
Nearest Neighbor Search in Google Correlate

Dan Vanderkam
Google Inc

76 9th Avenue
New York, New York 10011

USA
danvk@google.com

Robert Schonberger
Google Inc

76 9th Avenue
New York, New York 10011

USA
robsc@google.com

Henry Rowley
Google Inc

1600 Amphitheatre Parkway
Mountain View, California

94043 USA
har@google.com

Sanjiv Kumar
Google Inc

76 9th Avenue
New York, New York 10011

USA
sanjivk@google.com

ABSTRACT
This paper presents the algorithms which power Google Cor-
relate[8], a tool which finds web search terms whose popu-
larity over time best matches a user-provided time series.
Correlate was developed to generalize the query-based mod-
eling techniques pioneered by Google Flu Trends and make
them available to end users.

Correlate searches across millions of candidate query time
series to find the best matches, returning results in less than
200 milliseconds. Its feature set and requirements present
unique challenges for Approximate Nearest Neighbor (ANN)
search techniques. In this paper, we present Asymmetric
Hashing (AH), the technique used by Correlate, and show
how it can be adapted to fit the specific needs of the product.

We then develop experiments to test the throughput and
recall of Asymmetric Hashing as compared to a brute-force
search. For “full” search vectors, we achieve a 10x speedup
over brute force search while maintaining 97% recall. For
search vectors which contain holdout periods, we achieve a
4x speedup over brute force search, also with 97% recall.

General Terms
Algorithms, Hashing, Correlation

Keywords
Approximate Nearest Neighbor, k Means, Hashing, Asym-
metric Hashing, Google Correlate, Pearson Correlation

1. INTRODUCTION
In 2008, Google released Google Flu Trends [3]. Flu Trends

uses query data to estimate the relative incidence of In-
fluenza in the United States at any time.

This system works by looking at a time series of the rate of
Influenza-Like Illness (ILI) provided by the CDC1, and com-
paring against the time series of search queries from users
to Google Web Search in the past. The highest correlating

1Available online at http://www.cdc.gov/flu/weekly/

.

queries are then noted, and a model that estimates influenza
incidence based on present query data is created.

This estimate is valuable because the most recent tradi-
tional estimate of the ILI rate is only available after a two
week delay. Indeed, there are many fields where estimating
the present[1] is important. Other health issues and indica-
tors in economics, such as unemployment, can also benefit
from estimates produced using the techniques developed for
Google Flu Trends.

Google Flu Trends relies on a multi-hour batch process
to find queries that correlate to the ILI time series. Google
Correlate allows users to create their own versions of Flu
Trends in real time.

Correlate searches millions of candidate queries in under
200ms in order to find the best matches for a target time
series. In this paper, we present the algorithms used to
achieve this.

The query time series consists of weekly query fractions.
The numerator is the number of times a query containing a
particular phrase was issued in the United States in a partic-
ular week. The denominator is the total number of queries
issued in the United States in that same week. This nor-
malization compensates for overall growth in search traffic
since 2003. For N weeks of query data, the query and target
time series are N dimensional vectors and retrieval requires
a search for nearest neighbors.

A brute force search for the nearest neighbors is typically
too expensive (we discuss exactly how expensive below), and
so extensive work has gone into developing ANN algorithms
which trade accuracy for speed. Our problem is similar to
image clustering problems[6], and we examined many of the
known tree- and hash-based approaches[5, 4, 7].

Google Correlate presents some unique challenges and op-
portunities for nearest neighbor search:

1. We compare vectors using Pearson correlation. Be-
cause vectors may not contain directly comparable quan-
tities (i.e. normalized query volume and user-supplied
data), we prefer to use a distance metric which is in-
variant under linear transformations. Pearson correla-
tion has this property.

2. We require high recall for highly correlated terms. Re-
call is the fraction of the optimal N results returned

Figure 1: Correlated time series: Influenza-Like Illness (blue) and popularity of the term “treatment for flu”
on Google web search (red).

by the system. The original Google Flu Trends model,
which served as a template for Google Correlate, con-
sisted of 45 [3] queries. If we only achieved 10% recall,
we would have to build a Flu model using only four or
five of those queries. This would lead to an unaccept-
able degradation in quality.

