ‘*’. Figure 4b
depicts a neural network filter of size 3 that is able to detect occur-
rences of this pattern. The filter contains ones in the first and third
columns of the row corresponding to ‘*’ (where the ‘*’ symbol is
expected to be found) and a zero in the middle column of that row,
signifying that the character between the two digits is of no sig-
nificance. When this filter is applied to the characters sequence
depicted in Figure 4a, it creates a relatively strong signal. On the
other hand, considering the 3-gram’s feature extraction algorithm,
since the character between the two digits changes from one com-
mand to the other, the model is unable to learn this pattern.

A similar argument can explain the detection of a few additional
commands by the D/T Ensemble that were not detected by 3-gram.
These commands contain a random sequence of characters alterna-
ting between lower and upper case, most probably generated by a
DGA algorithm as well. Using the case bit provided as part of its
input, 4-CNN is able to identify this pattern.

We note that in both the above cases, the PoweShell commands
may include additional indications of maliciousness such as the
web client or the cmdlets they use. Nevertheless, it is the ability to
detect patterns that incorporate random characters and/or casing
that causes 4-CNN to assign these command a score above the
threshold, unlike the 3-gram detector.

Our ensemble detector had only seven false positive (FPs), which
we manually inspected. Two FPs exhibited obfuscation patterns –
one used [System.Text.Encoding]::UTF8.GetString (usage of
UTF8 was observed in 1,114 of the clean commands) and the other
used the -EncodedCommand flag (which was observed in 1,655 of the
clean commands). The remaining five FPs did not use any form of
obfuscation, but they all used at least two flags such as -NoProfile
and -NonInteractive (each seen in 5,014 and 5,833 of the clean
commands, respectively).

5.2 Command Length Considerations
As previously mentioned, our detectors receive as input a 1,024-long
prefix of the PowerShell command and longer commands are being
truncated. As shown by our evaluation, this suffices to provide
high-quality classification on our dataset.

A possible counter-measure that may be attempted by future
malware authors for evading our detection approach is to construct
long PowerShell commands such that malicious operations only
appear after a long innocent-looking prefix consisting of harmless
operations. In the following, we explain how such a hypothetic
counter-measure can be thwarted.

Analyzing our dataset’s distribution of command lengths, we
find that the length of 86% of all malicious commands and 88% of all
clean commands is 1,024 or less. Moreover, the length of 96.7% of
all malware commands and, more importantly, the length of 99.6%
of all clean commands is 2000 or less. We remind the reader that all
commands were used by our detectors regardless of their length
– commands longer than 1,024 characters were simply truncated.
Given the good performance of all detectors, we found no reason
of using a longer input size. It would be straightforward to modify
our detectors for accommodating inputs of size 2,048 or longer if
and when the characteristics of malicious commands change such
that this would be necessary. As of now, clean commands whose
length exceeds 2000 are very rare, deeming them suspicious.

Figure 5 presents the command-length distributions of benign
and malicious commands in our dataset for commands of length
1,024 or less. The distribution of malicious command length is
relatively skewed to the right, indicating that malicious PowerShell
commands tend to be longer than benign commands. The high
peak of very short malicious commands is to due to Kovter trojan
commands [8] that constitute approximately 8% of the malicious
commands population in our dataset.

6 RELATEDWORK
Zhang et al. [56] introduced a deep-learning approach for text
classification in which the input to convolutional neural networks
(CNNs) is at character-level instead of word-level. They compared
their deep-learning based classifiers with word-based traditional
NLPmethods (such as n-grams) and with recurrent neural networks
(using LSTM blocks). Their empirical evaluation was conducted
using sentiment analysis and topic classification datasets. Their
results show that, while traditional methods provided better perfor-
mance on small/medium datasets, character-based CNNs outper-
formed them on larger datasets. Our 9-CNN architecture is almost
identical to theirs and its inputs are encoded in a similar manner.
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Figure 4: A hostname encoding and a filter which was used
by the network to identify alternating digits and letters
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Figure 5: PowerShell command-length distributions of clean
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Prusa and Khoshgoftaar [40] compare several architectures for
short text sentiment analysis classification applied on a large dataset
of tweets. They show that two relatively shallow architectures (one
comprising 3 convolutional layers and 2 fully connected layers and
the other comprising a single convolutional layer followed by a

single LSTM layer) gave the best results. Our results are aligned
with theirs in that also in our empirical evaluation the relatively
shallow 4-CNN network achieved better classification performance
than the deeper 9-CNN network. In both settings, classified text is
relatively short – up to 140 characters inputs in their study and up
to 1,024 characters in ours.

Deep learning approaches are increasingly used in recent years
for malware detection. Some of these works (see [1, 11, 38, 45] for
a few examples) classify programs as either malicious or benign
based on their binary code and/or their runtime behaviour. In order
for the neural network to be able to classify executable programs,
a non-trivial feature extraction pre-processing stage is typically
required whose output is fed to the neural network.

Athiwaratkun and Stokes [1] used a large dataset consisting of
Windows portable executable (PE) files. They applied deep mo-
dels to inputs representing the system calls made by these pro-
grams. They implemented and evaluated several models, including
a character-level CNN similar to the one used by [56]. Unlike our
results, in their empirical evaluation the LSTM model achieved the
best results. However, none of their neural networks was shallow.

Smith et al. also studied the problem of malware detection based
on system calls made by PE executables [49]. They used several
classification algorithms, including Random Forest, CNN and RNN.
They observed a decay in classification quality when input length
exceeded 1,000 system calls. Although problem setting and input
domains differ, both our work and theirs provide evidence that
limiting input length by some (domain specific) threshold may
be sufficient (and is sometimes even required) for obtaining good
performance.

Similarly to our work, Saxe and Berlin use deep learning models
for malware detection by analyzing “cleartext” [46]. More specifi-
cally, they apply these models on a large dataset consisting of (both
benign and malicious) URLs, file paths and registry keys. Their
CNN architecture uses a single convolutional layer, as does our
4-CNN model.