3. We require support for holdout periods. When build-
ing a model, one typically splits the time period into a
training and test (or holdout) set. The training set is
used to build the model and the holdout is used to val-
idate it. Holdouts are essential for validating models,
so we needed to support them in Correlate. If a time
period is marked as being part of a holdout, our algo-
rithm should not consider any values from that time
period.

4. While the data set is large (tens of millions of queries
with hundreds of weeks of data each), it is not so large
that it cannot be stored in memory when partitioned
across hundreds of machines. This is in contrast to a
service like Google Image Search, where it would not
be reasonable to store all images on the web in memory.
Details on how we choose the tens of millions of queries
can be found in the Correlate Whitepaper[8].

The solution used by Correlate is a form of vector quan-
tization[2] known as “Asymmetric Hashing”, combined with
a second pass exact search, which we experimentally find to
produce search results quickly and with high recall.

2. DEFINITIONS

2.1 Pearson Correlation
For our distance metrics, we use the standard definition

for Pearson correlation between two time series, namely:

r(u, v) =
cov(u, v)

σuσv
(1)

=

∑n
i=1 [(ui − µ(u))(vi − µ(v))]√∑n

i=1(ui − µ(u))2
√∑n

i=1(vi − µ(v))2
(2)

2.2 Pearson Correlation Distance
If two vectors u and v are perfectly correlated, then r(u, v) =

1. A distance function should have a value of zero in this
case, so we use the standard definition of Pearson correlation
distance:

dp(u, v) = 1− r(u, v) (3)

2.3 Vectors with Missing Indices
Here we formalize the idea of a “holdout” period. We

define a vector with missing indices as a pair:

(v,m) where v ∈ <N ,m ⊂ {1 . . . N} (4)

if an index i ∈ m then the value of vi is considered unknown.
No algorithm which operates on vectors with missing indices
should consider it.

We found this representation convenient to work with,
since it allowed us to perform transformations on v. For
example, we can convert between sparse and dense repre-
sentations, without changing the semantics of (v,m).

We also define the projection π(v,m) obtained by remov-
ing the missing indices from v. If v ∈ <N then π(v,m) ∈
<N−|m|.

2.4 Pearson Correlation Distance for Vectors
with Missing Indices

Let (u,m) and (v, n) be two vectors with missing indices.
Then we define the Pearson correlation distance between
them as:

dp((u,m), (v, n)) = dp(π(u,m ∪ n), π(v,m ∪ n)) (5)

While this distance function is symmetric and nonnegative,
it does not satisfy the triangle inequality. Additionally, if
dp((u,m), (v, n)) = 0, there is no guarantee that u = v or
m = n.

2.5 Recall
We measure the accuracy of approximate result sets using

recall, the fraction of the ideal result set which appears in
the approximate result set.

If E is the ideal set of the top k results and A is the actual
set of the top k approximate results, the we define

Recallk(A,E) =
|A ∩ E|

k
(6)

Note that the ordering of results is not considered here. Cor-
relate swaps in exact distances (this procedure is described
below), so if results appear in each set, then they will be in
the same order.

3. ASYMMETRIC HASHING
Here we present Asymmetric Hashing, the technique used

by Correlate to compute approximate distance between vec-
tors. We begin by considering the simpler case of Pearson
correlation distance with “full” vectors, i.e. those without
missing indices. We then adapt the technique for target
vectors which do have missing indices.

3.1 Mapping onto Squared Euclidean Distance
We begin by mapping Pearson correlation distance onto

a simpler function. If u, v ∈ <N , we can normalize them by
their `2 norms and rescale so that

u′ =
u− µ(u)

2N |u− µ(u)| (7)

v′ =
v − µ(v)

2N |v − µ(v)| (8)

(9)

then we can calculate that

dp(u, v) =
∣∣u′ − v′∣∣2 (10)

Hence we can replace Pearson correlation distance with squared
Euclidean distance by normalizing our vectors appropriately.
In practice, the database vectors are normalized offline and
the target vector is normalized before doing a search. We
note here that computing µ(u) and |u− µ(u)| makes use of
all the values in u. Hence using this normalization is incom-
patible with holdouts/missing indices.

3.2 Training and indexing
Assume that we have a collection V = v(1), v(2), v(3), . . . , v(M)

of vectors in <N . We split these vectors into k-dimensional
chunks composed of consecutive dimensions in each vector.
This results in N

k
chunks, as seen in Figure 2.