Although some previous studies investigated the problem of
detecting malicious scripting-language commands/scripts (where
cleartext classification can be applied), to the best of our knowledge
none of them addressed PowerShell. Several prior works presented
detectors of malicious JavaScript commands by employing feature
extraction pre-processing followed by the application of a shallow
classifier (see, e.g., [9, 10, 30]).
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Wang et al. used deep models for classifying JavaScript code col-
lected from web pages [53]. Similarly to our work, their model uses
character-level encoding, with an 8-bit character representation.
They compare their classifiers with classic feature extraction based
methods and study the impact of the number of hidden layers and
their size on detection accuracy.

A few reports by AV vendors published in recent years surveyed
and highlighted the potential abuse of PowerShell as a cyber at-
tack vector [37, 39, 52]. Pontiroli and Martinez analyze technical
aspects of malicious PowerShell code [39]. Using real-world ex-
amples, they demonstrate how PowerShell and .NET can be used
by different types of malware. Quoting from their report: “Vast
amounts of ready-to-use functionality make the combination of
.NET and PowerShell a deadly tool in the hands of cybercriminals”.

A recent comprehensive technical report by Symantec dedicated
to PowerShell’s abuse by cybercrimials [52] reported on a sharp
increase in the number of malicious PowerShell samples they re-
ceived and in the number of penetration tools and frameworks
that use PowerShell. They also describe the many ways in which
PowerShell commands can be obfuscated.

Collectively, these reports shed light on the manner in which
PowerShell can be used in different stages of a cyber attacks –
from downloading malicious content, through reconnaissance and
malware persistence, to lateral movement attempts. We have used a
few of the insights they provide on PowerShell attacks for designing
our detection models and for preprocessing PowerShell commands.

As we’ve mentioned previously, Microsoft improved the logging
capabilities of PowerShell 5.0 in Windows 10, with the introduction
of the AntiMalware Scan Interface (AMSI), but many methods of
bypassing it have already been published. This problem was dis-
cussed and addressed in [41], where the fact that PowerShell is
built on .NET architecture was used for monitoring PowerShell’s
activity, by leveraging .NET capabilities. As discussed in their work,
the proposed solutions require some adjustments which may hurt
PowerShell’s performance, as well as generate some artifacts on
the machine.

7 DISCUSSION
PowerShell commands can be executed from memory, hence iden-
tifying malicious commands and blocking them prior to their exe-
cution is, in general, impractical. We therefore estimate that the
most plausible deployment scenario of our detector would be as a
post-breach tool. In such a deployment scenario, PowerShell com-
mands that execute will be recorded and then classified by our
detector. Commands classified as malicious would generate alerts
that should trigger further investigation. In corporate networks,
this type of alerts is typically sent to a security information and
event management (SIEM) system and presented on a dashboard
monitored by the organization’s CISO (chief information security
officer) team.

There are several ways in which this work can be extended. First,
while we have implemented and evaluated several deep-learning
and traditional NLP based classifiers, the design space of both ty-
pes of models is very large and a more comprehensive evaluation
of additional techniques and architectures may yield even better
detection results.

Secondly, in this work we targeted the detection of individual
PowerShell commands that are executed via the command-line. An
interesting direction for future work is to devise detectors for com-
plete PowerShell scripts rather than individual commands. Such
scripts are typically longer than single commands and their struc-
ture is richer, as they generally contain multiple commands, functi-
ons and definitions. Effective detection of malicious scripts would
probably require significantly different input encoding and/or de-
tection models than those we used in this work.

Another interesting avenue for future work is to devise detectors
that leverage the information collected by Microsoft’s AntiMalware
Scan Interface (AMSI) [6]. As mentioned previously, AMSI is able
to record PowerShell commands (generated both statically and
dynamically) that are executed in run-time, so detectors may have
more data to operate on. However, although AMSI may be less
vulnerable to many of the obfuscation methods described in Section
2.1.1, attackers may be able to find new ways of camouflaging the
AMSI traces of their malicious commands.

8 CONCLUSION
In this work we developed and evaluated two types of ML-based
detectors of malicious PowerShell commands. Detectors based on
deep learning architectures such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), as well as detectors
based on more traditional NLP approaches such as linear classifica-
tion on top of character n-grams and bag-of-words.

We evaluated our detectors using a large dataset consisting of
legitimate PowerShell commands executed by users in Microsoft’s
corporate network, malicious commands executed on virtual machi-
nes deliberately infected by various types of malware, andmalicious
commands contributed by Microsoft security experts.

Our evaluation results show that our detectors yield high perfor-
mance. The best performance is provided by an ensemble detector
that combines a traditional NLP-based classifier with a CNN-based
classifier. Our analysis of malicious commands that are able to
evade the traditional NLP-based classifier but are detected by the
CNN classifier reveals that some obfuscation patterns automati-
cally detected by the latter are intrinsically difficult to detect using
traditional NLP-based classifiers. Our ensemble detector provides
high recall values while maintaining a very low false positive rate
and so holds the potential of being useful in practice.
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Abstract

A proof-of-concept design of a nano-robot which can navigate, detect cancer cells and actuate the
release of chemicals in blood is discussed. The nano-robot is designed with blood energy harvesting
capability and accumulation of electricity in a capacitor, that forms the main body of the nano-
robot. The nano-robot is immobilized with glucose hunger-based cancer detectors that reduces the
electrical resistance of a nano-tube, when attached to a cancer cell. This mechanism, in-turn allows
electric current to activate a nano-electrical-mechanical (NEM) relay (mechanical transistor) to
break, exposing a chemical material identified by the immune system for cell elimination. This
concept is in line with the effort to design an autonomous computational nano-robot for in-vivo
medical diagnosis and treatment. The concept can also be considered as a step to bridge the gap
between theoretical swarming/navigation techniques and a computational hardware for plausible
implementation of the theory.