We can define a set of projections, π1, . . . , πN/k ∈ <N 7→
<k which map from the full vectors to each particular chunk.
Then, for each i, πi(V) is a set of M vectors in <k. There
are N

k
such sets.

For each of these projections, we run the k-means al-
gorithm to find 256 centroids. We label the jth centroid
for the ith projection cji ∈ <

k. There are 256N
k

such cen-
troids. These centroids are the output of the training phase
of Asymmetric Hashing.

Figure 2: Illustration of how vectors are split into
chunks

To index a vector v, we find the centroid closest to v in
each chunk. Concretely, we set

hi(v) = arg min(
∣∣∣πi(v)− cji

∣∣∣) (11)

h(v) = (h1(v), h2(v), . . . , hN/k(v)) (12)

For each vector this results in N
k

integers between 1 and 256,

one for each chunk. We combine the integers into a N
k

byte
hash code, h(v).

We can reconstitute an approximation of the original vec-
tor from its hash code as:

Approx(v) = (c
h1(v)
1 , c

h2(v)
2 , . . . , c

hN
k

(v)

N
k

) (13)

As an aside, we note that chunks comprised of consecutive
weeks (1-10) typically result in better approximations than
chunks comprised of evenly-spaced weeks (1, 41, 81, . . . , 361).
This is because real-world time series tend to be auto-correlated:
one week is similar to those before and after it. This means
that the effective dimensionality of ten consecutive weeks is
typically less than ten. The k-means algorithm exploits this
to produce accurate approximations.

In this paper, we look at the case where:

M = 100000

N = 400

k = 10

This means that each 400 dimensional vector is indexed to a
40 byte hash code. If the original vectors were stored using
4 byte floats, this represents a 40x space reduction.

3.3 Searching
Searching in Asymmetric Hashing works by calculating

approximate distances between the target and database vec-
tors. It does so by computing exact distances between the
target vector and the approximately reconstructed database
vector:

d′(u, vi) = d(u,Approx(vi)) ≈ d(u, vi) (14)

The ANN search happens in two steps. First, we con-
struct a lookup table of distances. Then we use that table to
quickly compute approximate distances to all vectors. This
process is explained in detail below.

Given a search vector u, we construct a N
k

x256 matrix of
distances to each centroid:

Di,j(u) = d(πi(u), cji) =
∣∣∣πi(u)− cji

∣∣∣2 (15)

Assuming that we use 4 byte floats, this requires N
k

kilobytes
of memory. For N = 400 and k = 10, this is a very small
amount of storage, approximately 40 kilobytes.

Given this lookup table, we can group terms to compute
approximate distances via lookups and additions. Here we
set A = Approx(vi) for conciseness:

d′(u, v(i)) = d(u,Approx(v(i)))

= d(u,A)

= (u1 −A1)2 + (u2 −A2)2 + . . .+ (uN −AN)2

= [(u1 −A1)2 + (u2 −A2)2 + . . .+ (uk −Ak)2] + . . .+

[(uN−k+1 −AN−k+1)2 + (uN−k+2 −AN−k+2)2+

. . .+ (uN −AN)2]

= |π1(u)− π1(A)|2 + . . .+
∣∣πN/k(u)− πN/k(A)

∣∣2
=
∣∣∣π1(u)− ch1(v

(i))
1

∣∣∣2 + . . .+

∣∣∣∣πN/k(u)− chN/k(v
(i))

N/k

∣∣∣∣2
= D1,h1(v) +D2,h2(v) + . . .+DN/k,hN/k(v)

So computing an approximate distance requires N
k

lookups

and N
k
− 1 additions. Given a database V of M vectors and

the lookup table, we can compute the approximate distance
from u to all vectors in V using MN

k
additions. Since we

typically have M
k
� 256, the main loop is the performance

bottleneck.
This derivation depends on the fact that square Euclidean

distance can be summed across the chunks. There is no re-
quirement that a distance function have this property, and
many do not. In particular, Pearson correlation does not
have this property when the vectors have not been appro-
priately normalized.