1 Introduction

In general, programmable matter is any matter that has the ability to change its physical prop-
erties (like shape, density, moduli, conductivity, optical properties, etc.) based on user input or
autonomous sensing. We are particularly interested in implementable programmable matter, com-
posed of nano-robots. Key applications to nano-robotics are medical target identification, targeted
drug delivery and minimal invasive surgery [1–3], to name a few. In our previous work [4], we pre-
sented a swarming algorithm for in-vivo nano-robots inspired from caterpillar swarm in nature,
wherein, we suggested instructing the computational particles to create layered and connected
structures, for the benefit of speed and energy preservation. We put forward a proposition that
the theoretical concept needs to be supported by hardware feasibility for a plausible implementa-
tion of a computational nano-robot.

Through this work, we have attempted to design autonomous nano-robots which can harvest
energy from the glucose in the blood and activate a response based on bio-detection. We will
present below the design of the nano-robot structure with three modules, (i) External coated
energy harvester electrodes and cylindrical capacitor, (ii) Detector and (iii) Actuator. We believe
this facile theory of inorganic nano-robot platform design can help to bridge the gap between
existing research on bio-nano sensing in combination with advanced nano transistor technology
towards cancer treatment. A collective system of electrical manipulation, bio-detection and NEM
actuation can visualize the programmability in the nano matters.
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2 Design of Nano-Robot Structure

2.1 Energy harvester and Metal-Insulator-Metal (M-I-M) cylindrical nano-
capacitor

A nano-robot can be termed autonomous if there is no dependency on external sources for its
operation. The first step to visualize an autonomous nano-robot is to provide an energy source
to it. Thus, as a first module, we wanted to show that autonomy can be introduced to the
nano-robot by harvesting energy from blood. At injection, the nano-robots are under constant
influence of the blood. The velocity of blood flow ranges from 0.3 − 40 cm/sec and the glucose
concentration in blood is (3.9 − 6.4) mM/L. With an estimated harvester total surface area of
2.041 × 10−10 cm2 and with the displacement of 0.3 − 40 cm, the volume of blood interacting
with the nano-robot per second is estimated to be (6.123 − 816.4) × 10−14 L/Sec. On average,
if 5.5 mM/L is the concentration of glucose, the number of moles of glucose interacting with the
nano-robot and the number of electrons in the interacting glucose concentration is calculated to
be (33.67−4490.2)×10−14 mM/Sec and (40.4−5408.8)×1010 Electrons/Sec, respectively. This
gives the source current of the harvester to be (64.64 − 8654) nA. The capacitance is calculated
to be 4.702× 10−16 F 1.
To compliment the calculations of the capacitance, we simulated a 3-D model of a concentric
cylindrical Metal-Insulator-Metal (M-I-M) encapsulated capacitor using COMSOL Multiphysics
(License #17076110). The simulated structure is precisely maintained within a 100nm dimension
to (i) qualify the structure as a nano-robot and (ii) to allow the nano-robot to immobilize itself
on the cell surface and act as a parasite. The provided energy harvesting capability will enhance
the nano-robot to power, in particular, the detector to be used for actuation.

2.2 Bio-Detector

The second part of our proof-of-concept is to show the bio-detection mechanism of cancer cells
and to provide an electrical output to logical decisioning. Detection of tumor cells, in-vivo, also
means an active navigation of the nano-robots using chemical pheromones, acoustic vibrations,
photo/fluorophores etc., for binding to tumor tissues. In our case, the glucose hunger of cancer
cells [5] and the nano-robots immobilized with glucose or its variants, yields their navigation in
blood. Assuming now, that our nano-robots can move swim randomly in blood, harvest and store
energy from the blood glucose, the next step would be to utilize stored charges for a logical deci-
sion making. The black-box between harvested energy and decisioning is bio-detection.
A chemical detection of cancer cell should induce a change in the charge flow between the elec-
trodes. This hysteresis in charge flow rate can be considered as a normalized electrical low and
high. The change in specific conductance of the detector is considered as the electrical signature
for detection of the cancer. Details on the design of detector and its electrical output parameters
are explained in the technical report.

2.3 Actuator

Until the previous sections, the concept is extended to the point where the nano-robots are au-
tonomous in terms of their power and navigation and computationally equipped to handle a bit
change of information. In this section, we will discuss the possibility of a Nano-Elecro-Mechanical
(NEM) switch which gets triggered by the conductance change of immobilized CNT bio-detector.
This will ensure that the matters will respond appropriately depending on the decided logical
operation. Miniature mechanical switches suitable for applications which require sub − 100mV
operation was demonstrated here [6, 7]. We show that a mechanical chamber can be designed to
lock necessary drug or a combination of drugs, that can be unlocked, when increase in electrical

1A detailed technical report with all the calculations and simulations, is linked here (TR 18-02).
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power flow due to bio-detection provides adequate electrostatic force to break the ceiling of the
chamber, eventually exposing the drug to the environment. This signal is expected to cause a
mechanical break, high enough to surpass the stress gradient of the ceiling structure in the actua-
tor. The mechanical break exposes a detectable drug causing the immune system to recognize the
attached nano-robot and the cancer cell. The electrostatic force Fe acting on the parallel plates
due to change in dielectric thickness is given by

Fb = Fe =
1

2
V 2
b

εAc
d2

(1)

where Vb and Fb are the breakdown voltage and force of the NEM chamber with the glued drug
inside it and Ac is the area of the ceiling and d is the distance between the plates. The resistances
R1 and R2 tunes the breakdown voltage Vb, such that the NEM chamber collapses. An increase in
input voltage, Vin due to detection, will result in the breakage of NEM box (when Vin reaches Vb),
thus exposing the glued drug. The electrostatic force Fe on the chamber electrode was found to
be ≈ 1.476nN . It is presumed that the electrostatic force acting on the chamber surface is smaller
than (before detection) and higher than (after detection) Femin and Femax respectively, i.e,

Before Detection: Fs = 1
2V

2
s
εAc
d2

, where, Fs < Femin ( Stable condition)

After Detection: Fb = 1
2V

2
b
εAc
d2

, where, Fb ≥ (Femax + ∆Fe) ( Breaking condition)

3 Conclusion and future work

A facile approach of an energy harvester, glucose hunger detector for cancer cells and actuator for
drug exposure design is discussed. A collective system of electrical manipulation, bio-detection and
NEM actuation to visualize the programmability in nano-robots is presented. The calculations and
simulation results provide a proof-of-concept towards a plausible implementation of an autonomous
computational nano-robot with bio-detection, logical decisioning and actuation for drug exposure.
To the best of our knowledge, this work is the first of its kind that presents an overall picture
towards an autonomous computational nano-robot for cancer diagnosis and treatment.
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Abstract. Latent variables may represent the origin of almost any scientific, social, or
medical phenomena. While models with only observed variables have been well stud-
ied, learning a latent variable model (LVM) allowing both types of variables is more
difficult. Moreover, latent variables by nature often change dynamically (temporally),
which adds to the challenge and complexity of learning, but current LVM learning
algorithms do not account for the natural dynamics. Here, we propose local learning
of an LVM based on pairwise cluster comparison to learn intra- and inter-slice edges of
a dynamic Bayesian network with latent variables and causal interrelationships among
latent variables, in addition to those with observed variables.

Keywords: latent variable models · temporal models · causal discovery.

1 Introduction

Our world is very complex and sophisticated composed of variables that are observed and
unobserved (latent). Latent variables can be psychological concepts such as mood and sat-
isfaction, or sensory but difficult or expensive to measure (e.g., quarks, some medical tests).
In learning an LVM, we do not know their number, cardinality (number of states), interre-
lations, and relations to the observed variables that measure them. Finding causal relations
manifested in an LVM is a most difficult problem because, in general, the joint distribution
can be generated by an infinite number of different LVMs [4]. Structural EM (SEM) learns an
LVM given the number of latent variables and their cardinality as an input. The fast-causal
inference (FCI) algorithm finds evidence for the existence of latent variables, but it does not
explicitly finds them. The hierarchical latent class (HLC) algorithm learns a rooted tree in
which all non-leaf nodes are latent variables, however, since it aims at the untrue assumption
that observed variables are independent given the class variable, it does not provide casual
explanations. A subclass of LVM is the multiple indicator model (MIM). BuildPureClusters
(BPC) [4] learns an equivalence class of a MIM by searching for the set of vanishing tetrad
constraints. Learning pairwise cluster comparison (LPCC) [2] leverages cluster analysis to
identify from instantiations of the observed variables the latent ancestors of these variables.
The main idea is that any change in the value of an exogenous (EX) (i.e., zero in-degree)
latent variable should be reflected in the values taken by the non-EX latent and observed
variables that are descendants of this EX. Thus, if we want to identify an EX latent variable,
we should check for changes in the observed variables that are its descendants. These can
be revealed by comparing data clusters characteristics over observed variable instantiations,
e.g., by comparing cluster centroids pairwise; each comparison reveals a value configuration
of the EX latent variables, and together, all comparisons reveal the latent variables them-
selves. Similarly, the relationships among the latent variables can be learned [2]. A more
challenging problem is learning a dynamic (temporal) LVM, where the latent variables and
their interrelations may change in time. A common graphical method to model dynamic
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systems is the hidden Markov model (HMM) and its extensions, e.g., the factorial HMM,
and the dynamic Bayesian network (DBN) [3] that generalizes the HMM model family. An
advantage of a DBN over an HMM is its ability to represent multi variable complex models in
a relatively easy manner. However, like the (static) search and score algorithms of learning
an LVM (e.g., SEM), the learned DBN model may fit the data reasonably well, but miss
representing causal relations. Thus, in this paper, we combine learning a static causal LVM
and that of a DBN to learn a temporal LVM. More explicitly, to learn a temporal LVM,
we learn a latent DBN by locally learning a MIM structure based on the LPCC algorithm
and scoring the structure edges in each time slice, and then learning the parameters using a
backward/forward algorithm.

2 Combining local to global graphs

Local to global learning (LGL) of a Bayesian network (BN) was introduced by [1] who
suggested to learn locally (and separately) the Markov blanket (MB) of each variable in the
BN and combine all local graphs/structures into the global graph. However, simple LGL
approaches based on edge scoring are applicable only to fully observed data. For example, in
the presence of latent variables, learning an LGL will lead to the wrong MBs (since a latent
variable d-connects observed variables for which it is a common cause). Also, edge scoring
is not applicable since the number of latent variables and their identities may change across
local graphs. Therefore, we introduce a new method to merge local graphs into a global BN
in the presence of latent variables. The local LVMs will be learned based on sequential time
slices, and their unification will provide the (global) temporal LVM. Our proposed method
makes three assumptions: 1) Data are assumed to be temporal and stationary 2) The model
is a DBN, i.e., a pair (BN1, BN→), where BN1 defines the BN in t = 1 and BN→ is a
two-slice temporal BN (2-TBN), with latent variables, and 3) Each slice in the 2-TBN is a
pure measurement model (PMM).

Temporal and stationary data are appropriate for LGL, where a local graph is learned
for each time slice and the global graph is a DBN. More explicitly, we suggest that each local
graph would be a 2-TBN of two consecutive time slices because in DBN we need to learn both
inter (between-slice) and intra (within-slice) edges. Since we base this local learning on the
LPCC algorithm, we call our algorithm LGL-based LPCC. The LGL-based LPCC algorithm
has two stages: in the first stage, it learns sets of observed that are children of the same latent
variables (we call it MSO following [2]) while in the second, it finds the relationships between
latent variables based on co-occurrences of these relationships across the local graphs. We
demonstrate the algorithm using a synthetic example. Consider a dataset representing a
temporal model with five slices (T = 5) and three observed variables per slice. Fig. 1 shows
the results of learning four local graphs based on LPCC over (t ∩ t + 1), (t + 1 ∩ t + 2),
(t+ 2∩ t+ 3), and (t+ 3∩ t+ 4). The LGL-based LPCC algorithm merges these local graphs
into a single 2-TBN by forming:

1. Matrix S (Table 1a) counts (across all local graphs) for each two observed variables the
number of times they share a common latent variable (e.g., X3 and X4 share a common
latent variable in two local graphs, as in Fig. 1(b) and 1(d), thus, S(3, 4) = S(4, 3) = 2).