We can make use of this summing property to add an im-
portant optimization: the “early-out”. Since the distance is
monotonically increasing as we add chunks, once a particular
vector has accumulated a large enough distance to establish
that it is not one of the nearest neighbors, that vector no
longer needs to be processed. This optimization becomes
more effective as M , the number of vectors on each ma-
chine, increases. This somewhat mitigates the advantages
of sharding across many machines.

3.4 Intuition
The “Asymmetric” in “Asymmetric Hashing” refers to the

fact that we hash the database vectors but not the search
vectors. The approximate distance function takes a vector
and a hash code as inputs, so it cannot be symmetric.

Unlike algorithms involving locality-sensitive hashing, Asym-
metric Hashing only hashes the database vector, thus elim-
inating one source of error. An illustration of this reduced
error can be seen in Figure 3.

3.5 Second Pass Reorder
If the original vectors can be stored in memory, then it is

possible to add a second pass to the Asymmetric Hashing
algorithm which does an exact reorder of the top R approx-
imate results. This can greatly increase the recall of the

Figure 3: 2 Dimensional visualization of the distance
to approximations of vectors.

approximate search.
A second pass reorder becomes more appealing when the

search is sharded across hundreds of machines. If each of 100
machines does an exact reorder on its top 10 approximate
results, then this is similar to doing an exact reorder on
the top 1000 approximate results (it will not be exactly the
same, since the top 1000 approximate results are unlikely to
be sharded evenly). If each machine has to reorder very few
results, then it may be possible to store the original features
on disk, rather than in memory.

Google Correlate uses R = 100 and O(100) machines to
achieve an effective reordering of the top 10,000 approximate
results on each query.

3.6 Asymmetric Hashing for Vectors with Miss-
ing Indices

This technique does not translate directly to Pearson cor-
relation search with holdouts/missing indices, because we
are unable to correctly normalize the database vectors be-
fore the search. This is because we do not know which in-
dices are to be considered until the search vector arrives.
The database vectors would have to be renormalized with
every search. The essential problem is that Pearson corre-
lation distance cannot be summed across chunks in the way
that squared Euclidean distance can.

Examining the formula for Pearson correlation, as defined
in (2), we can expand the numerator and denominator to
give:

r(u, v) =

∑n
i=1 [uivi − uiµ(v)− viµ(u)− µ(u)µ(v)]√∑n

i=1(ui − µ(u))2
√∑n

i=1(vi − µ(v))2
(16)

=

∑
uivi − nµ(u)µ(v)√

n
∑
u2
i − (

∑
ui)2

√
n
∑
v2i − (

∑
vi)2

(17)

The sums here are taken over the non-missing indices.
Using(17), we can break Pearson correlation into six parts
which can be summed across chunks. If we take

n = reduced dimensionality, Su =
∑

ui

Sv =
∑

vi, Suu =
∑

u2
i

Suv =
∑

uivi, Svv =
∑

v2i

Then:

dp(u, v) = 1− nSuv − SuSv√
(nSuu − S2

u)(nSvv − S2
v)

(18)

To use this formula with Asymmetric Hashing, we train and
index the data as before. At query time, we create lookup
tables and sum each of these six quantities, rather than
|u− v|2. While creating the lookup tables, we skip over
missing indices. We can then use (18) to compute the exact
Pearson correlation distance between the vector u with miss-
ing indices (u,m) and a hashed approximation of a database
vector (h(v), {}):

dp((u,m), (h(v), {})) ≈ dp((u,m), (v, {}))

This is possible because database vectors do not have any
missing indices. Since we are creating lookup tables for more
quantities and summing more of them, we expect that a
Pearson AH search will be slower than a conventional AH
search. We quantify this slowdown later in the paper.

3.7 Theoretical Performance
We can also analyze AH in terms of Floating Point Oper-

ations (FLOPs). We count addition, subtraction and multi-
plication as single operations.

The AH algorithms for Euclidean distance and for Pear-
son Correlation with missing indices both operate in three
steps: the construction of a lookup table, the calculation
of approximate distances using that table and, finally, a re-
ordering of the top candidates using exact distances.

3.7.1 Squared Euclidean distance
Here we calculate the number of FLOPs required to run

the AH algorithm for “full” vectors which have been pre-
normalized.

Lookup Table: for each of the 256(N
k

) centroids, we must

compute (a− b)2 for each of the k dimensions, and then add
the results. This requires 256N

k
(2k+(k−1)) = 256N(3− 1

k
)

operations.
Approximate Distances: for each vector we look up the

pre-computed distances for each chunk and add them. There
are M vectors and N

k
chunks, so this requires M(N

k
− 1)

additions.
Reorder: For each of the R vectors to be reordered, we

must compute (a − b)2 for each of the N dimensions, then
add the results. This requires R(2N +N − 1) = R(3N − 1)
operations.

So in total, discarding lower-order terms, we expect the
cost of an asymmetric hashing search to be:

Cost = 3(256)N +M
N

k
+ 3RN

In our case, the predicted slowdown for N = 105, k =
10, R = 1000 is 1.28.

3.7.2 Pearson Distance
When computing approximate Pearson correlation dis-

tance, we have to track five quantities rather than a single
quantity. This increases costs across the board.

Assume u is the query vector and v is a database vector.
Lookup table: We can compute Su and Suu once with

N(3 − 2
k

) operations. We cannot compute Sv and Svv of-
fline, since we do not know in advance which indices will
be missing in u. Computing these two quantities for all

centroids requires 256N(4− 2
k

) operations. Finally, we must

compute Suv at a cost of 256N(2− 1
k

). Dropping lower-order
terms, the cost of creating the lookup table is approximately
256(5N).

Approximate Distances: Since Su and Suu were precom-
puted, we need not recompute them here. The cost of com-
puting the approximate distance is the cost of summing Sv,
Svv and Suv, plus the cost of the Pearson correlation for-
mula. In most cases, the cost of computing the formula is
small compared to the summing. Dropping that term, we
get 3M N

k
operations.

Reorder: Su and Suu are already exact, so they need not
be recomputed. We must compute Sv, Svv and Suv exactly
for each query which is to be re-ordered, then use them to
compute the distance. Calculating Sv, Svv and Suv requires
5N − 3 operations, which is typically large compared to the
cost of computing the distance. Hence this step requires
5RN operations.

So the overall cost is:

Cost = 5(256N) + 3M
N

k
+ 5RN

Since M � N , the middle term is typically the dominant
one. This indicates that we should expect to see a roughly 3x
slowdown when using AH with Pearson correlation instead
of `2 distance.

4. METHODOLOGY
To test the performance of the approximate algorithms,

we collected a random sample of 100,000 of our database
vectors. Each vector consisted of 400 weeks of data, so that
there were 40M values in the test set. We stored these as
4-byte floats, so the test set required 160MB of memory.

To test full-vector searches, we ran a batch process to
compute the exact 100 nearest neighbors for each of the
100,000 vectors. We built AH data using 40-10 and 20-
20 configurations (i.e. N/k = 40, k = 10 and N/k = 20,
k = 20). In order to ensure consistency across test runs, we
limited our testing to a single threaded environment.

To test searches with holdouts, we created four different
test sets from the 100,000 vectors by removing indices in
different ways, as shown in figure 4:

1. The chop set removes W weeks from either the be-
ginning or the end of the vector. This mirrors a data
set which only became available partway through the
Correlate time period.

2. The even set removes weeks at evenly-spaced intervals.
This mirrors a system which may be shut off during an
off-season.

3. The holdout set removes a random span of W weeks.
This simulates an explicitly chosen holdout season.

4. The spike set removes W weeks surrounding the largest
value in the time series. The model for this is a query
like Michael Jackson, which had a 20 standard devia-
tion spike in the week of his death. This spike drowns
out all other features of the time series, which may be
interesting in their own right.

The value of W (the number of weeks held out) was chosen
randomly between 20 and 200 for each vector and index

Figure 4: Time series representations for the vector for Michael Jackson

removal technique. Each of these test sets contained 100,000
vectors.

We measured the differences between the optimal results
for each of these four sets and the original vector. We also
measured the performance and recall on all four of these sets
vs. an exact, brute force calculation of Pearson correlation
with missing indices.

The experiments were run on a single machine. The near-
est neighbor algorithm ran in a server and the performance
testing binary sent RPCs to localhost. To verify that this did
not introduce significant bottlenecks, we ran a server that
always returned the same results. The performance testing
binary reported greater than 1000 QPS. This is an order of
magnitude greater than the QPS from our real system, so
the communication and testing overhead are not significant.