2. A list LT per each observed variable is created to hold its most common observed variables
in terms of sharing the same latent variable. The lists (due to Table 1a) are:
1) X1 ⇒ X2, X3 3) X3 ⇒ X1, X2 5) X5 ⇒ X6
2) X2 ⇒ X1, X3 4) X4 ⇒ X6 6) X6 ⇒ X4, X5.

3. LT s feed a final set, FS, of MSOs. X1, X2, and X3 (1) are entered first to FS. The next
two lists (2 and 3) have no effect on FS. X4 and X6 are merged (4) before being merged
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(a) (b) (c) (d)

Fig. 1. Four local graphs for five slices and three observed variables per slice.

again with X5 (5) (chain rule). Note, that LT s are not necessarily symmetric (e.g., Xi

can be in Xj ’s list, but not vice versa). Finally, FS is: {{X1, X2, X3}, {X4, X5, X6}}.
4. In the second stage, the co-occurrence matrix between latent variables is determined

based on the local graphs. According to the first local graph (Fig. 1a), L1 → L2, and
thus the (1, 2) entry in Table 1b increases in 1. Note that according to FS, L1 and L2 are
associated with {X1, X2, X3} and {X4, X5, X6}}, respectively. The second local graph
(Fig. 1b) adds no information about the relation between L1 and L2. The third local
graph (Fig. 1c) also shows L1 → L2, but since the connections of the observed variables
to the latent variables are opposite in their associations according to FS, there is no
support to L1 → L2 but to L2 → L1, and thus the (2, 1) entry in Table 1b increases in 1.
The fourth local graph (Fig. 1d) increases the (1, 2) entry in Table 1b in 1 because three of
the four connected observed variables, {X1, X2, X3}, provide stronger evidence in favor
of L1 than the single connected observed variable, X4, provides in favor of L2. Because
entry (1, 2) is larger than entry (2, 1), the algorithm learns L1 → L2 in the final graph (in
case of a tie, the edge remains undirected). Note that if the first and third local graphs
were examined in the opposite order, we would have obtained the symmetric matrix to
Table 1b but learned the same resulted graph (′′L1′′ and ′′L2′′ are arbitrary indicated by
LPCC). Thus, in this example, the final 2-TBN that LGL-based LPCC learns is the one
that can be seen in Fig. 1(a).

Table 1. (a) Matrix S counts commonly shared latent variables for pairs of observed variables. (b)
Matrix (CO) holding the co-occurrences counts of edges between latent variables.

X1 X2 X3 X4 X5 X6

X1 - 4 4 2 0 1

X2 4 - 4 2 0 1

X3 4 4 - 2 0 1

X4 2 2 2 - 2 3

X5 0 0 0 2 - 3

X6 1 1 1 3 3 -

L1 L2

L1 - 2

L2 1 -

(a) (b)
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Extended Abstract

The Resource-as-a-Service (RaaS) cloud [8] is an economic model of cloud com-
puting that allows providers to sell adjustable quantities of individual resources
(such as CPU, RAM, and I/O resources) for short intervals—even at a sub-
second granularity. In the RaaS cloud, clients can purchase exactly the resources
they need when they need them. As price wars drive cloud providers towards
this model [10], they start offering plans for dealing with resource requirement
bursts: CloudSigma offered time-varying burst prices in 2010 [3], Amazon EC2
offered burstable performance instances in 2014 [4], Google Cloud offered Pay-as-
you-go in 2016 [5], and Microsoft introduced the burstable Azure cloud Instance
in 2017 [2]. When resources are dynamically rented, e-commerce requires calcu-
lating online economic decisions. Such decisions can only be made in real time
by automated agents. E-commerce also requires efficient and computationally
simple allocation mechanisms. These mechanisms may be centralized (as in an
auction) or decentralized (as in a marketplace [16] or by negotiations [7]).

We see that horizontal scaling (adding more machines) has already matured
to the point of incorporating advanced economic mechanisms such as auctions
(e.g., AWS Spot Instances [9], Packet [6], and Alibaba Cloud Spot Instances [1]).
Nevertheless, in the case of vertical scaling (increasing an existing machine’s
resources) we are only now seeing signs of early adoption of such mechanisms
(e.g., Amazon EC2 T2 Instances, Google Cloud Platform, CloudSigma).

In the past few years, numerous studies have been published regarding differ-
ent attack methods relevant to clouds, e.g., side channel [13], Resource Freeing
Attack (RFA) [14], co-location attacks [15], and Economic Denial of Sustainabil-
ity (EDoS) [12]. Most of the studied attacks are aimed at penetrating the security
of the system and not at the economic mechanism that drives the resource allo-
cation in the system. EDoS attacks are an exception: they cause victims to scale
their resources beyond their economic means. In this work we take this line of
vulnerabilities further, presenting combined economic-computer-science attacks.

Our contribution is the design of two low-cost economic attacks aimed at
auction based clouds. The implementation and evaluation of the attacks were
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done using Ginseng [11], a market driven cloud system for efficient RAM alloca-
tion. The first attack is the Price Raising attack. This attack raises prices in the
system, thus reducing the victim’s profit and forcing it to free resources. This
enables the attacker to rent the freed resources at a negligible cost. The second
attack is the Elbowing attack. This attack hinders the victim’s performance by
outbidding it for a single round at specific points in time. Due to the nature of
RAM usage, the victim suffers from reduced performance even after the attack
round ends, and it re-acquires the RAM. We demonstrate how the Price Rais-
ing attack reduces the victim’s profit sevenfold and the Elbowing attack causes
damage of $290 − $630 for every dollar spent on the attack.