5. RESULTS

Technique Median Mean Std. Dev.
chop 54 51.27 30.19
even 67 63.70 21.29
holdout 66 60.28 26.60
spike 31 35.04 26.72

Table 1: Recall@100 between optimal results for
“full” vectors and the same vectors with missing
indices added using different index removal tech-
niques.

Table 1 shows statistics on the size of the intersection
between the full-vector top 100 exact nearest neighbors and
the missing indices top 100 exact nearest neighbors for each
index removal technique. The sample size is 100,000 vectors.

The even and holdout techniques changed the exact re-
sults the least, moving 35-40 neighbors out of the top 100
on average. The spike technique changed the results the
most, removing 65 of the top 100 results for the full vec-
tor on average. This is to be expected, since the largest
value (which the spike technique removes) has the greatest
influence on correlation values.

Table 2 shows the results for full vector search. Asymmet-
ric Hashing is able to achieve a 15x speedup over brute force
search, but at the cost of poor recall (46.55%). Introducing

an exact reordering step increases the recall to 97.54% while
slightly reducing the throughput (only a 10.2x speedup is
achieved).

The theoretical prediction for the slowdown of an R =
1000 reorder step with a 40-10 configuration was 1.28, while
the observed slowdown is 1.45. The predicted slowdown for
N = 105, k = 20, R = 1000 is 1.52, while observed slowdown
is 1.62.

The explanation for the difference is the early-out:

1. The average approximate distance calculation requires
fewer than N/k additions because many vectors trig-
ger the early-out condition. So the main loop actually
takes less time than the FLOP calculations indicate.

2. For large R, more vectors must be tracked as candi-
dates. If there is no reorder and we wish to find the top
ten results, we need only track the ten best candidates
seen so far. The tenth candidate defines the early-out
cutoff. But if R = 1000, we must track the 1,000 best
candidates and the 1,000th defines the (much looser)
cutoff.

Table 3 presents the results for vectors with missing in-
dices. The results are analogous to those for full-vector
searches, but with a lower speedup. This is to be expected,
since there is more data being pre-computed and summed.
AH achieves a 4.5x speedup with approximately 50% recall.
Adding a 200-element second-pass reorder increases recall to
97% for most data sets with minimal loss of throughput.

The theoretical model predicted a 3x slowdown for the
AH/Pearson combination as compared to standard Euclidean
AH. In reality, we see a 5x slowdown. This is again explained
by the early-out. This optimization cannot be performed
with Pearson correlation. It makes the main loop of approx-
imate L2 search run faster in reality than the theoretical
M N

k
.

We do see some variation across the data sets. The chop
and even sets tend to have the highest recall, while spike al-
ways has the lowest. This makes some sense: the spike set is
more likely to remove the largest features from a chunk, thus
making the centroids on that chunk poor representations of
their original vectors.

It might be objected that the brute force algorithms are
adequate, since our goal at the outset was to return results in

under 200ms. Exact search responds in 63ms for “full” vec-
tors and 100ms for vectors with holdouts. While this is true
for the experimental setup presented in this paper, the per-
formance boosts of Asymmetric Hashing are still valuable.
They allow us to put more vectors on each machine, thus
reducing the overall resource requirements of our product.
This has made it feasible to expand the system to countries
beyond the United States.

6. CONCLUSIONS
By using Asymmetric Hashing with a second-pass reorder

and modifications to support Pearson correlation with hold-
outs, we are able to achieve all the requirements of Google
Correlate: fast searches, high-recall results and support for
holdouts. We achieve 10x speedups on full-vector searches
(the common case) and 97% recall. We achieve a 4x speedup
on holdout searches, also with 97% recall. This search algo-
rithm allows us to serve the requests of Correlate users with
low latency.

7. ACKNOWLEDGMENTS
We would like to thank Matt Mohebbi and Julia Kodysh

for their help in developing Google Correlate and Nemanja
Petrovic for his help exploring Approximate Nearest Neigh-
bor search techniques. We would also like to thank Craig
Neville-Manning and Corinna Cortes for their help leading
the project and reviewing this paper.

8. REFERENCES
[1] H. Choi and H. Varian. Predicting the present with

google trends.

[2] A. Gersho and R. Gray. Vector quantization and signal
compression, volume 159. Springer Netherlands, 1992.

[3] J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer,
M. Smolinski, and L. Brilliant. Detecting influenza
epidemics using search engine query data. Nature,
457(7232):1012–1014, 2008.

[4] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In Computer Vision,
2009 IEEE 12th International Conference on, pages
2130–2137. Ieee, 2009.

[5] T. Liu, A. Moore, A. Gray, and K. Yang. An
investigation of practical approximate nearest neighbor
algorithms.

[6] T. Liu, C. Rosenberg, and H. Rowley. Clustering
billions of images with large scale nearest neighbor
search. In Applications of Computer Vision, 2007.
WACV’07. IEEE Workshop on, pages 28–28. IEEE,
2007.

[7] T. Liu, C. Rosenberg, and H. Rowley. Building parallel
hybrid spill trees to facilitate parallel nearest-neighbor
matching operations, May 26 2009. US Patent
7,539,657.

[8] M. Mohebbi, D. Vanderkam, J. Kodysh,
R. Schonberger, H. Choi, and S. Kumar. Google
correlate whitepaper. 2011. Available at
www.google.com/trends/correlate/whitepaper.pdf.

Table 2: Experimental result techniques with different configurations
AH Config (k-N/k) Reorder Recall@10 QPS QPS/15.82 Med. Latency (ms) Memory (MB)
exact none 1 15.82 1.00 63.2622 269
40-10 none 0.4655 240.31 15.19 4.407 56
40-10 100 0.8641 232.54 14.70 4.588 276
40-10 200 0.9119 216.51 13.69 4.888 279
40-10 1000 0.9754 160.92 10.17 6.376 277
20-20 none 0.337 368.40 23.29 2.642 52
20-20 100 0.7134 358.42 22.66 2.749 271
20-20 200 0.7843 347.73 21.99 2.905 270
20-20 1000 0.9051 236.39 14.95 4.268 268

Table 3: Experimental result techniques with different configurations
AH Config Reorder Data Set Recall@10 QPS Med. Latency (ms) QPS vs. baseline
exact n/a chop 1 9.80 100.17 1.00
exact n/a even 1 10.15 97.44 1.00
exact n/a holdout 1 9.95 99.51 1.00
exact n/a spike 1 9.80 100.49 1.00
40-10 0 chop 0.5389 44.28 22.62 4.52
40-10 0 even 0.5343 44.37 22.56 4.37
40-10 0 holdout 0.5183 44.42 22.54 4.46
40-10 0 spike 0.4824 44.47 22.53 4.54
40-10 100 chop 0.9385 43.12 23.20 4.40
40-10 100 even 0.9529 42.69 23.36 4.21
40-10 100 holdout 0.9352 42.97 23.27 4.32
40-10 100 spike 0.8967 43.01 23.25 4.39
40-10 200 chop 0.9681 41.65 24.00 4.25
40-10 200 even 0.9788 41.49 24.10 4.09
40-10 200 holdout 0.9685 41.08 24.30 4.13
40-10 200 spike 0.9350 41.28 24.16 4.21
40-10 1000 chop 0.9917 33.38 29.88 3.41
40-10 1000 even 0.9967 33.20 30.07 3.27
40-10 1000 holdout 0.9943 33.21 30.06 3.34
40-10 1000 spike 0.9644 33.35 29.92 3.40
20-20 0 chop 0.4026 70.74 14.06 7.22
20-20 0 even 0.3962 71.60 14.01 7.06
20-20 0 holdout 0.3806 71.42 14.01 7.17
20-20 0 spike 0.3485 71.81 13.94 7.33
20-20 100 chop 0.859 68.35 14.64 6.98
20-20 100 even 0.8708 68.11 14.68 6.71
20-20 100 holdout 0.8499 68.29 14.65 6.86
20-20 100 spike 0.7893 67.98 14.68 6.94
20-20 200 chop 0.9215 65.10 15.36 6.64
20-20 200 even 0.9369 64.86 15.42 6.39
20-20 200 holdout 0.9191 65.04 15.37 6.53
20-20 200 spike 0.8659 65.04 15.38 6.64
20-20 1000 chop 0.9785 47.23 21.12 4.82
20-20 1000 even 0.9863 46.86 21.29 4.62
20-20 1000 holdout 0.9819 47.23 21.12 4.74
20-20 1000 spike 0.9457 47.08 21.20 4.80