The Elbowing attack can be applied to various economic mechanisms. Future
works will try to amplify the effects of the Elbowing attack, e.g by coupling it
with an additional attack which will inform the attacker of the optimal attack
times. An optimal time for an attack like this depends on the quality and quantity
of the evicted data. The RAM utilization is of high quality when the victim values
its RAM usage the most. This valuation might be deduced from its bid price, or
from side channels such as the victim’s traffic volume or destination.
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Abstract. Data publishing poses many challenges regarding the efforts
to preserve data privacy, on one hand, and maintain its high utility, on
the other hand. The Privacy Preserving Data Publishing field (PPDP)
has emerged as a possible solution to such trade-off, allowing data min-
ers to analyze the published data, while providing a sufficient degree of
privacy. Most existing anonymization platforms deal with static and sta-
tionary data, which can be scanned at least once before its publishing.
More and more real-world applications generate streams of data which
can be non-stationary, i.e., subject to a concept drift. In this paper, we in-
troduce MiDiPSA (Microaggregation-based Differential Private Stream
Anonymization) algorithm for non-stationary data streams, which aims
at satisfying the constraints of k–anonymity, recursive (c, l)–diversity,
and differential privacy while minimizing the information loss and the
possible disclosure risk. In our empirical evaluation, we analyze the per-
formance of various data stream classifiers on the anonymized data and
compare it to their performance on the original data. We conduct exper-
iments with seven benchmark data streams and show that our algorithm
preserves privacy while providing higher utility, in comparison with other
state-of-the-art anonymization algorithms.

Keywords: Privacy-Preserving Data Publishing · Concept Drift · Dif-
ferential Privacy · Microaggregation · k–Anonymity · (c, l)–Diversity

1 Introduction

Publishing collected data is not trivial anymore, since it can pose some risks to
individual’s privacy, such as sensitive information leakage or possible inference
by adversaries. Moreover, simply removing any explicit identifiers, such as name
or ID, is not enough to guarantee user’s privacy.

The PPDM (Privacy-Preserving Data Mining) field [1] concentrates on mask-
ing the output of any interactive mining mechanism, providing the data miner
with an anonymized version of the results. A related extension to PPDM, PPDP
(Privacy-Preserving Data Publishing) [6] has been introduced as a more flexible
non-interactive mechanism, in which data is anonymized and later published for
further research or analysis, without depending on a specific data mining task.
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In this paper, we present MiDiPSA (Microaggregation-based Differential Pri-
vate Stream Anonymization) for publishing non-stationary [7] data streams, bal-
ancing between privacy and utility. Post-analysis of the anonymized tuples is
performed using four stream classifiers which are trained on the published data
and tested relatively to their performance on the original data.

2 Microaggregation-based Differential Private Stream
Anonymization (MiDiPSA) for non-stationary data

Based on [4], our algorithm 3 comprises four steps: In the first step, incremen-
tal clustering of the tuples in the stream is performed, searching for the closest
cluster that minimizes the incurred anonymization information loss. In the sec-
ond step, the tuples in each cluster are aggregated to a centroid, representing
the cluster. Then, statistical multivariate test is used for detecting concept drift
in each cluster. Finally, noise from Laplace mechanism [5] is added to the cen-
troid of each cluster, satisfying k–anonymity [11] and (c, l)–diversity [9], before
publishing the tuples in the cluster.

3 Evaluation

We evaluate the performance of the proposed anonymization algorithm on four
real and three synthetic stream datasets, previously utilized by the Massive
Online Analysis software (MOA) [2]. Each dataset was used to simulate a stream,
handling one tuple at-a-time. Information loss and the disclosure risk of the
published anonymized tuples were measured for assessing privacy vs. utility.
Average publishing delay of the tuples was also measured, as an indication of the
feasibility of our method in real-world applications that often require minimum
delay.

Fig. 1(a) compares the incurred information loss of the published tuples,
relatively to their original instances. While the results of CASTLE, BCASTLE
and FADS show an increase in the information loss for higher values of k, the
KNN-based algorithm and MiDiPSA show an opposite trend. The decreasing
trend relates to the use of random noise, added to each centroid before publish-
ing, as a result of applying the differential privacy mechanism. The larger the
cluster, the smaller the impact of noise on the cluster tuples and their centroid,
representing a lower sensitivity of the release mechanism. Hence, our algorithm
(MiDiPSA) shows the minimal information loss out of all evaluated algorithms.

Fig. 1(b) compares the average publishing delay of MiDiPSA and the four
other algorithms. Although all algorithms behave similarly for small clusters (re-
lated to low values of the k–anonymity parameter), MiDiPSA achieves a shorter
publishing delay for larger clusters (at k = 800). This can be attributed to
the fact that we distinguish between small, large and exactly k–tuple clusters,
incrementally publishing each tuple arriving at a k–tuple cluster.

3 Available at https://github.com/MichaKh/MiDiPSA-for-non-stationary-streams



Preserving Differential Privacy and Utility of Non-Stationary Data Streams 3

2050100200 400 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

k

In
fo

rm
a
ti

o
n

lo
ss

(a)

2050100200 400 800

0

500

1,000

1,500

k

A
v
er

a
g
e

d
el

ay
(t

u
p
le

s)

(b)

MiDiPSA KNN-based FADS
CASTLE BCASTLE

Fig. 1: (a) Information loss and (b) average publishing delay on “Airlines” stream
for increasing values of k

A a post-analysis, each published stream was used to prequentially train
four stream classifiers, using the MOA [2] software. These include Naive Bayes,
Adaptive Random Forest, CVFDT (Concept-Adapting Very Fast Decision Tree),
and the online Perceptron classifier.

Stream IL DR Utility

MiDiPSA KNN-based MiDiPSA KNN-based MiDiPSA KNN-based

Adult1 0.140 0.088 0.012 0.010 0.608* 0.507
Adult2 0.209* 0.566 0.244 0.011* 0.613* 0.564
Electricity 0.097* 0.255 0.526 0.029* 0.638* 0.570
Airlines 0.322* 0.508 0.254 0.012* 0.548* 0.433
SEA 0.183 0.234 0.136 0.010 0.677* 0.531
Hyperplane 0.193* 0.357 0.007 0.011 0.512* 0.459
Random RBF 0.060 0.106 0.005 0.010 0.695* 0.502

Table 1: Trade-off between information loss and disclosure risk and its impact
on the AUC of Adaptive Random Forest classifier (* p –value < 0.05)

The anonymization performance was compared to four other anonymiza-
tion algorithms: CASTLE [3], BCASTLE [12], the Fast clustering-based k–
Anonymization approach (FADS) [8], and the recently developed KNN-based
differentially-private microaggregation [10].

Table 1 describes the trade-off between information loss and disclosure risk,
on all the seven datasets, and its impact on the Area Under the ROC Curve
(AUC) of Adaptive Random Forest classifier, trained on both our and the KNN-
based published tuples. Friedman statistical test has been performed to verify
the significance of the results.
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4 Conclusions

In this paper, we presented MiDiPSA (Microaggregation-based Differential Pri-
vate Stream Anonymization) for continuously publishing non-stationary data.
In addition to satisfying k–anonymity and (c, l)–diversity, we proposed a novel
publishing technique, adhering to the conditions of ε−differential-privacy, and an
unsupervised mechanism for detection of concept drift under the evolving nature
of the data. Our experiments evaluated the trade-off between privacy, measured
by the disclosure risk, and utility, measured by the AUC of classifiers trained on
the anonymized streams. The MiDiPSA algorithm outperformed other state-of-
the-art anonymizers, achieving a lower information loss in most cases, but, on
the other hand, a higher disclosure risk for some datasets. In addition, a shorter
publishing delay was experienced using MiDiPSA for all datasets, a property
that makes MiDiPSA adequate for real-world massive stream applications.
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Abstract. Human level performance in a variety of tasks has been demonstrated 

by computerized systems. Those advancements have been achieved due to 

significant improvement in computation power and increasing focus of the 

research community over the past two decades. One of the most prominent 

approach for online learning is Reinforcement Learning (RL), in which an agent 

learns good strategies by interacting with its environment by taking a series of 

rewarding actions. This approach works well when an optimal behavior is 

required but the problem domain cannot be modeled effectively, e.g. since the 

dimension is too high, or that states are partially observable. RL-based classifiers 

make it possible to consider different constrains in the training phase, but as it 

turns out, those models are highly affected by the environment parameters, 

obligating the designer to take extra care when modeling it. This paper presents 

possible design flaws and suggests best practices for training such models. 

Keywords: Reinforcement learning, classification, active learning, one-shot 

learning 

1 Introduction 

Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) made 

it possible for computerized systems to perform many tasks at human level. 

Applications span from autonomous vehicles to chat bots. The extensive research of 

ML introduced a variety of new algorithms and frameworks. Reinforcement Learning 

(RL) is one of the most prominent among them which does not rely on concrete 

modeling of the environment. In RL, the trained agent interacts with the environment 

by means of actions and rewards, allowing the agent to learn an optimal policy even 

when its environment is not completely modeled. RL agents were able to play video 

games from raw pixels [1] and perform other complicated tasks. Recently, RL agents 

were suggested to act as a classifier with strict constrains in [2], where the authors 

successfully trained an agent to perform active one-shot learning. The one-shot learning 

problem deals with learning a class from a relatively small amount of labeled samples, 

which results in a complex task that usually employs a memory component [3]. Active 

Learning (AL) handles the situation where not all the samples have labels and the 

system must choose the samples which are labeled. In the online setting of active 

learning, the agent must choose whether to label a sample or request the true label [2]. 

The RL-classifier approach in [2] incorporates the label selection component inside the 

This research was supported by the Cyber Security Research Center at Ben Gurion University of the Negev. 
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agent and automatically models the environment. However, as it turns out, this model 

is highly affected by the environment parameters, obligating the designer to take extra 

care when modeling it. This paper presents possible design flaws and suggests best 

practices for training such models.  

2 Related Work 

We adopt a model-free RL approach in which observations are mapped directly to 

actions. The observation-action mapping is commonly learned by a Q-Learning method 

where an estimated reward function, i.e. the Q function, is learned from the samples 

[4]. DQN is used to model the Q-function by incorporating Neural Networks (NN) that 

allows model generalization and space efficiency. Recently, RL agents were used to 

perform constrained classification tasks [2], by constraining the number of labeled 

samples that forces the agent to choose the most informative ones. Modern techniques 

consider uncertainty, diversity, and density of the samples to be labeled [5]. One-shot 

learning algorithms usually employ meta-learning with memory components [2,3] in 

which some features of past samples are stored for future comparison. The model 

suggested in [2] uses LSTM as the memory component, which makes it possible to 

learn long term dependencies between actions. The cells consisting of memory units, 

input, output, and forget gates, used for updates and interactions with other cells. 

3 Preliminaries 

We start by providing a short background on Q-learning. For a set of possible states S 

and allowed actions A, RL consists of experience tuples, given by <st,a,r,st+1>, where 

st,st+1 ∈S are the current and next states, a∈A is an action taken at time t which results 

in getting reward r. Q-Learning is used to predict the long-run reward when taking 

action at state 𝑠, which is called the Q-function. The prediction is given by Q*(s,a). 

Obtaining the policy is done by choosing the highest rewarding action and is defined 

by V*(s)=argmaxaQ*(s,a). Updating the Q-function is done by minimizing the time-

difference error 

 Q(s,a):=Q(s,a)+α(r+γ maxat+1 Q(st+1, at+1)-Q(s,a) ) (1) 

, where α is the learning rate and γ is the discount factor. 

4 Experiments and Results 

The experiments conducted in this research rely on the model suggested in [2], and was 

evaluated with the Omniglot database. This databse consists of letters taken from 30 

languages, where every letter has only 20 samples. An experiment consists of 30 images 

 
Fig. 1.  Probabilities for classification request, correct prediction and wrong prediction, for every sample in the 

experiment; (a) shuffled examples from 3 classes; (b) ordered examples from 3 classes; (c) ordered examples 

from 3 classes out of 30. 
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from 3 classes arriving in a sequence. The samples may be shuffled or ordered, and the 

labels are randomly chosen. The agent may either try to predict the label or request it, 

and every evaluated sample consists of a concatenation between the image and a vector 

with a size equals to the number of classes. The tuple (xt,yt) represents the image and 

the label at time t, respectively. When the agent requests the label, the concatenated 

vector at time t+1 turns into one-hot vector which corresponds to yt. The agent obtains 

rewards of {1, −1, −0.05} upon correct prediction, wrong prediction, and classification 

request, respectively. The agent was trained for 300,000 epochs, learning rate of 0.001, 

with Adam optimizer, Fig 1.a shows the results for shuffled episodes, where the 

classifier requests less labels as it sees more samples. Fig 1.b shows the same 

experiment with ordered samples. Interestingly, at sample 21, the classifier is asked to 

label a previously unseen example, and yet it has 0.5 probability to correctly label the 

sample and almost never requests a label. This is one of the differences between agents 

and classifiers, where the learned policy understands that the new sample is different 

from the previously seen examples and since there must be 3 classes it guesses the label 

correctly. The probability of requesting a label in the first class increases as more 

examples have passed, meaning that the agent has learned the probabilities of the 

dynamics. Since the training used shuffled samples, the probability of seeing similar 

examples in all first requests is small and the agent concludes that the new examples 

are sampled from relatively similar but different classes. This results in requesting the 

label more often. We point out that designing a random environment is essential for 

preventing the over-fitting effect. Fig 1.c shows the performance of our improved agent, 

where the class labels were randomly chosen from 30 possibilities rather than 3, and 

when in the shuffled training phase, one of the classes was added to the experiments 

after that a random number of samples were already classified. This agent performed 

similarly under the shuffled experiment but did not guess the label on the 21st sample. 

It was able to correctly predict the label even when only a single image passed the 

system.  
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Chair: Sitaram Chamarty and Ben Gilad 



Introduction 

Entrepreneurship Pitch Track chaired by Ben Gilad and Sitaram Chamarty 

Information security practitioners have always had to take a wide-angle view of the 
world, because there is no aspect of life that is so disconnected from information 
security that it is immune to problems, or at least the possibility of improvements. 

This year’s CSCML Entrepreneurship Pitch Track is a perfect example of this.  It is 
clear that the entrants had a pulse on the current situation in information security, and 
are gearing up, (in some cases already have geared up) to meet the challenge head-on, 
and in the process protect all of us. 

Entries ranged from computer vision to scheduling and planning, from SCADA and 
similar systems to online social media.  It was heartening to note that, even in a 
business focused track, there were two entries that could justifiably be considered “for 
the greater good of the people” – that is, even if they had business motives and 
priorities, they would still end up benefiting all of us. 

These entrepreneurs deserve all the encouragement that we in the community can give 
them, in whatever form is suitable. 

As was the case last year, the Entrepreneurship Pitch Track at CSCML 2018 did an 
excellent job of fulfilling this objective, and consequently was a great success. It 
received sponsorship from leading VCs (JVP, BaseCamp Innovation Center, Telekom 
Capital Partners,) and corporations (DELLEMC, IBM, Tata Consultancy Services). 
Five start-ups pitched in the event, out of which 'HC Vision' was selected by the 
Entrepreneurship Pitch Track Committee as the leading entry. 'HC Vision' pitched in 
front of the entire audience who voted for the first (and second) best startup. 'HC 
Vision' presented readiness to turn their technological solution into a business and 
emerged as the winner! All three leading projects received a certificate of recognition. 

We look forward to an even better CSCML 2019. 

Regards, 

Ben Gilad, Sitaram Chamarty 
Tata Consultancy Services 
Entrepreneurship Pitch Track Chairs 



 



  



 

  



 

  



 

 

  



 

  





  



 

 



  



  



 

 

  



 

  



 

  



 



 

  



 



 





 



Detection of High-level Anomaly Events
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Abstract. This entrepreneurship pitch submission describes a POC for
detecting high-level anomaly events in utility networks such as power
grids, water plants, pressurized pipelines, etc.
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1 Introduction and Project Description

Utility networks with complex topologies, such as heterogeneous electricity grids,
wide-area water pipelines, and so forth, are vulnerable to cybersecurity intru-
sions [3]. A defining feature of such intrusions is that while simple intrusions are
fairly easy to detect, since they result in local spikes that are inconsistent with
the global grid configuration, extensive intrusions are much harder to detect.
Local spikes exist in such attacks, but stand out less, and are coordinated in
order to prevent automatic detection.

The proposed solution is to differentiate between detection of unreliable
low-level events, and detection of high-level intrusions at a higher abstraction
level that is created by automatically learning the behavioral model of low-level
events.

2 Proof-of-Concept Implementation

Figure 1 shows detection of low-level events such as power and current surges,
as detected by the power-management units (PMUs) that are positioned in key
locations over the heterogeneous power grid. While such events may point to a
low-level intrusion, the false-positives rate is high. In addition, a sophisticated
attacker may coordinate intrusions at different points in the network in such a
way that an attempt to filter-out the false-positives will also filter the actual
intrusion.

In order to create a higher level of abstraction that represents unexpected
changes in behavior of low-level events, a deep learning neural network is used in
order to learn a model of low-level events, as illustrated in Figure 2 and Figure 3.
Use of a neural network for this purpose is different from using one to detect
anomalies as-is, which is an established research area as well [1, 2].
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Fig. 1. Low-level events are detected from power management units (PMUs). AdS-
mart is the high-level events modeler described in this paper, whereas A1 and A2 are
algorithms that detect low-level events.

The proof-of-concept is evaluated on a simulated power grid, as illustrated in
Figure 4. Figure 5 shows a GUI that was implemented for testing the high-level
events detection.

3 Conclusions

I have presented a POC for detecting high-level anomaly events in utility net-
works. The market for such a system could be power plants SCADA cyberse-
curity solutions, oil/gas pipelines control, and others. However, a test on real
data is necessary. Moreover, deep learning has limited applicability for the ap-
proach, and advanced automatic learning methods like genetic programming are
expected to yield more promising results.
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Fig. 2. Neural network learns a model of low-level events.

Fig. 3. Data flow for creating a model of low-level events.

Fig. 4. A simulated power grid.
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Fig. 5. A graphical user interface for the POC.
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